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Abstract
The N-localizer enjoys widespread use in image-guided stereotactic neurosurgery and
radiosurgery.  This paper derives the mathematical equations that are used with the N-localizer
and provides analogies and explanations in order to promote an intuitive understanding of the
mathematical principles.
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Introduction
The mathematical treatment of the N-localizer has been discussed previously [1].  The N-
localizer comprises a diagonal rod that extends from the top of one vertical rod to the bottom
of another vertical rod (Figure 1). This N-shaped structure produces two circles and one ellipse
in sectional images that are obtained via medical imaging technologies, such as computed
tomography or magnetic resonance imaging [1-2]. In the scan image, each of the two vertical
rods creates a fiducial circle and the diagonal rod creates a fiducial ellipse. The ellipse moves
away from one circle and towards the other circle as the position of the scan section moves
upward with respect to the N-localizer.

It is convenient to ignore the thickness of the scan section and to represent the scan section as
an infinitely thin plane.  This central plane lies midway between the top and bottom halves of
the section, analogous to the way that a slice of cheese is sandwiched between two slices of
bread.

It is also convenient to ignore the diameter of each of the three rods and to represent each rod
by its long axis. The intersection of the long axis of each rod with the central plane of the scan
section defines a point at the centroid of the circle or ellipse that is created by the rod (Figure
1). The relative spacing between the three centroids permits precise localization of the central
plane of the scan section relative to the N-localizer. The distance  between the centroids
of circle  and ellipse  and the distance  between the centroids of circles  and  are
used to calculate the ratio .  This ratio represents the fraction of the diagonal
rod  that extends from the top of vertical rod  to the point of intersection of the long axis
of rod  with the central plane of the scan section. The fraction  is a dimensionless number
due to the fact that the units of measurement of  and  are eliminated in the division
of  by .  For this reason, the distances  and  may be measured in any units
that are convenient, e.g., millimeters, pixels, etc., so long as the same units are used to measure
both  and .
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FIGURE 1: Intersection of the scan section with the N-localizer
 Side view of the N-localizer. The scan section intersects rods ,  and .  Scan

image. The intersection of the scan section with rods ,  and  creates fiducial circles 
and  and fiducial ellipse  in the scan image. The distance  between the centroids of
circle  and ellipse  and the distance  between the centroids of circles  and  are
used to calculate the ratio . This ratio represents the fraction of diagonal
rod  that extends from the top of rod  to the point of intersection of rod  with the scan
section. These geometric relationships are valid, even if the scan section is not perpendicular to
the vertical rods, as can be demonstrated using similar triangles [2].

The fraction  is used to calculate the  coordinates of the point of intersection
between the long axis of rod  and the central plane of the scan section.  In Figure 2, the points

 and  represent the beginning and end, respectively, of the vector that extends from the
top of rod  to the bottom of rod .  This vector coincides with the long axis of rod .  The 

 coordinates of the initial point  and the  coordinates of the
end point  are known from the physical dimensions of the N-localizer.  Hence, linear
interpolation may be used to blend the  and  coordinates of
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points  and  in order to calculate the  coordinates of the point of
intersection  between the long axis of rod  and the central plane of the scan section

The vector form of Equation 1 shows explicitly the ,  and 
 coordinates of the respective points ,  and 

Either Equation 1 or 2 may be used to calculate the  coordinates of the point of
intersection  between the long axis of rod  and the central plane of the scan section. The
point , which lies on the long axis of rod  in the three-dimensional coordinate system of
the N-localizer, corresponds to an analogous point , which lies at the centroid of ellipse 
in the two-dimensional coordinate system of the scan image. Hence, there is a one-to-one
correspondence between a point from the N-localizer and a point from the scan image.

and the central plane of the scan section">  and the central plane of the scan section"
itemprop="image"

src="http://assets.cureus.com/uploads/figure/file/662/article_river_Figure2Math2.png"
title="Calculation of the point of intersection between the rod  and the central plane of the scan

section">

FIGURE 2: Calculation of the point of intersection between the
rod  and the central plane of the scan section
The long axis of rod  is represented by a vector that extends from point  at the top of rod 

 to point  at the bottom of rod . The  coordinates of point  and the
 coordinates of point  are known from the physical dimensions of the N-

localizer. Hence, the ratio  may be used to blend the  and 
 coordinates of points  and  via linear interpolation as indicated by

Equations 1 and 2. This interpolation calculates the  coordinates of the point
of intersection  between the long axis of rod  and the central plane of the scan section.

