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Abstract
During my experience as an author, peer reviewer, and editor during COVID-19, I have encountered - and
committed - various errors related to the interpretation and use of statistical measures and tests. Primarily
concerning health sciences such as epidemiology, infodemiology, and public health, the evidence used to
inform a conclusion carries an extremely high weight as it translates into decisions made to preserve the
population's well-being. Therefore, the aforementioned evidence must be reliable. This short guide discusses
the most common and dangerous mistakes I have experienced during my scientific journey. Real and
invented examples have been proposed and analyzed in detail, showing possible interpretations, both
correct and incorrect, and their consequences. Such a framework makes it clear that a statistical test alone
cannot answer any scientific questions. Indeed, the interpretation of results and the verification of
assumptions and test eligibility - subject to the author's evaluation - are crucial components of the integrity
of the scientific investigation. Before using a test or adopting a measure, we must ask ourselves the
following fundamental questions: Are there valid reasons to explore my research question? Am I sure my
approach can fully and adequately answer my research question? Am I sure that my model's assumptions -
basic and hidden - are sufficiently satisfied? How could violating those assumptions affect the validity of the
results and stakeholders? Is the effect size relevant regardless of statistical significance?
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Introduction
During the COVID-19 crisis, between May 2020 and December 2022, I published several peer-reviewed
articles, carried out hundreds of peer reviews for over dozens of scientific journals, and edited various
manuscripts for a couple of journals. In this experience, I noticed a recurrence of errors (including mine)
concerning the use and interpretation of statistical measures and tests. In this regard, numerous authors
have extensively addressed similar problems. For example, Greenland et al. thoroughly analyzed various
errors in interpreting P-values and confidence intervals (CIs) [1]. Nonetheless, in this paper, I try to
summarize and explain, most simply, the principal mistakes I pointed out during the last two years. In this
scope, I adopt real and realistic health-related examples. In particular, I made this paper to provide a guide
to help authors (including myself) develop more robust manuscripts and achieve more solid conclusions.
Although correct data and calculations are unlikely to be useless or harmful to the scientific community,
misinterpretations of the latter pose a severe threat to public health.

Technical Report
CIs and statistical thresholds
It is too widely believed that overlapping 1 - α CIs (e.g., 95% CI) imply P > α (e.g., P > 0.05). Here, we quickly
prove that this implication is simply not true. For example, we apply the Welch t-test for the following
average values (N = 100): X = 0 (SD 0.05) and Y = 1 (SD 0.5). The 95% CIs are (-0.10, 0.10) and (0.02, 1.98),
i.e., they overlap (intersection size 0.08). Nonetheless, the test result is P = 0.049 < 0.05 = α. It can be proved
that nonoverlapping 1 - α CIs imply P < α; however, as extensively discussed in the literature, obsession with
significance thresholds should be discouraged (indeed, P = 0.049 and P = 0.051 are practically identical
values) [1].

Statistical significance and effect size
On too many occasions, the existence and relevance of a certain phenomenon are attributed to a related
statistical significance. Although this is wrong for various purely theoretical reasons (for instance, statistical
significance regards the test adopted and not the phenomenon), here we focus on a more practical aspect:
the applicability of a decision made by evaluating only statistical significance. Suppose my cardiologist
recommended I lose weight significantly so as to reduce the risk of a heart attack. Thus, I measured my
weight weekly for 10 weeks, obtaining the values shown in Table 1.
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Week 1 2 3 4 5 6 7 8 9 10

Weight (kg) 100.5 100.4 100.4 100.3 100.1 100.2 100.1 99.9 100.1 99.8

TABLE 1: Weight in kilograms per week.

