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Abstract
The N-localizer enjoys widespread use in image-guided stereotactic neurosurgery and radiosurgery. This
article derives the mathematical equations that are used with three N-localizers and provides analogies,
explanations, and appendices in order to promote a deeper understanding of the mathematical principles
that govern the N-localizer.
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Introduction
The N-localizer is a device that may be attached to a stereotactic frame (Figure 1) in order to facilitate
image-guided neurosurgery and radiosurgery using tomographic images that are obtained via computed
tomography (CT), magnetic resonance (MR), or positron-emission tomography (PET) [1]. The mathematics
of the N-localizer have been discussed previously [2].

FIGURE 1: Three N-Localizers Attached to a Stereotactic Frame
Three N-localizers are attached to this stereotactic frame and are merged end-to-end such that only seven
rods are present. The vertical rod at the right rear of the frame is larger in diameter than the other rods. This
large rod facilitates unambiguous interpretation of the fiducial circles and ellipses that the seven rods create
in a tomographic image, as explained in the legend to Figure 5.

Technical Report
The N-localizer comprises a diagonal rod that extends from the top of one vertical rod to the bottom of
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another vertical rod (Figure 2). Assuming for the sake of simplicity that the two vertical rods are
perpendicular to the tomographic section, the cross section of each vertical rod creates a fiducial circle and
the cross section of the diagonal rod creates a fiducial ellipse in the tomographic image, as shown in Figure
2b. As the tomographic section moves from the top of the N-localizer towards the bottom of the N-localizer ,
i.e. towards its point of attachment to the stereotactic frame (Figure 1), the ellipse  will move away from
circle  and toward circle . The relative spacing between these three fiducials permits precise localization
of the tomographic section with respect to the N-localizer. The distance  between the centers of circle 
and ellipse , and the distance  between the centers of circles  and  are used to calculate the ratio 

. This ratio represents the fraction of diagonal rod  that extends from the top of vertical rod 
to the point of intersection of rod  with the tomographic section. These linear geometric relationships exist
due to the properties of similar triangles and are valid even if the vertical rods are not perpendicular to the
tomographic section [3].

FIGURE 2: Intersection of the Tomographic Section with the N-Localizer
 Side view of the N-localizer. The tomographic section intersects the rods , , and .  Tomographic

image. The intersection of the tomographic section with the rods , , and  creates fiducial circles  and 
and fiducial ellipse  in the tomographic image. The distance  between the centers of circle  and ellipse 

 and the distance  between the centers of circles  and  are used to calculate the ratio .
This ratio represents the fraction of diagonal rod  that extends from the top of rod  to the point of
intersection of rod  with the tomographic section.

It is convenient to ignore the thickness of the tomographic section and to approximate the tomographic
section as an infinitely thin plane. This "central" plane lies midway between the top and bottom halves of
the tomographic section, analogous to the way that a slice of cheese is sandwiched between two slices of
bread. The central plane approximation is susceptible to error because of the partial volume effect that
derives from the several-millimeter thickness of the tomographic section [4-5]. The partial volume effect
prevails because any structure that passes partially into the tomographic section, but does not span the full
thickness of that section, may be visible in the tomographic image. Hence, the position of that structure is
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determined to only a several-millimeter error that is a well-known limitation of tomographic imaging. In the
following discussion, the term "tomographic section" will be used as an abbreviation for the term "central
plane of the tomographic section."