Technical Report
The attachment of three N-localizers to a stereotactic frame permits calculation of the 

,  and  coordinates for the
three respective points of intersection ,  and  in the three-dimensional

coordinate system of the stereotactic frame. These three points correspond respectively to the
three centroids ,  and  in the two-dimensional coordinate system of the scan
image.  In the following mathematical development, the symbols ,  and  will be used as
a shorthand notation for ,  and .  The symbols ,  and  will be used as a

shorthand notation for ,  and .

The three points of intersection ,  and  lie on the long axes of the three respective
diagonal rods ,  and  and have respective  coordinates , 

 and  in the three-dimensional coordinate system of the
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stereotactic frame (Figure 3). The analogous three points ,  and  lie at the centroids of
the three respective ellipses ,  and  and have respective  coordinates 

,  and  in the two-dimensional coordinate system of the scan
image (Figure 4). Because three points determine a plane in three-dimensional space, the
three coordinates ,  and  together with the
analogous three coordinates ,  and  determine the spatial
orientation of the central plane of the scan section relative to the stereotactic frame. This
spatial orientation permits transformation of the  coordinates of a target point 
from the two-dimensional coordinate system of the scan image into the three-dimensional
coordinate system of the stereotactic frame to obtain the  coordinates of the
analogous target point .

FIGURE 3: Representation of the central plane of the scan
section in the three-dimensional coordinate system of the
stereotactic frame
The quadrilateral represents the central plane of the scan section. The large oval depicts the
base of the stereotactic frame. The vertical and diagonal lines that are attached to the large
oval represent the long axes of the nine rods. The six fiducial circles and the three fiducial
ellipses that are created in the scan image by these rods are shown lying in the central plane.
The centroids of these circles and ellipses are represented by dots that also lie in the central
plane. The central plane intersects the long axes of the three diagonal rods at points , ,
and  that coincide with the respective centroids ,  and  of the three ellipses (Figure
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4). The ,  and  coordinates of the respective points
of intersection , , and  are calculated in the three-dimensional coordinate system of
the stereotactic frame using Equations 1 and 2. Because these three points determine a plane
in three-dimensional space, the spatial orientation of the central plane is determined relative to
the stereotactic frame. A target point  lies in the two-dimensional coordinate system of the
central plane. The  coordinates of the analogous target point  must be
calculated in the three-dimensional coordinate system of the stereotactic frame.

FIGURE 4: Representation of the two-dimensional coordinate
system of the scan image
Three N-localizers create three sets of fiducial marks , 
and . Each set contains two circles and one ellipse. For each set, the short
double-ended arrows indicate the distance  between the centroids of circle  and ellipse

 and the long double-ended arrows indicate the distance  between the centroids of
circles  and . The centroids ,  and  of the three ellipses coincide with the
respective points of intersection , , and  of the long axes of the three diagonal rods
with the central plane of the scan section (Figure 3). The ,  and 
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coordinates of the centroids ,  and  correspond respectively to the , 
 and  coordinates of the points of intersection , , and .

A target point  has  coordinates in the two-dimensional coordinate system of
the scan image. The  coordinates of the analogous target point  must be
calculated in the three-dimensional coordinate system of the stereotactic frame. The large
circle  facilitates pairing of each of the ,  and  coordinates
with the correct one of the ,  and  coordinates as
required by Equation 3 (see text for explanation).

