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Abstract
Deep brain stimulation (DBS) is a surgical treatment in which stimulation electrodes are
permanently implanted in basal ganglia to treat motor fluctuations and symptoms of
Parkinson’s disease (PD). Subthalamic nucleus (STN) and globus pallidus internus (GPi) are the
commonly used targets for DBS in PD. Many studies have compared motor and non-motor
outcomes of DBS in both targets. However, the selection of PD patients for DBS targets is still
poorly studied. Therefore, we performed this narrative review to summarize published studies
comparing STN DBS and GPi DBS. GPi DBS is better for patients with problems in speech,
mood, or cognition while STN DBS is better from an economic point of view as it allows much
reduction in antiparkinson medications and less battery consumption.

Categories: Neurology
Keywords: deep brain stimulation, parkinson's disease, subthalamic nucleus, globus pallidus internus,
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Introduction And Background
Parkinson's disease (PD) is a motor disorder characterized by progressive degeneration of
dopaminergic neurons in the basal ganglia (BG). This degeneration causes overactivity of
subthalamic nucleus (STN) leading to increased globus pallidus internus (GPi) output, which
causes PD symptoms. PD is associated with several motor symptoms (rigidity, bradykinesia,
postural instability, and tremors) and non-motor symptoms (cognitive problems, dementia,
and depression). The etiology of PD is unknown and there is no cure for it. Current
symptomatic treatments aim at controlling PD symptoms and improving patients’ quality of
life.

Pharmacological treatments enhance the dopaminergic action in the BG. Therefore, they
reduce PD symptoms that are mainly due to lack of dopamine. Levodopa (LD) is a widely used
pharmacological treatment that induces the conversion of L-DOPA to dopamine by DOPA
decarboxylase enzyme in dopaminergic neurons. However, there are two problems with
pharmacological treatment: 1) the wearing-off phenomenon in which the duration of action of
the drug decreases gradually over time, so patients experience severe PD symptoms between
drug intervals, and 2) pharmacological treatment is not effective in all patients; some patients
are refractory. Due to the limitations of pharmacological treatments, investigators have
developed surgical treatments as pallidotomy, thalamotomy, and deep brain stimulation to
overcome the failure of pharmacological treatments.
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Deep brain stimulation is a surgical treatment for various neurological disorders. In DBS
surgery, electrical stimulation is transmitted to the target site via the implanted electrode. To
present, the mechanism of action of DBS is not clear. It is suggested that DBS acts via a
depolarization blockade mechanism, releasing local inhibitory neurotransmitters and
activating inhibitory neurons that antagonize the effect of dopamine. Therefore, DBS acts
through restoring balance in the chemical composition of BG, which decreases motor
fluctuations and alleviates PD symptoms. DBS has been widely used because it is reversible and
stimulation parameters can be adjusted for each patient by their neurologist. According to
Medtronic Inc., about 70,000 patients have undergone DBS surgery between 2002 and 2011 [1].
Subthalamic nucleus (STN) and globus pallidus internus (GPi) are the commonly used targets
for DBS in PD.

Many studies have compared motor and non-motor outcomes of DBS in both targets. However,
the selection of patients for DBS targets was poorly studied. There is a need to summarize the
available evidence to help neurologists select patients for DBS targets. Therefore, we performed
this narrative review to summarize published meta-analyses and randomized controlled trials
(RCTs) comparing STN DBS and GPi DBS. Table 1 and Table 2 show the design, sample size, and
main findings of RCTs comparing STN DBS and GPi DBS. Table 3 summarizes the findings of
two meta-analyses directly comparing STN DBS and GPi DBS.

Study ID
and year

Design
Sample
size

Intervention Main findings

George et
al. [2]
(2014)

Double
blind
randomized
trial

Parallel

37
patients
with PD
(nine
patients
were
control
without
DBS)

Bilateral
subthalamic
or pallidal
DBS

STN DBS and GPi DBS had similar effects on the
balance and gait of PD subjects. There were some
indicators that GPi DBS may be preferable over STN in
PD patients with stability concerns.  