The fraction  is used to calculate the  coordinates of the point of intersection  between the long
axis of rod  and the tomographic section (Figure 3). In this figure, points  and  represent the
beginning and end, respectively, of the vector that extends from the top of rod  to the bottom of rod .
This vector coincides with the long axis of rod . The  coordinates of the beginning point  and
the  coordinates of the end point  are known from the physical dimensions of the N-localizer.
Hence, linear interpolation may be used to blend points  and  to obtain the  coordinates of
the point of intersection  between the long axis of rod  and the tomographic section

The vector form of Equation 1 shows explicitly the  coordinates of points , , and 

FIGURE 3: Calculation of the Point of Intersection Between the Rod B
and the Tomographic Section
The long axis of rod  is represented by a vector that extends from point  at the top of rod  to point  at
the bottom of rod . The  coordinates of point  and the  coordinates of point  are
known from the physical dimensions of the N-localizer. Hence, the ratio  may be used to blend the

 and  coordinates of points  and  via linear interpolation as indicated by Equations 1
and 2. This interpolation calculates the  coordinates of the point of intersection  between the
long axis of rod  and the tomographic section.

Equation 1 or 2 may be used to calculate the  coordinates of the point of intersection  between
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the long axis of rod  and the tomographic section. The point , which lies on the long axis of rod  in the
three-dimensional coordinate system of the N-localizer, corresponds to the analogous point , which lies
at the center of ellipse  in the two-dimensional coordinate system of the tomographic image (Figure 2b).
Hence, there is a one-to-one linear mapping between a point from the N-localizer and a point from the
tomographic image.

The attachment of three N-localizers to a stereotactic frame permits calculation of the , 
, and  coordinates for the three respective points, , , and , in the

three-dimensional coordinate system of the stereotactic frame (Figure 4). These three points correspond
respectively to the three analogous points, , , and , in the two-dimensional coordinate system of
the tomographic image. In the following discussion, the symbols, , , and , will be used as a shorthand
notation for , , and . The symbols, , , and , will be used as a shorthand notation for , 

, and .

FIGURE 4: Representation of the Tomographic Section in the Three-
Dimensional Coordinate System of the Stereotactic Frame
The quadrilateral represents the tomographic section. The large oval depicts the circular base of the
stereotactic frame (in perspective). The vertical and diagonal lines that are attached to the large oval
represent the nine rods. The centers of the six fiducial circles and the three fiducial ellipses that are created
in the tomographic image by these nine rods are shown as points that lie in the tomographic section. The
tomographic section intersects the long axes of the three diagonal rods at the points , , and  that
coincide with the respective centers , , and  of the three ellipses (Figure 6). The , , and

 coordinates of the respective points of intersection , , and  are calculated in the three-
dimensional coordinate system of the stereotactic frame using Equations 1 and 2. Because these three
points determine the spatial orientation of a plane in three-dimensional space, the spatial orientation of the
tomographic section is determined with respect to the stereotactic frame. The target point  lies in the
tomographic section. The  coordinates of this target point are calculated in the three-dimensional
coordinate system of the stereotactic frame using Equation 6.

The three points, , , and , lie on the three respective diagonal rods, , , and , and have
respective  coordinates, , , and , in the three-dimensional coordinate
system of the stereotactic frame (Figure 4). The analogous three points, , , and , lie at the centers of
the three respective ellipses, , , and , and have  coordinates, , , and , in the
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two-dimensional coordinate system of the tomographic image (Figures 5-6).

FIGURE 5: CT Image with Three Sets of Fiducials
CT image of a patient to whom a BRW CT localizer frame (Integra Radionics Inc., Burlington, MA), which
comprises three N-localizers, is attached. The cross sections of the three N-localizers create three sets of
fiducials , , and  in the CT image. The cursor indicates the target point .
The large vertical rod  allows it to be unambiguously distinguished from the other vertical rods and
provides a visual cue that this figure is rotated approximately 90 degrees clockwise relative to Figure 6 [6].

