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Abstract

Postoperative pain, anxiety, and psychological distress significantly impact surgical recovery, yet
conventional management strategies often lack personalization. Artificial intelligence (AI) has emerged as a
transformative tool in perioperative care, offering potential solutions through predictive analytics, real-time
monitoring, and tailored interventions. This systematic review synthesizes evidence on Al-driven
approaches for improving postoperative pain, anxiety, and psychological outcomes in surgical patients.
Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we
conducted a comprehensive search of PubMed, Institute of Electrical and Electronics Engineers (IEEE)
Xplore, Scopus, Web of Science, and Cochrane Library up to April 2025. Ten studies met the inclusion
criteria. Risk of bias was assessed using the revised Cochrane risk of bias tool for randomized trials (ROB 2)
and Risk Of Bias In Non-randomized Studies-of Interventions (ROBINS-I) for non-randomized studies. Data
were narratively synthesized by Al applications (e.g., nociception monitoring, robotics, machine learning
(ML)) and outcomes (pain, anxiety, psychological metrics). Al interventions demonstrated efficacy in
reducing postoperative pain (e.g., nociception level (NOL)-guided analgesia lowered pain scores by 33% vs.
standard care) and anxiety (e.g., interactive robots reduced pediatric preoperative anxiety). ML models
predicted pain severity (area under the curve (AUC) up to 0.75) and complications (AUC 0.84) but showed
lower accuracy for readmissions (AUC 0.66). Automated psychological interventions reduced opioid use by
36.5%. Limitations included small sample sizes (12 to 201 participants), heterogeneity in AI methods, and
short follow-up durations. Al shows promise in personalizing perioperative care, particularly for pain and
anxiety management, though standardization and larger trials are needed. Future research should prioritize
robust validation, long-term outcomes, and integration into clinical workflows to translate AI’s potential
into routine practice.

Categories: Psychology, General Surgery, Healthcare Technology
Keywords: anxiety, artificial intelligence, perioperative care, postoperative pain, psychological outcomes

Introduction And Background

The perioperative period presents a complex interplay of physical and psychological stressors that
significantly influence patient outcomes [1]. Postoperative pain, anxiety, and psychological disturbances
such as depression, delirium, and post-traumatic stress symptoms remain prevalent among surgical
patients, contributing to delayed recovery, increased morbidity, prolonged hospitalization, and reduced
quality of life [2]. Conventional approaches to managing these outcomes often rely on standardized
protocols and subjective assessments, which may fail to capture the dynamic, individualized nature of
patients’ experiences. This underscores the need for more precise, predictive, and personalized strategies in
perioperative care [3].

In recent years, artificial intelligence (AI) has emerged as a transformative tool in medicine, offering
innovative solutions to complex clinical problems [4, 5]. Al-driven approaches, ranging from machine
learning (ML) algorithms and natural language processing to predictive analytics and computer vision, are
increasingly being integrated into perioperative workflows [6]. These technologies have demonstrated
potential in enhancing clinical decision-making, identifying high-risk patients, and tailoring interventions
based on real-time data. Specifically, Al applications in postoperative settings have shown promise in
anticipating pain trajectories, evaluating psychological risk profiles, and supporting the timely deployment
of targeted therapies [7, 8].

Despite the growing body of literature exploring Al in surgical care [9], there remains a gap in consolidating
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evidence regarding its role in addressing the intertwined challenges of postoperative pain, anxiety, and
psychological outcomes. A systematic synthesis of current research is crucial to understand the scope,
effectiveness, and limitations of Al interventions in this domain. By critically evaluating existing studies,
this review aims to elucidate how Al is being utilized to predict, monitor, and manage postoperative pain
and psychological sequelae, ultimately offering insights into its clinical utility and informing future
directions for research and implementation in surgical care.