Applying a linear regression model, I found that the residuals were sufficiently compatible with the
hypotheses of distributive normality (Shapiro-Wilk test P = 0.67) and constant variance, also known as
homoskedasticity (White test P = 0.28). As the model was reliable, the slope of -0.07 kg/week (SE 0.01) -
which strongly supported the negative trend - was very significant (P = 0.0001). Nonetheless, when I
presented these highly significant findings to my cardiologist, he was hospitalized for a heart attack due to a
fit of anger (sarcasm). Indeed, I believe that, however significant these results were, the 700 g lost in 10
weeks was not the health goal set.

Multicomparison adjustment of P-values
Adjustment for multicomparison is often necessary to reduce the number of false positives but introduces
the risk of increasing false negatives. Hence, as in the previous case, its implementation must be assessed on
a case-by-case basis. For example, if my objective is to detect anomalies that are potentially very dangerous
to public health (e.g., via metal detectors in an airport), it is better to have a high number of false positives
(false alarms of armed persons) than a high number of false negatives (which is equivalent to not identifying
armed individuals). Conversely, if my purpose is to conduct an exploratory investigation (e.g., to look for
causal correlations between various theoretically unrelated phenomena), then it can be crucial to avoid the
so-called look elsewhere effect and reduce (but not eliminate) spurious associations. A real-world example
concerning Bonferroni correction is reported in the next section.

Inferential and descriptive statistics
Let's start with a real example, which is the number of annual deaths in Italy from 2015 to 2021 (data taken
from ISTAT [1]). Considering that there is high data compatibility with the hypothesis of normality from
2015 to 2019 (Shapiro-Wilk test P = 0.54) and we do not detect clear historical trends in that period, we
calculate the average number of deaths between 2015 and 2019 (X) and compare it with those of 2020 (Y1)
and 2021 (Y2). After that, we subtract this average from all dataset values in order to have the number of
excess deaths, obtaining the new measures X = 0 (SD 13,400, SEM 6,000, range [-19,000; 13,500]), Y1 =
100,000 (95% CI [88,000; 112,000]), Y2 = 63,000 (95% CI [51,000; 75,000]). Grubbs tests for (Y1, X) and (Y2,
X) returned P = 0.007 and P = 0.04, respectively. Although these numbers are merciless and unambiguous,
we now show how choosing an inappropriate test and/or adjustment can produce dangerous false negatives.
For instance, implementing the Bonferroni correction (and for only two tested hypotheses), we get P = 0.01
and P = 0.08. Again, this makes it clear that the evaluation of the effect size must be totally separated from
statistical significance and P-value adjustment is not always the best choice. Indeed, in the context of public
health, the 63,000 excess deaths, taking into account both the narrow CIs and minimal data variability from
2015 to 2019, represent an extraordinarily alarming figure despite its statistical significance. But that's not
all - even admitting a larger variability, statistical fluctuations capable of creating such high excesses are a
major public health situation (that can lead, for example, to hospitals' overcrowding).

Models' assumptions
Statistical tests and models are reliable only when their assumptions are sufficiently compatible with our
data. Too often, little importance is given to this aspect, which is absolutely essential for drawing valid
scientific conclusions. For example, Figure 1 shows three different outliers (blue, orange, and gray dots) for
the same dataset (light-blue dots) and the associated linear correlations. As the use of the Pearson
correlation standardly requires distributive normality (which implies the absence of outliers), it is evident
that these results are biased (if the aim is to find a global linear relationship). The correlation value
increases as the outlier increases. The associated P-values are 0.005, 0.02, and 0.17.
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FIGURE 1: Relationship between Pearson correlation and outliers.

In this regard, it is important to underline that P-values are biased downward as they signal not the
correlation significance but the violation of the normality assumption (i.e., they signal that the data are
poorly compatible with the test hypothesis assumptions rather than the test hypothesis itself). Another
example concerns homoskedasticity in linear regression models: indeed, its violation does not compromise
the validity of the model but only the estimation of errors and the P-values. This can be seen in Figure 2
(blue line): the data are very compatible with residual normality (Shapiro-Wilk test P = 0.48) but not with
homoskedasticity (White test P = 0.001; the problem could be overcome by applying a weighted regression).
Nonetheless, the linear behavior of the data is evident; thus, the model could still be useful for making
decisions without considering inference and statistical errors.