3 1 1 2 2 3 3
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FIGURE 6: Representation of the Two-Dimensional Coordinate System
of the Tomographic Image
The cross sections of the three N-localizers create three sets of fiducials , , and 

 in the tomographic image. Each set contains two circles and one ellipse that are collinear. For
each set, the short double-ended arrows indicate the distance  between the centers of circle  and
ellipse  and the long double-ended arrows indicate the distance  between the centers of circles  and .
The centers , , and  of the three ellipses coincide with the respective points of intersection , , and 

 of the long axes of the three diagonal rods with the tomographic section (Figure 4). The , , and 
 coordinates of the centers , , and  correspond respectively to the , , and 

 coordinates of the points of intersection , , and . The target point  has  coordinates
in the two-dimensional coordinate system of the tomographic image. The  coordinates of the
analogous target point  are calculated in the three-dimensional coordinate system of the stereotactic
frame using Equation 6.

In order to facilitate calculation of the  coordinates of the target point , it is convenient to
project the , , and  coordinates of the three centers, , , and , of the ellipses onto
the  plane in three-dimensional space by appending a third coordinate  to create , 

, and  coordinates. The -coordinate may be set arbitrarily to any non-zero value, e.g., 1,
so long as same value of  is used for each of the three -coordinates. The equations that are presented in
the remainder of this article assume that a value of  has been used to project the , , and 

 coordinates. If a value of  were used instead of  to project these coordinates, the
equations that are presented in the remainder of this article would no longer apply and would require
revision so that the calculations that these equations describe may produce correct results.

Because three points determine the orientation of a plane in three-dimensional space, the
three coordinates, , , and , together with the three coordinates, , 

, and , determine the spatial orientation of the tomographic section with respect to the
stereotactic frame. This spatial orientation or linear mapping is specified by the matrix elements 
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through  in the matrix equation

Equation 3 represents concisely a system of nine simultaneous linear equations that determine the spatial
orientation of the tomographic section with respect to the stereotactic frame. This equation transforms the 

, , and  coordinates from the two-dimensional coordinate system of the tomographic
image to create , , and  coordinates in the three-dimensional coordinate
system of the stereotactic frame.

Equation 3 assumes a linear mapping from the two-dimensional coordinate system of the tomographic
image to the three-dimensional coordinate system of the stereotactic frame. Magnetic resonance (MR)
images are susceptible to nonlinear distortion that invalidates this linear mapping and nullifies the
applicability of Equation 3. For this reason, the Brown-Roberts-Wells (BRW) stereotactic frame [7] that was
used initially with computed tomography (CT) required modification to eliminate nonlinear distortion of
MR images. The CT-compatible BRW frame comprised an aluminum ring in which the magnetic field that the
MR scanner generated to acquire MR images induced eddy currents. Those eddy currents distorted the MR
images. Replacing one section of the aluminum ring with a nonmetallic insert prevented magnetically
induced circumferential eddy currents and eliminated nonlinear distortion of the MR images [8].

An analogy provides insight into how the transformation of Equation 3 operates. Consider the tomographic
image to be an elastic membrane. The transformation describes the process of stretching the membrane in
the plane of the tomographic image, rotating the membrane about an axis that is normal to the plane of the
tomographic image, tilting the membrane, if necessary, so that it is not parallel to the base of the
stereotactic frame, and lifting the membrane into place upon the scaffold of the three N-localizers, such that
the three points, , , and , from the tomographic image precisely coincide with the respective
three points, , , and , from the stereotactic frame. Then, any other point that lies on the
membrane, e.g., the target point , is transformed by the same stretching, rotating, tilting, and lifting
processes that transformed the three points, , , and . In this manner, the  coordinates of the
target point  may be transformed from the two-dimensional coordinate system of the tomographic image
into the three-dimensional coordinate system of the stereotactic frame to produce the 

 coordinates of the analogous target point .

Equation 3 may be rewritten in more compact form as

In Equation 4,  represents the matrix of , , and  coordinates in the coordinate
system of the stereotactic frame.  represents the matrix of , , and  coordinates
in the coordinate system of the tomographic image.  represents the matrix of elements,  through ,
that defines the transformation from the two-dimensional coordinate system of the tomographic image to
the three-dimensional coordinate system of the stereotactic frame.