Review

Methodology
Eligibility Criteria

This systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines [10]. Studies were eligible for inclusion if they explored the application
of Al in assessing, predicting, or managing postoperative pain, anxiety, or psychological outcomes in
surgical patients. We included original peer-reviewed studies involving human subjects, irrespective of the
type of surgery or Al methodology used, provided they addressed postoperative psychological or pain-related
endpoints. Eligible studies included randomized controlled trials (RCTs), cohort studies, case-control
studies, systematic reviews, and cross-sectional analyses. Only articles published in English were considered.
Scoping reviews, editorials, conference abstracts, animal studies, and studies without a focus on AI-driven
approaches were excluded.

Information Sources

We conducted a comprehensive search of the following electronic databases: PubMed, Institute of Electrical
and Electronics Engineers (IEEE) Xplore, Scopus, Web of Science, and the Cochrane Library. The search
covered all articles published from inception to April 2025. To ensure the completeness of our findings, we
also manually screened the reference lists of included articles and relevant review papers.

Search Strategy

The search strategy was developed in consultation with an academic librarian and tailored to each database
using controlled vocabulary (e.g., Medical Subject Headings (MeSH) terms) and free-text terms. The key
concepts included terms related to artificial intelligence (e.g., “artificial intelligence,” “machine learning,”
“deep learning”), postoperative outcomes (e.g., “postoperative pain,” “postoperative anxiety,”
“psychological distress,” “depression,” “mental health”), and surgical patients. Boolean operators and
database-specific filters were applied to refine the search. A detailed search strategy for each database is
given in Table 1.

» &

Serial
erta Database  Search strategy

number

1 PubMed ("artificial intelligence” OR "machine learning" OR "deep learning") AND (surgery OR postoperative) AND (pain OR
(MEDLINE) anxiety OR depression OR "psychological outcomes")

2 IEEE ("artificial intelligence” OR "machine learning" OR "deep learning") AND (surgery OR postoperative) AND (pain OR
Xplore anxiety OR depression OR "mental health")

3 Scopus TITLE-ABS-KEY ("artificial intelligence" OR "machine learning” OR "deep learning") AND TITLE-ABS-KEY (surgery

P OR postoperative) AND TITLE-ABS-KEY (pain OR anxiety OR depression)

4 Web of TS=("artificial intelligence" OR "machine learning" OR "deep learning") AND TS=(surgery OR postoperative) AND
Science TS=(pain OR anxiety OR depression)

5 Cochrane ("artificial intelligence" OR "machine learning" OR "deep learning") AND (surgery OR postoperative) AND (pain OR

Library anxiety OR depression)

TABLE 1: Search strings for five different databases

MEDLINE: Medical Literature Analysis and Retrieval System Online; IEEE: Institute of Electrical and Electronics Engineers

Selection Process

All retrieved records were imported into EndNote (Clarivate, Philadelphia, PA) for reference management
and deduplication. Two independent reviewers (SA and PPJ), from the list of authors, screened the titles and
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abstracts of all studies for eligibility. Full-text articles of potentially relevant studies were then assessed
independently against the inclusion and exclusion criteria. Any disagreements during the screening or
eligibility assessment were resolved through discussion or consultation with a third reviewer (AU), who
served as a tiebreaker. The selection process was documented and presented using a PRISMA flow diagram.

Data Collection Process

Data were extracted independently by two reviewers using a standardized and pre-piloted data extraction
form. Extracted data included study characteristics (author, year, country, design), population details
(sample size, demographics, type of surgery), Al methodology (type of algorithm, data input features,
training/validation methods), outcome measures (pain scores, anxiety scales, psychological evaluation
tools), and key findings. Any discrepancies in data extraction were resolved by consensus or adjudication by
a third reviewer.

Data Items

The main data items collected included the type and application of Al model, type of surgical procedure,
postoperative psychological or pain-related outcomes, comparison methods (if any), and study conclusions.
Secondary data items included funding sources, ethical approvals, and any reported limitations or biases
acknowledged by the authors.

Risk of Bias Assessment

Risk of bias for the included studies was assessed using appropriate validated tools based on study design.
The revised Cochrane risk of bias tool for randomized trials (ROB 2) [11] was used to evaluate seven studies
that used RCT methodology. This tool considers five key domains: the randomization process, deviations
from intended interventions, missing outcome data, measurement of the outcome, and selection of the
reported result. Each study was assessed independently across these domains and assigned an overall risk of
bias rating as “low,” “some concerns,” or “high.”