In order to facilitate calculation of the  coordinates of the target point , it is
convenient to project the ,  and  coordinates of the three
centroids ,  and  onto the  plane in three-dimensional space by appending a
third coordinate  to create ,  and  coordinates.
The -coordinate may be set arbitrarily to any non-zero value, e.g., 1, so long as same value of 

 is used for each of the three -coordinates. The equations that are presented in the
remainder of this paper assume that a value of  has been used to project the , 

 and  coordinates.  If a value of  were used instead of  to
project these coordinates, the equations that are presented in the remainder of this paper
would no longer apply and would require revision so that the calculations that these equations
describe may produce correct results.

The correspondence, or transformation, between the two-dimensional coordinate system of the
scan image and the three-dimensional coordinate system of the stereotactic frame may be
represented using the three pairs of coordinates , 

 and  in the matrix
equation

Equation 3 represents concisely a system of nine simultaneous linear equations that determine
the spatial orientation of the central plane of the scan section relative to the stereotactic frame.
This equation transforms coordinates from the two-dimensional coordinate system of the scan
image into the three-dimensional coordinate system of the stereotactic frame.

Equation 3 assumes a linear relationship between the three-dimensional coordinate system of
the stereotactic frame and the two-dimensional coordinate system of the scan image. Any non-
linear distortion, such as might occur in the creation of a magnetic resonance image, would
invalidate this linear relationship and nullify the applicability of Equation 3. For this reason,
the Brown-Roberts-Wells (BRW) stereotactic frame that was used initially in conjunction with
computed tomography imaging required modification for use with magnetic resonance
imaging. This modification eliminated magnetically-induced eddy currents in the stereotactic
frame that contributed to non-linear distortion of the magnetic resonance image [10].

An analogy provides insight into how the transformation of Equation 3 operates. Consider the
scan image to be an elastic membrane. The transformation describes the processes of stretching
the membrane in the plane of the scan image, rotating the membrane about an axis that is
normal to the plane of the scan image, tilting the membrane if necessary so that it is not
parallel to the base of the stereotactic frame, and lifting the membrane into place upon the
scaffold of the three N-localizers such that the three centroids ,  and  from the scan
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image precisely coincide with the respective three points ,  and  from the stereotactic
frame. Then any point that lies on the membrane, for example, a target point , will
be transformed by the same stretching, rotating, tilting and lifting processes that transformed
the three centroids ,  and . In this manner, the  coordinates of a target
point  may be transformed from the two-dimensional coordinate system of the scan image
into the three-dimensional coordinate system of the stereotactic frame to obtain the 

 coordinates of the analogous target point .

In order that Equation 3 may calculate the correct transformation, each of the three centroids 
,  and  from the scan image must be paired with the correct one of the three points 

,  and  from the stereotactic frame so that each of the three , 
and  coordinates may be paired with the correct one of the three , 

 and  coordinates when these pairs of coordinates are
substituted into Equation 3. There are six possible pairings, or combinations, for these points,
but only one of these combinations is correct. A simple solution to this pairing problem was
implemented for Brown's prototype stereotactic frame (Figure 5) as well as for the
BRW stereotactic frame [4]. One of the six vertical rods , , , ,  and  was
manufactured to a larger diameter than the other five vertical rods (Figure 5). This large
vertical rod was labeled rod .  The diagonal rod that joined this vertical rod  was labeled
rod .  Then, proceeding sequentially around the circumference of the stereotactic frame in
the same direction as the direction from rod  to rod , the remaining rods that were
encountered in sequence were labeled , , , , ,  and . This ordering for the
rods permitted unambiguous labeling of the three diagonal rods ,  and  and thereby
permitted assignment of the three respective points of intersection ,  and  between
the long axes of these rods and the central plane of the scan section.  This labeling was
performed only once and became part of the geometric description of the BRW stereotactic
frame.