The elements of  and  are known, but the elements of  are unknown. It is possible to solve Equation 4 for
the elements of 

In this equation,  represents the inverse of matrix . The inverse of  is guaranteed to exist so long as the
, , and  coordinates of the centers of the three ellipses , , and  are not

collinear. This non-collinearity is enforced by careful design of the stereotactic frame, as will be explained
below in the Discussion.

Once the elements of matrix  have been calculated via Equation 5, it is possible to transform the 
coordinates of the target point  from the two-dimensional coordinate system of the tomographic image to
the three dimensional coordinate system of the stereotactic frame to obtain the  coordinates of
the analogous target point . In order to accomplish this transformation, the  coordinates of  are
used to form the vector  that is post-multiplied by matrix  to obtain the vector  that
contains the  coordinates of 

Moreover, it is possible to calculate the inverse of matrix 

The inverse matrix  may be used perform a transformation analogous to the transformation of Equation
6 but in the reverse direction. This reverse transformation transforms the  coordinates of a point 

 from the three-dimensional coordinate system of the stereotactic frame to the two-dimensional
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coordinate system of the tomographic image to obtain the  coordinates of the analogous point . In
order to accomplish this reverse transformation, the  coordinates of  are used to form the
vector  that is post-multiplied by matrix  to obtain the vector  that contains the 

 coordinates of 

Equation 8 yields  coordinates for  instead of  coordinates. The -coordinate 
equals 1 if and only if the point  lies in the tomographic section that corresponds to the  plane in
three-dimensional space [2]. Similarly,  appears in the two-dimensional tomographic image if and only if 

. In the case that  does not lie in the tomographic section,  so  does not appear in the
tomographic image.

One case where  does not appear in the tomographic image occurs when the point  and a second point 
 define the intended trajectory of a surgical probe but neither  nor  lies in an intermediate

tomographic section (Figure 7). In this case,  and , so neither  nor  appears in the
intermediate tomographic image.

However, in this case, the neurosurgeon may wish to know where the intended probe trajectory would
intersect the intermediate tomographic section. In order to provide this information, the points  and 

 are used to define the vector from  to . This vector is then used to calculate the  coordinates
of a third point  for which  (Figure 7). Because ,  appears in the intermediate tomographic
image; hence, a mark may be superimposed on that tomographic image at the  coordinates  to
indicate where the intended probe trajectory would intersect the intermediate tomographic section [2]. It is
possible to distinguish two configurations of  and  relative to an intermediate tomographic image: 

 and . All other configurations can be made to conform to one of these two
configurations via interchange of  and  and/or inverting the signs of both  and . The
configuration  specifies that  and  are located on opposite sides of an intermediate
tomographic image; thus, linear interpolation may be used to calculate  (Figure 7). The configuration 

 specifies that  and  are located on the same side of a non-intermediate tomographic
image; thus, linear extrapolation may be used to calculate  (Figure 8).
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FIGURE 7: Interpolation Within the Vector from  to  in Order to
Obtain the Point  that Appears in the Tomographic Image
The points  and  are located on opposite sides of an intermediate tomographic image for which .
The distances  and  are used to obtain the interpolant

This interpolant is used to calculate the  coordinates of the point  that appears in the tomographic
image.
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FIGURE 8: Extrapolation Beyond the Vector from  to  in Order to
Obtain the Point  that Appears in the Tomographic Image
The points  and  are located on the same side of a non-intermediate tomographic image for which 

. The distances  and  are used to obtain the extrapolant

This extrapolant is used to calculate the  coordinates of the point  that appears in the tomographic
image.

For either interpolation or extrapolation, the term

is used to calculate the  coordinates of  by blending the  and  coordinates of 
 and 

The vector form of Equation 10 shows explicitly the , , and  coordinates of
the respective points ,  and 

It is necessary to calculate only the  coordinates of  using Equation 11 because  due to the
definition of  in Equation 9. It is possible to prove that  by substituting Equation 9 into Equation 11
then expanding the resulting expression in the -coordinate to obtain

Discussion
The above mathematical formulation imposes some constraints on the physical design of the stereotactic
frame and on the mathematical model of that frame. Specifically, Equations 5 and 7 require that the
mathematical model of the frame permit the inverse matrices,  and , to exist.