Odekerken
et al. [3]
(2013)

RCT Parallel
128
patients
with PD

Bilateral
subthalamic
or pallidal
DBS

There was no significant difference in motor functions
between the two groups. GPi DBS reduced dyskinesia
more than STN DBS in case of giving the same
levodopa equivalent dose (LED). However, STN DBS
allowed reduction in LED more than GPi DBS so STN
DBS patients might experience less dyskinesia than
expected.  

Follet et al.
[4] (2010)

RCT Parallel
299
patients
with PD

Bilateral
subthalamic
or pallidal
DBS

There was no significant difference in motor function
improvement between the two groups at 24 months.
Also, no significant difference in Qol between the two
groups. Neurocognitive and mood outcomes were better
in GPi DBS group than STN DBS group and the authors
suggested that STN is a better target for DBS than GPi.
 

Two-thirds of
participants
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Jones et al.
[5] (2010)

RCT
Cross
over

12
patients
with PD

(8/12) had
unilateral
DBS and
one-third
(4/12) had
bilateral DBS

There was no statistically significant difference between
STN DBS and GPi DBS in terms of speech reaction
time.

COMPARE
trial [6]
(2009)

RCT Parallel
52
patients
with PD

Unilateral
subthalamic
or pallidal
DBS

There was no significant difference between STN DBS
and GPi DBS in mood and cognition. STN DBS group
showed larger deterioration in verbal fluency scores
than GPi DBS especially in the off-medication state and
no significant difference in UPDRS motor score
between the two groups.  

Rothlind et
al. [7]
(2007)

RCT parallel
42
patients
with PD

Staged
bilateral
subthalamic
or pallidal
DBS

STN DBS was associated with small reduction in speed
of information processing and memory. Both bilateral
and unilateral DBS were associated with small but
significant reduction in neuropsychological performance.
Declines in semantic verbal fluency were associated
with left-sided treatment.  

Nakamura
et al. [8]
(2007)

RCT Parallel
33
patients
with PD

Unilateral
subthalamic
or pallidal
DBS

STN and GPi resulted in similar improvement in hand
movements at short term follow-up. Preoperative
medication responsiveness predicted improvement in
some motor tasks.  

Anderson
et al. [9]
(2005)

RCT
Cross
over

23
patients
with PD

Bilateral
subthalamic
or pallidal
DBS

UPDRS scores improved; there was no difference
between STN DBS and GPi DBS. Bradykinesia
improved better in STN DBS group but ADL did not
improve by DBS further than medication.  

Burchiel et
al. [10]
(1999)

RCT Parallel
10
patients
with PD

Bilateral
subthalamic
or pallidal
DBS

Both STN DBS and GPi DBS had no significant
difference in improvement of UPDRS III motor score
during on and off medication conditions. Chronic
stimulation of GPi DBS might improve symptoms in
combination with LD more than chronic LD/STN
stimulation. STN DBS was associated with greater
reduction in antiparkinson drugs.  

TABLE 1: Summary of design and conclusions of RCTs comparing STN DBS and GPi
DBS.
RCT= Randomized controlled trial, DBS= Deep brain stimulation, STN= Subthalamic nucleus, GPi= Globus pallidus internus,
PD=Parkinson's disease, BDI= Beck depression inventory, UPDRS= Unified Parkinson disease rating scale, Qol= Quality of life, ADL=
Activities of daily life, LD= Levodopa.

Study ID Design
Sample
size

Intervention Main findings

There was no significant difference between GPi DBS
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Katz et al.
[11] (2015)

Cohort from
multicenter
RCT (Follet
et al. [4]
2010)

Parallel
235
patients
with PD

Bilateral
subthalamic
or pallidal
DBS

and STN DBS among different PD motor subtypes.
Tremor dominant (TD) motor subtype had significantly
greater response to GPi DBS with respect to gait.
Postural instability gait difficulty (PIGD) patients
obtained the least benefit from both GPi DBS and STN
DBS.  

Odekerken
et al. [12]
(2015)

Cohort from
(Odekerken
et al. [3]
2013)

Parallel
114
patients
with PD

Bilateral
subthalamic
or pallidal
DBS

There was no significant difference in
neuropsychological outcome between STN DBS and
GPI DBS. STN DBS showed greater negative change
than GPi DBs in mental speed, attention, and language.
 