FIGURE 2: Heteroskedasticity example (blue line) and absence of
relationship between correlation and slope.

Correlation value and slope
Phenomenon and correlation intensity are two different and generally independent aspects. As shown in
Figure 2, the correlation value is not related to the function slope: indeed, the blue line has a greater slope
(about 4) than the orange line (about 2) despite its R2 being markedly lower (0.77 versus 0.99).
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Hypothesis targeting and causation
Suppose I present the following real data to you without specifying what they represent (Figure 3).

FIGURE 3: Unknown correlated real data.

Applying the usual linear regression model, it turns out that there is little evidence against distributive
normality and homoskedasticity (Shapiro-Wilk test P = 0.28, White test P = 0.21). Furthermore, the
correlation is marked (R = 0.97, 95% CI [0.91, 0.99]) and highly significant (P < 0.0001). It seems reasonable
to conclude that at least one of the two variables affects the other or if the correlation is spurious, there is a
confounding factor that affects the two variables similarly. Nonetheless, the two variables are the annual US
money invested in science, space, and technology and the number of suicides by hanging, strangulation, and
suffocation [2]. This shows an obvious but often underestimated fact: statistics alone can never provide
evidence of causation. The targeting of a research hypothesis - understood as the set of evidence and
reasoning that make a hypothesis worthy of research - is an essential part of any scientific investigation
(including exploratory studies). Other misinterpretations concern Granger causality: indeed, Granger
causality is not true causality [3]. For example, by searching Google Trends for the queries batman (comics
superhero) and pogba (soccer player) [4], we get the following graph (Figure 4). We apply the Granger
causality with time lag = 11 weeks (one degree of nonseasonal differentiation for both series) and find ample
evidence against Y ≠ f(X) (P = 0.002). Therefore, we should conclude that the web interest in Batman predicts
the web interest in the soccer player Pogba, which is very unlikely (Google Trends-related queries confirm
the absence of a causal relationship).
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FIGURE 4: Italian users' web interest in Batman and Pogba.

CIs and data variability
In many papers, it is customary to report CIs as an estimate of the precision of the measurement/calculation.
While they are necessary to assess the relevance of the effect size, confidence (or credible) intervals concern
the distribution of the average values; hence, in general, they do not provide information on the dataset
variability. Proof of this can be easily obtained from the following example: Suppose we have a Gaussian
dataset of 100 elements with an SD of 20 and another Gaussian dataset of 9 elements with an SD of 9. Both
datasets have mean values equal to 0. The 95% CIs are (-4, 4) and (-6, 6), respectively. Therefore, the CI of
the first dataset is narrower than the second despite its considerably larger SD. Again, we must always ask
ourselves what our research purpose is and how our data and analysis characteristics can affect
stakeholders.

Central limit theorem
The central limit theorem is often invoked to state that a dataset has Gaussian characteristics as it is
sufficiently numerous (e.g., N > 30). However, this is simply wrong and misleading. Indeed, the central limit
theorem concerns only the population of the mean values and not the original population or sample [5]. It
follows that it is useful for applying parametric tests, but it does not justify the adoption of descriptive
statistics such as mean, variance, or SD for non-Gaussian datasets. In this regard, an easy counterexample
can be proposed: considering the dataset of 1250 elements shown in Figure 5, the Shapiro-Wilk test returns
P < 0.0001. Moreover, the percentage difference between the median and mean is equal to 78.1%. Finally, the
average value is outside the dataset. In conclusion, this dataset is extremely non-normal.

FIGURE 5: Non-Gaussian large dataset.