The inverse matrix  exists if and only if the points , , and  are neither collinear nor lie on a plane
that passes through the origin of the  coordinate system. Similarly, the inverse  exists if and only
if the points , , and  are neither collinear nor lie on a plane that passes through the origin of the 
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 coordinate system.

The collinearity requirement is satisfied for both  and  by judiciously choosing the positions of the
three N-localizers relative to the stereotactic frame. Because for contemporary stereotactic frames the N-
localizers are positioned either around the circumference of a circle or on the faces of a cube, neither the
points , , and  nor the points , , and  can possibly be collinear.

The requirement that the points , , and  do not lie on a plane that passes through the origin of the 
 coordinate system is satisfied by choosing  to project the , , and 

coordinates to create , , and  coordinates.

The requirement that the points , , and  do not lie on a plane that passes through the origin of the 
 coordinate system may be satisfied by judiciously defining the  coordinate system of the

stereotactic frame, such that the -coordinate cannot equal zero anywhere along the diagonal rods. Figure 3
demonstrates that Equations 1 and 2 will never produce  along the diagonal rods so long as the interval
from  to  does not contain zero. One way to satisfy this requirement is to define the origin of the 

 coordinate system of the stereotactic frame to lie below the base of the N-localizers, such that the -
coordinate of the origin is always less than the -coordinate of point .

When all three of the above requirements are satisfied, the matrix  will correctly transform the , 
, and  coordinates of points , , and  from the two-dimensional coordinate system of

the tomographic image to create the , , and  coordinates of points , , and 
 in the three-dimensional coordinate system of the stereotactic frame as indicated by Equation 4. Also, the

inverse matrix  will correctly perform the inverse of that transformation.

Conclusions
The N-localizer is a simple yet powerful tool for image-guided stereotactic neurosurgery and
radiosurgery. The N-localizer enables the transformation of  coordinates from the two-dimensional
coordinate system of the computed tomography (CT), magnetic resonance (MR) or positron-emission
tomography (PET) image to the three-dimensional coordinate system of the stereotactic frame to obtain 

 coordinates. The matrix that accomplishes this transformation may be inverted; the resulting inverse
matrix enables the transformation of  coordinates from the three-dimensional coordinate system of
the stereotactic frame to the two-dimensional coordinate system of the computed tomography or magnetic
resonance image to obtain  coordinates.

Appendices
Appendix 1: Derivation of Equation 3
Equation 3 transforms  coordinates from the two-dimensional coordinate of the tomographic image to
the three-dimensional coordinate system of the stereotactic frame to produce  coordinates. Prior to
use in Equation 3, the  coordinates are projected onto the  plane in three-dimensional space by
appending a third coordinate  to create  coordinates. Equation 3 is derived as follows.

Transformation of coordinates from one three-dimensional coordinate system to another three-dimensional
coordinate system may be accomplished via matrix multiplication that operates in a four-dimensional space
[9]. However, in order that this four-dimensional space may be used to transform the two-dimensional 

 coordinates into three-dimensional  coordinates, it is necessary first to create three-
dimensional  coordinates by projecting the  coordinates onto the  plane in three-
dimensional space by appending a third coordinate . Then it is necessary to create four-dimensional 

 coordinates by projecting the  coordinates onto the  hyperplane in four-dimensional
space by appending a fourth, homogenous [10] coordinate . The  coordinates may be
transformed to obtain  coordinates using a four by four transformation matrix that contains the
matrix elements  through 

In Equation 13, the third row of the transformation matrix includes elements , , and  and the
fourth row includes elements , , and . This non-standard numbering convention for these matrix
elements is convenient to the remainder of this derivation of Equation 3. Also, the matrix elements in the
fourth column of this transformation matrix have the values of 0, 0, 0 and 1 because Equation 13 expresses
an affine transformation that comprises only scale, rotate and translate operations [9]. These
operations accomplish the stretching, rotating, tilting and lifting processes that were described for the
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membrane analogy in association with Equation 3.