Rothlind et
al. [13]
(2015)

Cohort from
multicenter
RCT (Weaver
et al. [14]
2009)

Parallel
281
patient
with PD

Bilateral
subthalamic
or pallidal
DBS

Few isolated significant neuropsychological changes
were detected among STN DBS and GPi DBS groups.
There was slightly greater reduction in processing speed
after STN DBS than GPi DBS. STN DBS showed a
greater reduction in verbal learning and recall
performance than GPi DBS.  

Weintraub
et al. [15]
2013

RCT (Follet
et al. [4]
2010)

Parallel
299
patient
with PD

Bilateral
subthalamic
or pallidal
DBS

There was no difference between STN DBS and GPi
DBS in terms of suicide ideation and behaviors (after 24
months follow-up).  

Dietz et al.
[16] (2013)

Cohort from
COMPARE
trial [6]

Parallel
14
patients
with PD

Unilateral
subthalamic
or pallidal
DBS

GBi DBS there showed no significant change in verbal
fluency performance between different stimulation
locations (optimal, ventral, and dorsal) in contrast to
(Mikos et al. [17]) findings with STN DBS patients.  

Rocchi et
al. [18]
(2012)

Cohort from
multicenter
RCT
(Weaver et
al. [14] 2009)

Parallel
29
Patients
with PD

Bilateral
subthalamic
or pallidal
DBS

There was no significant difference in anticipatory
postural adjustment (APA) between the two groups.  

Weaver et
al. [19]
(2012)

RCT subset
from Weaver
et al. [14]
2009)

Parallel
159
patients
with PD

Bilateral
subthalamic
or pallidal
DBS

Motor function improvements were similar and
statistically significant for both STN DBS and GPi DBS
groups at 36 months post surgery but showed decline
over time (decline was faster in STN group than GPi
group). Qol scale improved at six months but diminished
over time. Emotional well-being, social support, and
cognition subscales showed no difference over time.
Activities of daily living showed early improvement after
surgery followed by gradual loss of improvement over
the subsequent assessments. Mattis Dementia Rating
Scale and the Hopkins Verbal Learning Test scores
declined faster for STN than GPi patients by 36 months.
 

Locke et
al. [20]
(2011)

Retrospective
cohort from
COMPARE
trial [6]

Parallel
44
patients
with PD

Unilateral
subthalamic
or pallidal
DBS

DBS is associated with weight gain with no significant
difference between STN DBS and GPi DBS.  
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Mikos et
al. [17]
(2011)

Cohort from
COMPARE
trial [6]

Parallel
17
patients
with PD

Unilateral
subthalamic
or pallidal
DBS

STN DBS was associated with decreased letter fluency
performance at ventral contacts whereas in optimal
contacts STN DBS was associated with improved letter
fluency performance.  

Robertson
et al. [21]
(2011)

Cohort from
multicenter
RCT (Follet
et al. [4]
2010)

Parallel
27
patients
with PD

Bilateral
subthalamic
or pallidal
DBS

There was a significant improvement in jaw velocity in
GPi DBS patients. STN DBS patients had a
significantly worse jaw velocity six months after surgery.
 

Taba et al.
[22] (2010)

Cohort from
COMPARE
trial [6]

Parallel
44
patients
with PD

Unilateral
subthalamic
or pallidal
DBS

Patients with GPi DBS were more likely to choose to
remain with unilateral implantation. The logistic
regression analysis revealed that the odds of proceeding
to bilateral DBS were 5.2 times higher for STN DBS than
for GPi DBS.  

Zahodne
et al. [23]
(2009)

Cohort from
COMPARE
trial [6]

Parallel
42
patients
with PD

Unilateral
subthalamic
or pallidal
DBS

Unilateral DBS in both STN and GPi improved overall
Qol six months after surgery. GPi DBS reported greater
improvements in Qol. Verbal fluency problems
correlated with poorer Qol on the communication
subscale.