For the three non-randomized studies (two systematic reviews and one prospective cohort study), the Risk
Of Bias In Non-randomized Studies-of Interventions (ROBINS-I) tool [12] was used to ensure
methodological rigor. Although ROB is typically recommended for systematic reviews, ROBINS-I was used
uniformly to maintain a consistent evaluation framework across non-RCT designs as per reviewer guidance.
The ROBINS-I tool evaluates seven domains, including bias due to confounding, participant selection, and
outcome measurement, allowing a comprehensive appraisal of the internal validity of non-randomized
evidence.

Synthesis Methods

Due to anticipated variability in Al methodologies, outcome measures, and study designs, a narrative
synthesis approach was adopted. We grouped studies according to the type of Al model employed (e.g.,
supervised learning, deep learning), target outcome (e.g., pain, anxiety, depression), and clinical setting.

Results

Study Selection Process

The study selection process followed PRISMA guidelines, beginning with the identification of 202

records from five databases: the Cochrane Library (n = 2), Web of Science (n = 43), Scopus (n = 71), PubMed
(n = 34), and IEEE Xplore (n = 52). After removing 138 duplicate records, 64 studies underwent title and
abstract screening. Of these, 36 records were excluded due to paywall restrictions, leaving 28 full-text
articles assessed for eligibility. Further exclusions were made for editorials/short communications (n = 11),
non-ML-based studies (n = 5), and studies not involving surgical patients (n = 2). Ultimately, 10 studies met
all inclusion criteria and were incorporated into the systematic review (Figure 7).
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Author
Country
(Year)

Topgu et
al.[13] Turkey

(2023)

Study

sesign

RCT

Sample

size

84

PubMed
(n=34)

IEEE
Xplore
(n=52)

Scopus
(n=71)

Web of Cochrane
Science Library
(n=43) (n=02)

Screening Identification

Screening

Included

Total Records
(n=202)

Duplicate Records
(n=138)

Records after duplicate

Records excluded
due to pay wall
(n=36)

removal
(n=64)
Full text article
assessed for eligibility
(n=28)

Studies included in
review
(n=10)

Record excluded due
to:

Editorials and short
communications (n =
11)

Not based on
machine learning
models (n = 05)

Not based on surgical
patients (n = 02)

FIGURE 1: PRISMA flowchart outlining the study selection process

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses; IEEE: Institute of Electrical and
Electronics Engineers

Characteristics of the Included Studies

The systematic review included 10 studies [13-22] comprising seven RCTs, two systematic reviews, and one

prospective cohort study, with sample sizes ranging from 12 to 201 participants [19, 22]. The RCTs evaluated

diverse Al-driven interventions, including nociception-guided analgesia [14, 20], interactive robots for
pediatric anxiety [13, 18], and ML for pain prediction [15]. Two systematic reviews synthesized evidence
on Al in arthroplasty [16] and surgical outcomes prediction [17], while the cohort study applied ML

to cervical radiculopathy recovery [19]. Populations varied from children [13] to adult surgical patients [21],
with outcomes spanning pain scores, anxiety, opioid use, and predictive model performance. Study
durations ranged from immediate postoperative assessments [15] to 12-month follow-ups [19], reflecting
heterogeneous designs and clinical contexts (Table 2).

Patient
population/Type of

surgery

Children aged
between 5 and 10
years undergoing

day surgery

Al approach used

Interactive robot

(Al-based)
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Purpose of Al

application

Reduce anxiety,
enhance

mobilization, and
improve parental

satisfaction

Key findings

Comparator/ Follow-up
Outcomes measured
control duration
Postoperative
Standard care CSA score, mobilization period
during duration, parental (unspecified
mobilization satisfaction exact

duration)

Reduced anxiety before

mobilization, increased mobilization

duration, and higher parental

satisfaction


https://assets.cureus.com/uploads/figure/file/1510341/lightbox_6f2cf9102ade11f0b2aa0349a042936b-PRISMA-9-.png
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