Equation 13 may be rewritten in more compact form as

In Equation 14,  represents the matrix of , , and  coordinates. 
 represents the matrix of , , and  coordinates.  represents the

transformation matrix of elements  through  that defines the transformation from the two-
dimensional coordinate system of the tomographic image to the three-dimensional coordinate system of the
stereotactic frame.

A comparison of Equations 3 and 13 reveals that both equations produce identical results for the , 
, and  coordinates. The third column of  and the third row of  do not affect the 
, , and  coordinates. The fourth column of  affects only the fourth column of 

 but does not affect the , , and  coordinates. Hence, these columns and this
row may be removed from , , and  without affecting the result of Equation 13. Their removal yields
Equation 3, thus completing the derivation of Equation 3.

There is a significant difference between Equations 3 and 13. None of the matrices in Equation 13 have an
inverse because neither  nor  is a square matrix. In contrast, the matrices , , and  in Equation 3
potentially have inverses because these matrices are square matrices. Equations 5, 7, and 8 require that
these matrices have inverses. Hence, in order to express the transformation from the two-dimensional
coordinate system of the tomographic image to the three-dimensional coordinate system of the stereotactic
frame and vice versa, Equation 3 must be used instead of Equation 13.

Appendix 2: Derivation of the Distance 
Equation 9 calculates the interpolant or extrapolant  in the  coordinate system of the tomographic
image. This interpolant or extrapolant is calculated in terms of the perpendicular distance  from a point

 to the plane of the tomographic image. The distance  is derived as follows.

In the three-dimensional  coordinate system of the stereotactic frame, the equation for the central
plane of the tomographic section is given by the following equation that involves a determinant [11-12]

Expanding this determinant using the cofactors [12] of the elements , , , and 1 in the first row of the
determinant yields

Equation 16 may be rewritten in more compact form as

where , , , and  represent the determinants in Equation 16. The determinants , , and  may be
expanded using the cofactors of the elements in their third columns as follows

The normalized perpendicular distance  from a point , which has coordinates , to the central plane
of the tomographic section may be calculated as [11]
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This equation for the normalized perpendicular distance will be compared to the equation for the distance 
 that is derived below.

In order to calculate the distance , the  coordinates of the point  that corresponds to the point 
 are obtained by transforming the  coordinates of the point  via Equation 8 then by substituting

the definitions of matrices , , and  from Equation 3

Substituting the inverse of the matrix , which is defined as its adjoint [12] divided by its determinant, into
Equation 20 yields

Transformation of the  coordinates of the point  to obtain only the -coordinate of the point 
requires only the vector from the third column of . Hence, keeping only the third column of the matrix
that results from the post-multiplication of  by  produces the following expression for  that contains a
three-element column vector

Rewriting Equation 22 in more compact form using the definitions of , , , and  from Equation 18 yields

Performing the vector multiplication of Equation 23 produces the -coordinate of the point 

The perpendicular distance from the point  to the plane of the tomographic image is given by 

Comparison of Equation 25 to Equation 19 reveals that the numerators of these equations are identical but
their denominators differ, as can be demonstrated by expanding the determinants , , , and  then
showing that . Thus, the distance that is calculated using Equation 25 differs by a factor of

 from the normalized distance that is calculated using Equation 19. However, this factor
is not relevant to the interpolant or extrapolant  that is calculated via Equation 9 because Equation 9
calculates a ratio of distances that eliminates this factor. Hence,  may be used to construct the
interpolant or extrapolant  according to Equation 9.