FIGURE 5: Three N-localizers are attached to the prototype
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stereotactic frame
The prototype stereotactic frame was used to test the concept of the N-localizer by targeting
the small spheres inside the frame[1-2]. The three N-localizers are placed around a hemi-
circumference of the base of the frame and are merged end to end such that they comprise
three diagonal rods and four vertical rods. This merged arrangement of the N-localizers was
also used in the early models of the BRW stereotactic frame[3-4]. Later models of the BRW
stereotactic frame placed three distinct N-localizers at equal intervals around the full
circumference of the base of the frame such that they comprised three diagonal rods and six
vertical rods (Figure 3). The vertical rod at the right rear of the prototype stereotactic frame is
larger in diameter than the other rods. This large rod facilitates unambiguous pairing of each of
the centroids ,  and  in the scan section (Figure 4) with the correct one of the points of
intersection , , and  between the long axes of the three diagonal rods and the central
plane of the scan section (Figure 3).

In a similar manner, the large rod  permits unambiguous labeling of the three ellipses , 
 and  in each scan image. This large rod creates circle  that is larger in diameter than

the other five circles in the scan image.  A comparison of Figure 4 to Figure 6 demonstrates that
circle  allows immediate recognition of the fact that the positions of the nine fiducial marks
in Figure 6 are rotated clockwise by approximately 90 degrees relative to their positions in
Figure 4. If the large circle  were not present, it would be impossible to determine which
three of the nine fiducial marks were created by a particular one of the three N-localizers.
However, the presence of the large circle  allows manual assignment of the fiducial marks as
follows. The closest fiducial mark to circle  is labeled ellipse . Then, proceeding
sequentially around the circumference of the scan image in the same direction as the direction
from circle  to ellipse , the fiducial marks that are encountered in sequence are labeled 

, , , , ,  and .  This ordering for the fiducial marks permits unambiguous
labeling of the three ellipses ,  and  in the scan image and thereby permits
assignment of the three respective centroids ,  and  to these ellipses.
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FIGURE 6: Cranial computed tomography (CT) scan image of a
patient surrounded by three N-localizers
A cranial computed tomography (CT) scan image of a patient to whom three N-localizers are
fastened demonstrates the nine fiducial marks that are created by three N-localizers. A search
for the positions of these nine fiducial marks may be conducted either automatically by
computer or manually to label the marks in the order , , , , , , ,  and 

 (see text for details). The cursor designates a target point .

A computer search can automatically label the fiducial marks in the scan image using somewhat
the same algorithm that has been described above. First, the computer finds the nine fiducial
marks by searching the scan image for circular or elliptical shapes that are surrounded by air
density. Each mark is characterized by (1) the  coordinates of its centroid; (2) its shape,
i.e., circular or elliptical; and (3) its size, i.e., the number of pixels that it subtends. Then the
largest circle is identified by both its circular shape and its size; this circle is labeled . Then
the Pythagorean distances between the centroid of circle  and the eight remaining centroids
are calculated to identify the closest mark to circle ; this mark is labeled ellipse . Then,
excluding circle , the Pythagorean distances between ellipse  and the seven remaining
centroids are calculated to identify the closest mark to ellipse ; this mark is labeled circle 

. Then, excluding circle  and ellipse , the Pythagorean distances between circle 
and the six remaining centroids are calculated to identify the closest mark to circle ; this
mark is labeled circle . This process of calculating the Pythagorean distances between the
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last mark identified and the remaining unidentified marks continues until all nine of the
fiducial marks have been identified in the order , , , , , , ,  and 
. The computer can check the validity of the labels using the fact that each of the three sets of
marks ,  and  must contain three collinear
marks. This collinearity requirement is obvious from inspection of Figure 1B, which suggests
that the centroid of each of the three ellipses ,  and  is guaranteed to lie on a line that
connects the centroid of the respective circle ,  or  to the centroid of the respective
circle ,  or .