Mixed use of different tests: a precautionary note
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It is a common practice to use different tests to measure the significance of discrepancies between similar
datasets. For example, if the purpose is to compare three pairs of datasets, of which two are normally
distributed, and one is not, then some authors may choose two parametric tests and one
nonparametric test, respectively. Nonetheless, it is essential to consider that these tests might not only
measure different quantities or the same quantity in different ways but that tests' assumptions and the
sensitivity to their violation could also be very different. Thus, the same exact P-value (e.g., P = 0.02)
obtained from two different tests could imply a very different degree of statistical significance and meaning
(of course, this could also happen even when the same test is applied multiple times, but the chance is lower
according to what discussed above). Consequently, when the purpose is to inform a single set of decisions,
adopting mixed tests could create a heterogeneity capable of strongly biasing the results. In this regard,
considering these aspects in the analysis and the related uncertainty in the final conclusion is imperative.

Counterfactual scenarios
Evaluating a counterfactual scenario is one of the most complicated and important tasks in science. For
example, if the objective is to estimate the impact of COVID-19 on mortality, it is necessary to make a
prediction - without COVID-19 - based on the previous historical trend (e.g., the prior 5 or 10 years). This
assessment is entirely based on the assumption that a trend remains unchanged in the absence of
significant external events (the principle of parsimony). While this assumption is reasonable, and the
history of science confirms its validity, a moderate degree of uncertainty must be considered. For instance,
the superposition of nonlinear trends could give rise to a linear trend up to a certain date (threshold) and a
nonlinear trend beyond the latter (Figure 6). If the external event occurs in conjunction with the threshold,
an improper causal association could be asserted (this is not the case with COVID-19 impact on mortality
[6]).

FIGURE 6: Example of a statistical anomaly due to the superposition of
an increasing linear trend and a decreasing sublinear trend. Indeed,
measure number nine is very far from the prediction of a model built or
trained on the first eight values. However, such an anomaly is not due
to any external factor (i.e., the reason is endogenous).
Source: [6]

Moreover, the external factors could be multiple, which makes it difficult to identify which of these was
predominant for the change in trend. For these reasons, once again, the scientific targeting of the
hypotheses is fundamental for the investigation's validity. Indeed, only the combination of evidence from
various disciplines can provide solid conclusive evidence. On the other side, this exposes the research more
to authors' bias [7]. Finally, it is possible to obtain different results by observing different temporal windows
to make comparisons. For example, the statistics on excess deaths in Italy during 2020 are slightly different
if we consider the previous five years as a comparison time-lapse instead of the previous 10 years [6]. This
happens because all the real models have a margin of uncertainty, and it is not always easy to select the
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correct width of the temporal window.

Hidden assumptions
Suppose we need to measure the impact of the COVID-19 pandemic on web interest in porn [8]. Thus,
exploiting the central limit theorem, we apply a Welch t-test between the 2017-2019 and 2020-2022 datasets,
obtaining a high (7.4, 95% CI 6.0-8.9) and significant (P<.0001) negative decrease due to COVID-19. Since
the test's assumptions have been met, it could be concluded that the result is reasonable. However,
comparing statistics such as mean and median requires a fundamental implicit assumption that there are no
trends and seasonality in the time series (i.e., there is sufficient stationarity). Indeed, an evident downward
trend was already underway before COVID-19 (Figure 7). Nevertheless, while the result found is not
surprising despite its low P-value (i.e., it is in line with the predictions or, at best, cannot answer the
research question), it is still helpful to support the presence of a historical decreasing trend and quantify the
global decrease.

FIGURE 7: Italian users' web interest in porn.

Wrong choice of test for the goals of analysis
Suppose we want to measure the change in average daily particulate matter (PM) 2.5 concentrations during
two specific weeks of two consecutive winters in a certain area. For this example, we assume that no
historical trends were in place. Data were considered sufficiently normal (Shapiro-Wilk test P = 0.35) to
adopt the one-sample t-test on the paired differences (Table 2).