Rocchi et
al. [24]
(2004)

RCT subset
from
(Burchiel et
al. [10] 1999)

Parallel
Nine
patients
with PD

Bilateral
subthalamic
or pallidal
DBS

Levodopa had less negative side effects on posture in
patients with STN DBS than patients with GPi DBS.
UPDRS scores were higher in STN DBS patients than
GPi DBS in the off condition evident by worse motor
signs in STN DBS patients. All center of pressure (CoP)
parameters showed deterioration of postural control with
DOPA for both the STN DBS and GPi DBS. In on-
treatment condition, Cop values were close to normal in
STN than GPi. Although, STN groups were more
affected by PD. It is suggested that levodopa
replacement was more effective for posture in STN DBS
group than GPi group.

TABLE 2: Summary of design and conclusions of studies on cohort populations from
RCTs mentioned in the first table.
Summary of design and conclusions of studies on cohort populations from RCTs mentioned in Table 1. RCT= Randomized controlled
trial, DBS= Deep brain stimulation, STN= Subthalamic nucleus, GPi= Globus pallidus internus, PD=Parkinson's disease, PIGD=
Postural instability gait difficulty, TD= tremor dominant, BDI= Beck depression inventory, UPDRS= Unified Parkinson disease rating
scale, Qol= Quality of life, ADL= Activities of daily life, LD= Levodopa, COP= Center of pressure.
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Study
ID and
year

Design
Sample
size

Main findings

Sako et
al. [25]
(2014)

Meta-
analysis
of four
RCTs

patients
with PD

There was no significant difference between the two groups in improvement of UPDRS III
motor scores. Depression was associated with STN DBS group.  

Liu et al.
[26]
(2014)

Meta-
analysis
of six
RCTs

563
Patients
with PD

There was no significant difference between STN DBS and GPi DBS in UPDRS III motor
score (on and off medication phases). Activities of daily life on UPDRS II (on medication
phase) did not favor either of the two groups. STN DBS was associated with greater
reduction in antiparkinson medications. Depression on BDI-II (Beck Depression
Inventory) score differed significantly favoring GPi DBS group.  

Negida
et al.
[27]
(2015)

Meta-
analysis
of nine
RCTs

497
patients
with PD

There was no significant difference between STN DBS and GPi DBS in UPDRS III motor
score (on and off medication phases). Activities of daily life on UPDRS II (on medication
phase) did not favor either of the two groups. The levodopa equivalent dose was less in
patients undergoing STN DBS than GPi DBS. STN DBS allows more reduction in
medication than GPi DBS. Subthalmic and pallidal DBS achieved the same motor
improvement in PD patients.  

Elgebaly
et al.
[28]
(2017)

Meta-
analysis
of four
RCTs

345
patients
with PD

There was no statistically significant difference between STN DBS and GPi DBS in
neuropsychological outcomes.  

Negida
et al.
[29]
(2017)

Meta-
analysis
of four
RCTs

479
patients
with PD

Death was more common after STN DBS than GPi DBS in PD patients, most of deaths
due to postoperative complications.

TABLE 3: Summary of key conclusions of meta-analyses comparing STN DBS and
GPi DBS for PD.
RCT= Randomized controlled trial, DBS= Deep brain stimulation, STN= Subthalamic nucleus, GPi= Globus pallidus internus,
PD=Parkinson's disease, BDI= Beck depression inventory, UPDRS= Unified Parkinson disease rating scale.

Review
Motor functions and PD motor symptoms
There was no significant difference between STN DBS and GPi DBS in terms of the unified
Parkinson's disease rating scale III (UPDRS III) motor score [3, 4, 6, 9-11, 19, 25, 26, 30]. The
study of Rocchi et al. [24] was the only study where UPDRS scores were higher in STN DBS
patients than in GPi DBS in the off condition evident by worse motor signs in STN DBS patients.
In Odekerken et al. [3], STN DBS was associated with improvement in motor symptoms and
disability in the off-phase than GPi DBS. However, in Follet et al. [4] and Anderson et al. [9], the
GPi DBS group showed more improvement in UPDRS III score and stand-walk-sit times than
STN DBS. These better motor scores in GPi DBS were consistent in the 36-month outcome [19].
The higher doses of medication in the GPi DBS group and the increase in stimulation washout
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time may justify this improvement in the GPi DBS group [4, 19].