Independent of whether assignment of the fiducial marks occurs manually or automatically, the
large rod  facilitates unambiguous pairing of each of the three ellipses ,  and  with
the correct one of the three diagonal rods ,  and , and thereby permits unambiguous
pairing of each of the three centroids ,  and  with the correct one of the three points 

,  and . Hence, each of the three ,  and 
 coordinates may be paired with the correct one of the three ,  and 

 coordinates, thus allowing Equation 3 to calculate the correct transformation
from the two-dimensional coordinate system of the scan image into the three-dimensional
coordinate system of the stereotactic frame.

Equation 3 may be rewritten in more compact form as

In Equation 4,  represents the matrix of ,  and 
 coordinates from the coordinate system of the stereotactic frame.  represents the matrix of 

,  and  coordinates from the coordinate system of the
scan image.  represents the matrix of elements  through  that defines the
transformation from the two-dimensional coordinate system of the scan image into the three-
dimensional coordinate system of the stereotactic frame.   represents the post-
multiplication of  by  and relies on the fact that multiplication of one matrix by another
matrix is a defined algebraic operation. However, the multiplication of matrices is not
commutative, so  should be described as either post-multiplication of  by  or pre-
multiplication of  by .

The elements of  and  are known, but the elements of  are unknown. It is possible to
invert Equation 4 to obtain the elements of 

In this equation,  represents the inverse of matrix . Division of one matrix by another
matrix is not a defined algebraic operation, so multiplication of one matrix by the inverse of
another matrix is used in place of division.  Hence, pre-multiplication of  by  is
equivalent to dividing  by . The inverse of  is guaranteed to exist so long as the 

,  and  coordinates of the centroids of the three ellipses 
,  and  are not collinear and their -coordinates are non-zero.

Once the elements of matrix  have been calculated via Equation 5, it is possible to
transform the  coordinates of a target point  from the two-dimensional
coordinate system of the scan image into the three dimensional coordinate system of the
stereotactic frame to obtain the  coordinates of the analogous target point 
. In order to accomplish this transformation, the  coordinates of  are used to
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form the vector  that is post-multiplied by matrix  to obtain the vector 
 that contains the  coordinates of 

Moreover, it is possible to use the inverse of matrix 

to perform a similar transformation in the reverse direction.  This reverse transformation
transforms the  coordinates of a point  from the three-dimensional

coordinate system of the stereotactic frame into the two-dimensional coordinate system of the
scan image to obtain the  coordinates of the analogous point . In order to
accomplish this reverse transformation, the  coordinates of  are used to

form the vector  that is post-multiplied by matrix  to obtain the vector 
 that contains the  coordinates of 

Equation 8 yields  coordinates for  instead of  coordinates.
The -coordinate  equals 1 if and only if the point  lies in the central plane of the scan

section that corresponds to the  plane in three-dimensional space; similarly, 
appears in the two-dimensional scan image if and only if .  In the case that  does

not lie in the central plane of the scan section,  so  does not appear in the scan
image.

One case where  does not appear in the scan image occurs when the point  and a second

point  define the intended trajectory of a surgical probe but neither  nor  lies in the

central plane of an intermediate scan section (Figure 7). In this case,  and 
so neither  nor  appears in the intermediate scan image.

However, in this case, the neurosurgeon may wish to know where the intended probe trajectory
intersects the intermediate scan section.  In order to provide this information, the points 
 and  are used to define the vector from  to . This vector is then used to calculate the

 coordinates of a third point  for which  (Figure 7).  Because , 
 appears in the intermediate scan image; hence, a mark may be superimposed on that scan

image at the  coordinates  to indicate where the intended probe trajectory
intersects the intermediate scan section[1].

It is possible to distinguish two configurations of  and  relative to an intermediate scan
image:  and . All other configurations can be made to
conform to one of these two configurations via interchange of  and  and/or inverting
the signs of both  and . The configuration  specifies that  and 

 are located on opposite sides of an intermediate scan image; thus, linear interpolation may
be used to calculate  (Figure 7). The configuration  specifies that  and

 are located on the same side of a non-intermediate scan image; thus, linear extrapolation
may be used to calculate  (Figure 8).