Appendix 3: Transformation of the Target Point  and the Analogous
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Target Point 
Equation 3 expresses the transformation of points , , and  from the two-dimensional coordinate
system of the tomographic section to obtain the analogous points , , and  in the three-dimensional
coordinate system of the stereotactic frame. However, the above discussion of the membrane analogy asserts
that any point that lies in the plane of points , , and  may be transformed from the two-dimensional
coordinate system of the tomographic section to the three-dimensional coordinate system of the stereotactic
frame via the same transformation that transforms points , , and . This assertion obtains due to the
principles of linear algebra and is proved as follows.

Equation 3 transforms en masse the , , and  coordinates of the three points , ,
and  to create the , , and  coordinates of the three points , , and . An
alternative is to transform separately the , , and  coordinates of the three points 

, , and  to obtain the , , and  coordinates of the three points , , and 
, respectively

Equation 26 produces the same result for the , , and  coordinates of points , 
, and  as does Equation 3.

It is possible to represent any point that lies in a plane defined by three other points as a linear combination
of those three points using the barycentric coordinates , , and  that satisfy the condition 

 [13]. For example, with reference to Figure 9, the target point  may be represented as a
linear combination of the three points , , and 
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FIGURE 9: Representation of the Tomographic Section in the Three-
Dimensional Coordinate System of the Stereotactic Frame
The quadrilateral represents the tomographic section. The large oval depicts the circular base of the
stereotactic frame (in perspective). The vertical and diagonal lines that are attached to the large oval
represent the nine rods. The centers of the six fiducial circles and the three fiducial ellipses that are created
in the tomographic image by these nine rods are shown as points that lie in the tomographic section. The
tomographic section intersects the long axes of the three diagonal rods at points , , and  that coincide
with the respective centers , , and  of the three ellipses (Figure 10). The target point  lies in the plane
of the triangle . Hence, its  coordinates may be expressed as a linear combination of the 

, , and  coordinates of the points , , and  using barycentric coordinates as
indicated by Equation 27.

Similarly, with reference to Figure 10, the analogous target point  may be represented as a linear
combination of the three points , , and .
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FIGURE 10: Representation of the Two-Dimensional Coordinate System
of the Tomographic Image
The cross sections of the three N-localizers create three sets of fiducials , , and 

 in the tomographic image. Each set contains two circles and one ellipse that are collinear. The
centers , , and  of the three ellipses coincide with the respective points of intersection , , and  of
the long axes of the three diagonal rods with the tomographic section (Figure 9). The , , and 

 coordinates of the centers , , and  correspond respectively to the , , and 
 coordinates of the points of intersection , , and . The target point  lies in the plane of the

triangle . Hence, its  coordinates may be expressed as a linear combination of the , 
, and  coordinates of the points , , and  using barycentric coordinates as indicated by

Equation 28.

Because the matrix  that transforms  into  via Equation 4 describes a linear transformation, the
barycentric coordinates , , and  apply to both  and . Hence, these barycentric coordinates may be
used in both Equation 27 and Equation 28. These equations describe interpolation in a plane that is
analogous to the interpolation along a line that is expressed by Equation 1.

Using the matrix  to transform the point  as shown in Equation 6 and substituting Equations 26-28
yields

Eliminating the intermediate steps from Equation 29 and showing explicitly the  coordinates of 
 and the  coordinates of  yields 
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Equation 30 proves that any point  that lies in the tomographic image may be transformed from the two-
dimensional coordinate system of that image to the three-dimensional coordinate system of the stereotactic
frame to obtain the analogous point .

Using the inverse matrix  to transform the point  as shown in Equation 8 and substituting Equations
26-28 yields

Eliminating the intermediate steps from Equation 31 and showing explicitly the  coordinates of 
 and the  coordinates of  yields

Equation 32 proves that any point  that lies in the plane of the tomographic section may be transformed
from the three-dimensional coordinate system of the stereotactic frame to the two-dimensional coordinate
system of the tomographic image to obtain the analogous point .
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