Cureus

Part of SPRINGER NATURE

Standard care —

180 minutes  Significantly lower postoperative
Fuica et Adult patients NOL™ — Al-based  NOL-guided fentanyl based on  Postoperative pain scores
Prospective post-op or pain scores with NOL-guided
al.[14] Israel 75 undergoing major i F i (NRS), opioid
RCT until PACU dosing; no difference in morphine
(2023) abdominal surgery monitoring fentanyl dosing indices and consumption
discharge or fentanyl consumption
clinician judgment
Patients aged Predict moderate
Ancillary
66 between 18 and 75 to severe Standard care Immediate
Morisson analysis of ML algorithm Postoperative pain ML-based model outperformed
analyzed years undergoing postoperative pain  (non-NOL-guided postoperative
etal. [15] Israel RCT (penalized logistic (moderate to severe individual NOL variables with the
(70 gynecological using fentanyl period
(2023) (NOLGYN regression) PACU pain) highest CV-AUC of 0.753
enrolled) laparoscopic intraoperative NOL  administration) (PACU)
study)
surgery data
Cognitive support AlML models performed best in
and decision- predicting complications (AUC
Lopez et Cost, LOS, discharge,
Systematic Hip and knee making (e.g., cost,  Not applicable Varies by 0.84), pain (0.83), and PROs
al.[16] United State 49 studies AI/ML models readmission,
review arthroplasty (TJA) LOS, (review study) study (0.81); lower accuracy for
(2021) complications, pain, PROs
complications, readmission/reoperation (AUC
pain, PROs) 0.66)
Random forest
Various surgical ML models showed improved
Elfanagely (n=19), artificial Postoperative mortality,
Systematic 45 studies subspecialties (most Predict surgical Conventional prediction accuracy compared to
etal. [17] United State neural networks complications, quality of Not specified
review included common: outcomes statistical models conventional methods (measured
(2021) (n=17), logistic life, and pain improvement
neurosurgery) by AUC)
regression (n=17)
Pediatric patients Immediate
Lee- Teach deep Standard care
(4-12 years) (before, No significant differences in
Krueger et Humanoid robot breathing to reduce  with topical Pain, fear, IV induction
Canada RCT 137 undergoing IV line during, and pain/fear; robot group five times
al.[18] (MEDI®) pain and fear anesthetic completion
placement before after IV more likely to complete IV induction
(2021) during IV induction  (Ametop®) only
short-stay surgery insertion)
ML methods:
Individuals with Prognostic
LASSO, Boosting, All models showed similar
Liew et al. Prospective cervical modeling of clinical  Traditional NDI, EQ5D (Qol), neck
MUARS; performance; MUARS yielded
[19] Sweden cohort 201 radiculopathy (non- outcomes in stepwise pain intensity, arm pain 12 months
traditional: parsimonious models with
(2020) study surgical or mixed cervical regression intensity
Stepwise comparable predictive accuracy
unclear) radiculopathy
regression
Guide NOL-guided group had significantly
Meijer et Abdominal surgery  NOL™ index — Standard care
intraoperative Postoperative pain score, lower pain scores (3.2 vs 4.8,
al. [20] Netherlands ~ RCT 50 under general multiparameter Al- based on PACU
opioid (fentanyl) morphine consumption P=0.006) despite similar opioid
(2020) anesthesia driven index haemodynamics
dosing consumption
Adults undergoing
Anthony Deliver ACT-based 36.5% reduction in opioid use and
82 (76 operative fixation for  Automated mobile No-message Opioid use, pain intensity 2 weeks post-
etal.[21]  United State  RCT psychological lower pain scores in the
completed) upper/lower messaging robot control group (PROMIS scores) op
(2020) intervention intervention group
extremity fractures
Pain intensity (Graphic
US soldiers with
Maani et Rating Scale), pain Immediate Significant pain reduction during
Controlled combat-related burn Pain reduction Standard of care
al. [22] United State 12 Immersive VR unpleasantness, time (within VR; greatest effect in patients with
study injuries during during wound care  pharmacologies
(2011) spent thinking about pain, session) the highest initial pain ratings