For either interpolation or extrapolation, the term
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is used to calculate the  coordinates of  by blending the  and 
 coordinates of  and 

The vector form of Equation 10 shows explicitly the ,  and 
 coordinates of the respective points ,  and 

It is necessary to calculate only the  coordinates of  using Equation 11 because 
 due to the definition of  in Equation 9. It is possible to prove that  by

substituting Equation 9 into Equation 11 then expanding the resulting expression in the -
coordinate to obtain

to  in order to obtain the point  that appears in the scan image">  to  in order to
obtain the point  that appears in the scan image" itemprop="image"

src="http://assets.cureus.com/uploads/figure/file/681/article_river_Figure7Math2.png"
title="Interpolation within the vector from  to  in order to obtain the point  that appears in

the scan image">

FIGURE 7: Interpolation within the vector from  to  in
order to obtain the point  that appears in the scan image
The points  and  are located on opposite sides of an intermediate scan image for which

. The distances  and  are
used to obtain the interpolant

This interpolant is used to calculate the  coordinates of the point  that appears in
the scan image.

to  in order to obtain the point  that appears in the scan image">  to  in order to
obtain the point  that appears in the scan image" itemprop="image"

src="http://assets.cureus.com/uploads/figure/file/682/article_river_Figure8Math2.png"
title="Extrapolation beyond the vector from  to  in order to obtain the point  that appears

in the scan image">

FIGURE 8: Extrapolation beyond the vector from  to  in
order to obtain the point  that appears in the scan image
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The points  and  are located on the same side of a non-intermediate scan image for
which . The distances  and 

 are used to obtain the extrapolant

This extrapolant is used to calculate the  coordinates of the point  that appears
in the scan image.

Discussion
Derivation of equation 3
Equation 3 transforms  coordinates from the two-dimensional coordinate of the scan
image into the three-dimensional coordinate system of the stereotactic frame to produce 

 coordinates. Prior to use in Equation 3, the  coordinates are projected onto
the  plane in three-dimensional space by appending a third coordinate  to
create  coordinates.

Equation 3 is derived as follows:

Transformation of coordinates from one three-dimensional coordinate system into another
three-dimensional coordinate system may be accomplished via matrix multiplication that
operates in a four-dimensional space [5]. However, in order that this four-dimensional space
may be used to transform the two-dimensional  coordinates into three-dimensional 

 coordinates, it is necessary to create three-dimensional  coordinates by
projecting the  coordinates onto the  plane in three-dimensional space by
appending a third coordinate .  hen it is necessary to create four-dimensional 

 coordinates by projecting the  coordinates onto the 
hyperplane in four-dimensional space by appending a fourth, homogenous [6] coordinate 

. The  coordinates may be transformed to obtain 
 coordinates using a four by four transformation matrix that contains the matrix elements 
through 

In Equation 13, the third row of the transformation matrix includes elements ,  and 
 and the fourth row includes elements ,  and . This non-standard

numbering convention for these matrix elements is convenient to the remainder of this
derivation of Equation 3. Also, the matrix elements in the fourth column of this transformation
matrix have the values of 0, 0, 0 and 1 because Equation 13 expresses a transformation that
comprises only scale, rotate and translate operations [6]. These operations accomplish the
stretching, rotating, tilting and lifting processes that were described in association with
Equation 3.  

Equation 13 may be rewritten in more compact form as
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In Equation 14,  represents the matrix of ,  and 
 coordinates.   represents the matrix of , 

and  coordinates.   represents the transformation matrix of elements 
through  that defines the transformation from the two-dimensional coordinate system of
the scan image into the three-dimensional coordinate system of the stereotactic frame.

A comparison of Equations 3 and 13 reveals that both equations produce identical results for
the ,  and  coordinates.  The third column of 
 and the third row of  do not affect the ,  and 
coordinates. The fourth column of  affects only the fourth column of  but does not
affect the ,  and  coordinates. Hence, these columns
and this row may be removed from ,  and  without affecting the result of Equation 13.
Their removal yields Equation 3, thus completing the derivation of this equation.