In the study of George et al. [2], balance and gait did not differ significantly between the two
groups. However, the authors concluded that some predictors make GPi DBS better than STN
DBS for patients with stability concerns. In another study, postural instability gait difficulty
(PIGD) patients obtained the least benefit from both GPi DBS and STN DBS [11] and tremor
dominant (TD) motor subtype showed better response to GPi DBS with respect to gait [11].
Anticipatory postural adjustment (APA) did not differ significantly between the two targets in
the study of Rocchi et al. [18]. In another study by Rocchi et al. [24] where they examined
postural performance after STN DBS and GPi DBS, they found that levodopa had less negative
side effects on posture in patients with STN DBS than GPi DBS. They suggested that levodopa
treatment was more effective for posture in STN DBS than in GPi DBS.

Combining medication with stimulation gives better response in GPi DBS while STN DBS gives
optimum benefit with much reduction in medication [10, 26]. This suggests a possible
synergistic effect between STN DBS and medications [3]. Although some reports described a
decline in motor functions over time in case of STN DBS [19, 31, 32], in a large multicenter RCT
by Follet et al. [4], there was no decline in motor functions in both STN DBS and GPi DBS groups
after 24 months (Table 1).

Activities of daily life and medication dose
Activities of daily life (ADL) did not differ between the two groups in most studies. In unilateral
implantation, GPi DBS was associated with higher ADL than STN DBS [6]. A gradual loss in
improvement of ADL was noticed in both groups after the 36-month follow-up [19]. When
patients received the same levodopa dose to induce the on-medication phase, the STN DBS
group experienced more dyskinesia than the GPi DBS group [3]. When given the same levodopa
equivalent dose (LED), patients with GPi DBS showed less dyskinesia than patients with STN
DBS [3]. However, in the study of Moro et al. [9], STN DBS was likely to improve bradykinesia in
the off-medication phase more than GPi DBS. However, most studies showed that STN DBS
allowed significant reduction in LED [3, 4, 6, 7, 9, 10, 18, 19, 23, 26] and so they have less
dyskinesia. This makes STN a better target for PD patients from an economic point of view [33]
and for whom a reduction of medication may be desirable [34].

Quality of life (Qol) improved in patients of both groups at six months but diminished over
time. The study of Follet et al. [4], showed no significant difference in Qol between the two
targets. But in another study by Zahodne et al. [23], GPi DBS showed better improvement in Qol
than STN DBS. However, STN DBS has the advantage of reducing antiparkinsonian
medications; this should also be taken into consideration because it may contribute to better
quality of life (Qol) in some patients [4] (Table 2).

Verbal fluency
Left lateralized DBS was associated with worsening of the verbal fluency (VF) [7]. STN DBS was
associated with worsening of letter verbal fluency after seven months [6]. However, GPi DBS
was not associated with verbal fluency problems whatever the stimulation location within
globus pallidus was [16]. Verbal fluency was not worsened in STN DBS when low frequency
stimulation was used [35]. Getting more ventral in the stimulation location for STN DBS
reduced VF [17]. No difference in speech reaction time was noted between both groups [5].

Neuropsychological performance
Self-reported depression was more common with STN DBS than GPi DBS [4, 7, 26]. However, in
the 36-month outcome of the study by Follet et al. RCT [4], depression did not differ
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significantly between the two groups [19]. In the COMPARE trial [6], secondary outcomes
revealed increased anger in the STN DBS group only; this anger was reported in previous STN
DBS reports [36-38]. Anxiety was fairly common in the STN DBS group in the Anderson et al.
study [9]. Visuomotor speed decreased significantly after STN DBS more than GPi DBS [4].
Because digital symbol performance is a task that requires visuomotor coordination, the decline
in visuomotor speed after STN DBS justifies the decline in digital symbol performance after STN
DBS in the Rothlind et al. RCT [7]. Dementia rating scale worsened more in the STN DBS group
than GPi DBS [4, 19]. When Odekerken et al. [3] used a dichotomous composite measure instead
of continuous standardized measure for cognition and mood, there was no statistically
significant difference between the two groups (Table 2). Elgebaly et al. [28] also showed slight
improvement among the GPi DBS group in terms of psychomotor speed and verbal fluency
(Table 3).