wound debridement
patient satisfaction

TABLE 2: A summary of studies included in this study

Al: artificial intelligence; RCT: randomized controlled trial; CSA: Children's State Anxiety; NOL™: Nociception Level Index; NRS: Numeric Rating Scale;
PACU: post-anesthesia care unit; ML: machine learning; CV-AUC: cross-validated area under the receiver operating characteristic curve; TJA: total joint
arthroplasty; LOS: length of stay; PROs: patient-reported outcomes; NDI: Neck Disability Index; EQ5D (QoL): 5-level EQ-5D version (quality of life);
ACT: acceptance and commitment therapy; PROMIS: Patient-Reported Outcomes Measurement Information System; VR: virtual reality

Al Interventions for Postoperative Pain Management

Al-driven approaches demonstrated significant efficacy in reducing postoperative pain across multiple
surgical populations. The Nociception Level Index (NOL™), an Al-based multiparameter monitoring system,
was particularly effective in guiding intraoperative fentanyl dosing, leading to lower postoperative pain
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scores compared to standard care in patients undergoing major abdominal surgery [14]. Similarly, Meijer et
al. [20] found that NOL-guided analgesia during abdominal surgery under general anesthesia resulted in
significantly reduced pain scores (3.2 vs. 4.8, P=0.006) despite comparable opioid consumption. ML
algorithms also showed promise in predicting postoperative pain severity. Morisson et al. [15] developed an
ML model using intraoperative nociception data to predict moderate-to-severe postoperative pain with high
accuracy (CV-AUC: 0.753), outperforming traditional methods.

Non-pharmacological Al interventions, such as immersive virtual reality (VR), were also effective. Maani et
al. [22] reported significant pain reduction during wound debridement in combat-related burn injuries when
patients used VR, particularly among those with high baseline pain. These findings suggest that Al can
enhance both pharmacological and non-pharmacological pain management strategies.

AI for Reducing Anxiety and Improving Psychological Outcomes

Al-based psychological interventions and robotic assistance were effective in alleviating preoperative and
postoperative anxiety. Topgu et al. [13] evaluated an interactive robot in children undergoing day surgery
and found reduced anxiety before mobilization, along with increased parental satisfaction. Similarly, Lee-
Krueger et al. [18] tested a humanoid robot (MEDi®) to teach deep breathing techniques to pediatric patients
before IV line placement. While no significant differences in pain or fear were observed, children in the
robot-assisted group were five times more likely to complete IV induction, suggesting improved cooperation.

For psychological outcomes, Anthony et al. [21] implemented an automated mobile messaging robot
delivering acceptance and commitment therapy (ACT) to postoperative orthopedic trauma patients. The
intervention group showed a 36.5% reduction in opioid use and lower pain intensity scores compared to
controls, highlighting the potential of AI-driven behavioral interventions to improve recovery.

Al in Predictive Modeling and Decision Support

ML models demonstrated strong performance in predicting surgical outcomes, though accuracy varied by
application. Lopez et al. [16] conducted a systematic review of AI/ML in total joint arthroplasty, finding that
models excelled in predicting complications (area under the curve (AUC): 0.84), pain (AUC: 0.83), and
patient-reported outcomes (PROs) (AUC: 0.81), but were less accurate for readmission/reoperation (AUC:
0.66). Similarly, Elfanagely et al. [17] reviewed ML applications across surgical subspecialties and noted
improved prediction accuracy for mortality, complications, and pain compared to conventional statistical
models.

In cervical radiculopathy, Liew et al. [19] used ML algorithms (LASSO, boosting, MuARS) to model
postoperative recovery. While all models performed similarly, MuARS provided the most parsimonious
solution, demonstrating ML’s utility in prognosticating recovery trajectories.