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 P-value 95% CI

2020 38* 41* 16 29* 13 26* 15 21 14 13 27* 18 10 25*

0.09 -1; +inf
2019 23 16 19 20 19 17 23 15 20 14 21 15 18 14

TABLE 2: An example of average daily PM 2.5 concentrations (μg/m3) during two specific weeks
of two consecutive winters in a certain area.
*Critical value for public health.

CI, confidence interval; PM, particulate matter

The test result provides little evidence against the difference in the paired differences of PM 2.5
concentrations (P = 0.09). Hence, the two distributions could be considered similar. Nonetheless, we must
ask ourselves: Are we applying the proper test for this public health assessment? The answer is no as
exceeding some critical PM 2.5 concentrations poses a more serious threat to health [9]. Indeed, the safety
values were exceeded in 6 out of 14 days in the 2020 series. In this regard, the negative lower limit of the 95%
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CI suggested that the test had poor accuracy due to the high variance of 2020 (CV1 = 43% versus CV2 = 17%).
Another known but noteworthy case is that of the Mann-Whitney U test, which is frequently used to
measure the significance of the difference between two medians or distributions. As has also been shown in
other literature, this can be wrong in many ways [10]. Indeed, the Mann-Whitney test ranks all the values
from low to high and then compares the mean ranks; therefore, it is sensitive to data spread [11]. It can be
used to compare medians (and even means) only when the distributions of the two populations have the
same shape. Thus, in this case, it is not a matter of the test’s assumptions but the analysis' goal.

Comparison of results
Suppose we have two independent samples of N = 10 elements that sufficiently meet all the assumptions for
using the Pearson correlation properly. The two correlations have values x = 0.70 (95% CI 0.13-0.92; P = 0.02)
and y = 0.50 (95% CI -0.19 to 0.86; P = 0.14). Based on these P-values, we conclude that the first correlation
is much more significant than the second. This could lead us to say there is a substantial difference between
the two correlations. Nevertheless, comparing their values with the method of Eid et al. [12], we get P = 0.28.
Therefore, as also underlined by the large CIs, there is little evidence against the equality of the two
correlations. This shows that to make claims about the comparison of two (or more) results, we must directly
compare them through an appropriate test (or evaluate their effect size) and not rely on their single
statistical significance.

Multicomparison adjustment to inform a final decision
One of the most common errors is to believe that the adjustment for the multicomparison should only be
applied when the results or data are directly compared with each other (e.g., as done in the Comparison of
Results section). Indeed, the adjustment for the multicomparison - when deemed appropriate - should be
made when the final decision (e.g., to apply a lockdown based on the abnormal increase in flu symptoms
among a population) is based on the result of multiple tests, regardless of whether these tests are mutually
comparative or independent [6]. As a matter of fact, the increased likelihood of false positives is due to the
high number of tests used and not to the nature of the latter [13].

Presentation of results
As also done in this paper, we often talk about test results as if they were properties of the dataset (e.g., the
values are normally distributed). This approach is technically inaccurate as applying different tests could
produce different results. Indeed, the P-value is related to the test adopted and not the dataset itself. To
prove this, we consider the following vector X := (-14, 0, 1, 2, 3, 5, 6, 7, 9). If we apply the Shapiro-Wilk test
to its components, we obtain P = 0.03, which suggests that the dataset is not normal (i.e., there is low
compatibility with the normality hypothesis). On the contrary, if we apply the Kolmogorov-Smirnov test, we
obtain P = 0.51, which suggests that the dataset can be considered normal (i.e., there is high compatibility
with the normality hypothesis). However, this slight terminology abuse could be tolerated as long as the test
adopted to evaluate the dataset compatibility with the fixed hypothesis is clearly specified.