There is a significant difference between Equations 3 and 13. None of the matrices in Equation
13 have an inverse because neither  nor  is a square matrix. In contrast, the matrices , 
and  in Equation 3 potentially have inverses because these matrices are square
matrices. Equations 5, 7 and 8 require that these matrices have inverses. Hence, in order to
express the transformation from the two-dimensional coordinate system of the scan image into
the three-dimensional coordinate system of the stereotactic frame and vice versa, Equation 3
must be used instead of Equation 13.

Derivation of the distance w-1
Equation 9 calculates the interpolant or extrapolant  in the  coordinate system of
the scan image. This interpolant or extrapolant is calculated in terms of the perpendicular
distance  from a point  to the plane of the scan image. The distance  is
derived as follows:

In the three-dimensional  coordinate system of the stereotactic frame, the equation
for the central plane of the scan section is given by the following equation that involves a
determinant [7]

Expanding this determinant using the cofactors [8] of the elements , ,  and 1 in the first
row of the determinant yields

Equation 16 may be rewritten in more compact form as
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where , ,  and  represent the determinants in Equation 16. The determinants , 
and  may be expanded using the cofactors of the elements in their third columns as follows

The normalized perpendicular distance from a point , which has coordinates , to
the central plane of the scan section may be calculated as [7]

This equation for the normalized perpendicular distance will be compared to the equation for
the distance  that is derived below.

In order to calculate the distance , the  coordinates of the point 
that corresponds to the point  are obtained by transforming the  coordinates of 

 via Equations 7 and 8 then by substituting the definitions of the matrices ,  and 
 from Equation 3

Substituting the inverse of the matrix , which is defined as its adjoint [9] divided by its
determinant, into Equation 20 yields

Transformation of the  coordinates of the point  to obtain only the -coordinate
of the point  requires only the vector from the third column of . Hence, keeping only
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the third column of the matrix that results from the post-multiplication of  by  produces
the following expression for  that contains a three-element column vector

Rewriting Equation 22 in more compact form using the definitions of , ,  and  from
Equation 18 yields

Performing the vector multiplication of Equation 23 produces the -coordinate of the point 

The perpendicular distance from the point  to the plane of the scan image is given by 

Comparison of Equation 25 to Equation 19 reveals that the numerators of these equations are
identical but their denominators differ, as can be demonstrated by expanding the determinants 

, ,  and  then showing that . Thus, the distance that is
calculated using Equation 25 differs by a factor of  from the

normalized distance that is calculated using Equation 19.  However, this factor is not relevant
to the interpolant or extrapolant  that is calculated via Equation 9 because Equation 9
calculates a ratio of distances that eliminates this factor. Hence,  may be used to
construct the interpolant or extrapolant  according to Equation 9.

Although it is not necessary to normalize the distance  for use in Equation 9, it may be
desirable to normalize this distance for other reasons. Normalization may be accomplished by
dividing the expression for  from Equation 25 by  because

the equation that results is identical to Equation 19

Equations 21, 22 and 23 suggest that the normalization may be accomplished using the
elements from the third column of the inverse matrix  that is used to transform the 

 coordinates of  to obtain the  coordinates of . These matrix
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elements may be used for the normalization because

where ,  and  are suggested by Equation 23 and defined by
Equation 18.

Conclusions
The N-localizer is a simple yet powerful tool for image-guided stereotactic neurosurgery and
radiosurgery. The N-localizer enables the transformation of  coordinates from the two-
dimensional coordinate system of the computed tomography or magnetic resonance image into
the three-dimensional coordinate system of the stereotactic frame to obtain 
 coordinates. The matrix that accomplishes this transformation may be inverted; the resulting
inverse matrix enables the transformation of  coordinates from the the three-
dimensional coordinate system of the stereotactic frame into the two-dimensional coordinate
system of the computed tomography or magnetic resonance image to obtain 
coordinates. The mathematical equations that express these two transformations may be
derived using the principles of analytic geometry and linear algebra.
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