Quality Assessment Results

Among the seven RCTs assessed using the ROB 2 tool, five studies were rated as having an overall low risk of
bias; these included studies by Topcu et al. [13], Fuica et al. [14], Lee-Krueger et al. [18], Meijer et al. [20], and
Anthony et al. [21], which demonstrated clear randomization procedures, low levels of missing outcome
data, and appropriate handling of reported outcomes. Two studies, Morisson et al. [15] and Maani et al. [22],
were rated as having some concerns. In these cases, limitations stemmed from uncertainties in the
randomization process or the use of subjective outcome measures such as pain and anxiety, where blinding
was either not reported or inadequately addressed (Table 3).
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Study

Topcu et al.
[13] (2023)

Fuica et al.
[14] (2023)

Morisson et
al. [15]
(2023)

Lee-Krueger
etal. [18]
(2021)

Meijer et al.
[20] (2020)

Anthony et
al. [21]
(2020)

Maani et al.
[22] (2011)

Domain 1:
Randomization
process

—

ow

—

ow

Some concerns

Low

Low

Low

Some concerns

Domain 2: Deviations Domain 3: Domain 4: Domain 5: Overall
from the intended Missing Measurement of Selection of the risk of
interventions outcome data  the outcome reported result bias
Low Low Some concerns Low Low
Low Low Low Low Low
Some
Low Low Some concerns Low
concerns
Low Low Some concerns Low Low
Low Low Low Low Low
Low Low Low Low Low
Some
Low Low Low Some concerns
concerns

TABLE 3: Assessment for seven randomized controlled trials (RCTs) using the revised Cochrane
risk of bias tool for randomized trials (ROB 2) tool

For the three non-randomized studies assessed using the ROBINS-I tool, all were judged to have an overall
moderate risk of bias. The prospective cohort study by Liew et al. [19] presented some risk due to a lack of
randomization and potential confounding, although outcome measurement and data completeness were
adequately addressed. Both systematic reviews, Lopez et al. [16] and Elfanagely et al. [17], exhibited
moderate risk primarily due to concerns about outcome measurement and reporting practices. These reviews
did not fully describe methods for study selection or data synthesis and did not clearly report how bias was
minimized across included evidence, limiting confidence in their conclusions (Table 4).

B Bias in the Bias in the Bias due to deviations Bias due Bias in the Bias in the Overall
ias due to
Study — selection of classification of from intended to missing measurement of selection of the risk of
confounding
participants interventions interventions data outcomes reported results bias
Liew et al.
Moderate Low Low Low Low Low Low Moderate
[19] (2020)
Lopez et al. Some
Moderate Low Low Low Some concerns Some concerns Moderate
[16] (2021) concerns
Elfanagely
Some
etal. [17] Moderate Low Low Low Some concerns Some concerns Moderate
concerns
(2021)

TABLE 4: Risk Of Bias In Non-randomised Studies - of Interventions (ROBINS-I) assessment for
the three non-randomized studies

Discussion

The study highlights the transformative potential of Al-driven approaches in managing postoperative pain,
anxiety, and psychological outcomes among surgical patients. The integration of Al technologies, ranging
from real-time nociception monitoring to interactive robotics and ML predictive models, demonstrates
significant advancements in personalized perioperative care [6]. Notably, AI applications have shown

2025 Agrawal et al. Cureus 17(5): e84226. DOI 10.7759/cureus.84226 7 of 10


javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

Cureus

Part of SPRINGER NATURE

efficacy in reducing subjective distress, optimizing analgesic administration, and improving long-term
recovery trajectories. However, the heterogeneity in study designs, patient populations, and outcome
measures underscores both the promise and challenges of implementing Al in clinical practice.

One of the most compelling findings is the role of Al in enhancing postoperative pain management. NOL™,
an Al-based multiparameter monitoring system, consistently outperformed conventional hemodynamic-
guided analgesia in reducing postoperative pain scores [14, 20]. These results align with emerging evidence
that Al-driven nociception monitoring can minimize opioid overuse while improving pain control, a critical
consideration in the context of the opioid epidemic [20]. Similarly, ML algorithms demonstrated robust
predictive accuracy for postoperative pain severity, with Morisson et al. [15] reporting an AUC of 0.753 for
moderate-to-severe pain prediction. This capability to anticipate pain trajectories could enable preemptive
interventions, reducing reliance on reactive analgesia. However, the generalizability of these models
remains uncertain, as most studies focused on specific surgical populations (e.g., abdominal or
gynecological surgeries), limiting broader applicability.