Discussion
This brief overview provides practical indications for epidemiological analysis and public health surveillance
strategies. It has been proven that overlapping CIs do not imply exceeding the significance threshold (while
it is true that nonoverlapping CIs imply P-values lower than the threshold). However, as P-values are graded
measures, the adoption of significance thresholds should be discouraged. Statistical significance, when
properly used, provides information on how compatible (P-values) or surprising (S-values = -log(P-value, 2))
the results found are compared to the test hypothesis adopted through the chosen test, but, in general, it
does not provide information on the effect size. Therefore, the intensity of a phenomenon or the importance
of an outcome must be assessed separately according to the scientific goal, context, and stakeholders
(especially when public health is involved). Adjustment for multicomparison should be evaluated according
to the scientific or even ethical relevance of the decision to be informed (e.g., conservation of public
health). Comparing two or more results based on their single significance is unreliable and potentially very
misleading, as only a comparative test or a specific evaluation of their effect sizes provides information on
their mutual relationship. If considered appropriate, the adjustment for multicomparison should only be
applied based on the number of tests used to inform the final scientific decision and not on the type of test
performed. In particular, it is not necessary for the test to directly compare two or more outcomes or data to
require adjustment for multiple comparisons. Descriptive and inferential statistics offer different clues to
inform public health or any other scientific decision. In particular, inferential statistics do not always fit into
the context of public health surveillance. The metal detector approach should be enforced during health
crises (especially when the available data is little) to counter or prevent their effects. Verifying the models'
assumptions and evaluating the effects due to their violation is crucial to draw scientifically valid
conclusions. Reviewers and editors of all academic journals and agencies should specifically request a
thoughtful description of how these aspects were managed in a manuscript. Assuming that all the
appropriate assumptions are verified, the correlation value provides information on how well the data is
positioned along a line (e.g., Pearson) or other function (e.g., Spearman). However, the slope of these
functions is a different and generally independent aspect. The hypothesis targeting is the basis of any
scientific exploration; indeed, no statistical analysis (including Granger causality or similar) can provide
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evidence of causation without the latter. CIs and credibility intervals provide information on the distribution
of mean values but not on the variability of the dataset. This aspect must be considered according to the
purpose of the analysis. Furthermore, it is always necessary to ask which characteristics of our data are
relevant to inform the final decision and stakeholders. The central limit theorem guarantees the normality of
the distribution of the mean values of a sufficiently large dataset but is in no way valid for the dataset itself.
The dataset's characteristics must be evaluated using appropriate tests and graphical representations
according to the research purpose. The test used in this scope must always be clearly specified since P-values
regard the test and not the dataset. Mixing different types of statistical tests to analyze similar datasets can
lead to marked heterogeneity of scenarios, which can compromise the validity of the conclusion based on
these tests. Carefully evaluating this aspect is fundamental to guarantee the scientific integrity of the whole
research and inform the final decision properly. The evaluation of a counterfactual scenario is complex and
always subject to a nonnegligible margin of unavoidable uncertainty. Therefore, hypothesis targeting and
scientific rationale are key factors in determining a counterfactual model's validity and plausibility. When
we use a statistical test, we don't just have to verify its standard assumptions but also ask ourselves if our
data are suitable for applying such a test to respond to our research question. Moreover, when we use a
statistical test, we must adequately consider whether this is suitable to help us in responding to our research
question. Indeed, even if all assumptions (both primary and hidden) are verified, mere statistics cannot
provide solid evidence for or against its use for a given scientific objective.

Conclusions
This framework makes it clear that a statistical test alone cannot answer any scientific questions. Indeed,
the interpretation of results and verification of assumptions and test eligibility - subject to the author’s
evaluation - are crucial components of the integrity of the scientific investigation. Therefore, before using a
test or adopting a measure, we must ask ourselves the following fundamental questions: Are there valid
scientific reasons to explore my research question? Am I sure my approach can fully and adequately answer
my research question? Am I sure that my model's assumptions - basic and hidden - are sufficiently satisfied?
How could violating those assumptions affect the validity of the results and the stakeholders? Is the effect
size relevant regardless of statistical significance?
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