The relative disturbance in cognition and mood, associated with the STN DBS group, can be
justified by the greater possibility of suboptimal lead placement in the STN target. The STN
target is smaller in architectural size than the GPi target (~158 mm3 versus ~478 mm3,
respectively) [6] and the placement of the lead within STN may correlate with the stimulation of
nearby fibers within limbic functions pathways [6, 7]. In the COMPARE trial [6], unilateral
implantation did not show a significant difference in cognition and mood between the two
targets. Higher baseline neurophysiological performance was associated with more decline in
working memory and executive functioning after DBS [7].

Adverse events
Adverse events (AEs) of DBS are classified into five groups: 1) perioperative AEs: headache,
anxiety, tension, restless, confusion, and hallucination [39-41]; 2) intraoperative AEs:
vasovagal response, syncope, ischemic stroke, hypotension, arrhythmia, confusion, seizure,
intracranial hemorrhage, intraventricular hemorrhage, and subdural hematoma [9, 39, 40]; 3)
postoperative AEs: symptomatic and asymptomatic intracranial and intraventricular
hemorrhage, ischemic infarction, lack of consciousness, and hemiparesis [39, 41]; 4) long term
AEs: pain, dysarthria, cognitive dysfunction, paresthesia, and balance disorder [39]; 5)
hardware-related complications requiring surgical revision: wound infection, lead migration,
lead fracture, and lead malposition [39]. The total number of AEs reported in RCTs comparing
STN DBS and GPi DBS was more in STN DBS than in GPi DBS [3, 4, 6, 9]. However, few of them
were statistically significant. In the trial of Follet and colleagues [4] fall and depression were
common AEs in the STN DBS group. Microelectrode passes were associated with an increased
risk of intracranial bleeding [42] (Table 1).

In their meta-analysis, Sako et al. [25] reported that depression was significantly more common
in the STN DBS group than in the GPi DBS group while other five AEs were not significant: 1)
confusion/delirium, 2) intracranial hemorrhage, 3) dysarthria/speech problems, 4) balance
disorder, 5) stroke/transient ischemic attack (TIA). In the other meta-analysis of Liu et al. [26],
depression on the Beck Depression Inventory-II (BDI-II) score differs significantly favoring GPi
DBS than STN DBS.

It has not escaped our notice that investigators of different studies used different definitions of
AEs. There was no standardized definition or outcome measurement for AEs. Therefore, it is
difficult to estimate these AEs in meta-analyses models. In their recent meta-analysis of
depression and anxiety, Couto et al. [43] concluded that results of relevant clinical trials are
heterogeneous. Therefore, standardization of outcome measurement is recommended across
centers.

Negida et al. (2017) [29] also concluded death was more common after STN DBS than GPi DBS in
PD patients, and most of the deaths were due to postoperative complications (Table 3).
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Stimulation amplitude, pulse width, and battery consumption
Stimulation amplitude and pulse width were lower in STN DBS than in GPi DBS, which
correlates to low battery consumption [3] and allows longer time intervals between pulse
generator replacements. This decreases both the cost and the risk during surgical replacement
of pulse generators [4].

Conclusions
Current evidence suggests that there is no significant difference between STN DBS and GPi DBS
in terms of motor improvement on the UPDRS III score although STN DBS allows more
reduction in antiparkinsonian medication. STN DBS was associated with more decline in verbal
fluency when compared to GPi DBS. Additionally, neuropsychological performance was slightly
affected after STN DBS compared to GPi DBS. These findings suggest that the selection of
surgical target in PD patients should be done on an individual basis according to patient status
and preferences. In patients who are at risk of neuropsychological deterioration and those with
speech problems, GPi DBS is a favorable target in order to avoid the possible
neuropsychological problems following STN DBS. On the other hand, STN DBS is a favorable
surgical target for patients who are not tolerating high doses of levodopa; those patients will
take the advantage of medication reductions with STN DBS. In addition, the less battery
consumption and the long intervals between pulse generator replacements in case of STN DBS
make it a better target from an economic point of view.
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