Beyond pharmacological management, Al-based non-pharmacological interventions, such as VR and
interactive robotics, showed promise in alleviating perioperative distress [23, 24]. Maani et al. [22] reported
significant pain reduction during wound debridement using VR, particularly in high-pain cohorts,
suggesting that immersive technologies may serve as effective adjuncts to traditional analgesia. In pediatric
populations, interactive robots reduced preoperative anxiety and improved parental satisfaction [13], while
Lee-Krueger et al. [18] found that robot-assisted interventions enhanced procedural compliance, albeit
without significant reductions in pain or fear. These mixed outcomes highlight the need for further
refinement of non-pharmacological Al tools, particularly in tailoring interventions to specific patient
demographics and surgical contexts [25].

Psychological outcomes, particularly postoperative opioid use and patient-reported recovery, were also
positively influenced by Al-driven interventions. Anthony et al. [21] demonstrated that an automated
messaging robot delivering ACT significantly reduced opioid consumption and pain intensity in orthopedic
trauma patients. Research indicates behavioral interventions effectively diminish opioid dependence, while
studies find new support for this approach [21]. Such trials without blinding procedures cause doubts
regarding placebo effects because the evidence clearly demonstrates the requirement for meticulously
designed studies to establish isolated benefits from Al therapy [13, 18].

The topic of Al-based prediction for surgical outcomes stood as a major point in discussions. Lopez et al.
[16], together with Elfanagely et al. [17], performed systematic reviews that demonstrated that ML models
produced excellent predictions regarding complications and pain as well as PROs, yet demonstrated weaker
performance for readmissions and reoperations. The data implies that Al proves useful in supporting clinical
choices, even though its effectiveness varies according to specific situations. Research by Liew et al. [19]
proved that ML methods produced equivalent recovery models for cervical radiculopathy as traditional
methods, although practical clinical insights were hard to extract from the findings. The mismatch between
predictive success and practical system integration needs additional investigation when establishing Al tools
for real-time clinical use.

The review showed various issues that restricted the findings across different studies. Two studies with
small sample groups [20, 22] and unblinded procedures by researchers [13, 18] appeared frequently as
methodological weaknesses throughout existing articles. Additionally, the predominance of short-term
follow-ups (e.g., immediate postoperative assessments in Morisson et al. [15]) limits understanding of AI’s
long-term impact. The comparison between different Al studies becomes challenging because a
heterogeneous combination of Al approaches, including logistic regression along with deep learning, exists.
The heterogeneity in AI methodologies-ranging from logistic regression to deep learning-further
complicates cross-study comparisons. For example, while Lopez et al. [16] and Elfanagely et al. [17] provided
high-level insights into AI’s predictive performance, neither review standardized model reporting, hindering
reproducibility.

The broader literature supports many of these findings while also highlighting gaps. For instance, a meta-
analysis by Hashimoto et al. [26] corroborated the efficacy of Al in reducing postoperative pain but noted
inconsistent reporting of model validation. Similarly, a scoping review by Lin et al. [27] emphasized the need
for patient-centered Al tools, echoing the mixed results seen in pediatric and psychological interventions
[13, 21]. These parallels suggest that while Al holds immense potential, its clinical integration requires

Limitations

This review has several limitations. First, the inclusion of heterogeneous study designs (RCTs, cohort
studies, systematic reviews) precluded meta-analysis, limiting quantitative synthesis. Second, the
predominance of small-scale studies [20, 22] may overestimate effect sizes. Third, the lack of long-term
follow-up data in most studies restricts conclusions about sustained Al benefits. Finally, publication bias
may favor positive outcomes, as negative or null results are often underreported.
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Conclusions

Al-driven approaches demonstrate significant potential in improving postoperative pain, anxiety, and
psychological outcomes, but their clinical adoption requires addressing key methodological and practical
challenges. Future research should prioritize large-scale, blinded RCTs with standardized Al protocols and
long-term follow-ups to validate these technologies. By bridging these gaps, Al can transition from a
promising tool to a cornerstone of perioperative care.
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