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Abstract
Precision medicine presents challenges in data collection, cost, and privacy as it tailors treatments to each
patient's unique genetic and clinical profile. With its ability to produce realistic and confidential patient
data, generative artificial intelligence (AI) offers a promising avenue that could revolutionize patient-centric
healthcare. This systematic review aims to assess the role of generative AI in personalized medicine.
Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines,
we searched PubMed, Web of Science, Scopus, CINAHL, and Google Scholar, identifying 549 studies. After
removing duplicates and applying eligibility criteria, 27 studies were found relevant and were included in
this systematic review. Generative adversarial networks (GANs) were the most commonly used models (16
studies), followed by variational autoencoders (VAEs; seven studies). These models were primarily applied to
drug response prediction, treatment effect estimation, biomarker discovery, and patient stratification.
Generative AI models have shown significant promise in revolutionizing personalized medicine by enabling
precise treatment predictions and patient-specific therapeutic insights. Despite their potential, challenges
related to model validation, interpretability, and bias remain. Future research should prioritize large-scale
validation studies using diverse datasets to enhance the clinical applicability and reliability of these AI-
driven approaches.

Categories: Healthcare Technology
Keywords: generative artificial intelligence, healthcare technology, machine learning in medicine, personalized
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Introduction And Background
Precision medicine differs from conventional clinical treatment by focusing on tailoring therapeutic
approaches to each patient’s unique genetic and clinical characteristics [1]. This method integrates clinical
data with genetic profiling to develop personalized diagnostic and treatment strategies, aligning clinical
decisions with an individual’s medical history and current health status [2].

Generative artificial intelligence (AI) is a type of AI focused on creating new data, content, or solutions
using various formats, including text, graphics, and man-made data [3]. Machine learning (ML) models, with
a focus on deep learning approaches, are used in this cutting-edge sector to generate outputs that are both
original and realistic [4]. These results are obtained by identifying and reproducing structures and patterns
in the currently available data. Generative AI, especially through sophisticated deep Galerkin methods
(DGMs) like variational autoencoders (VAEs) and generative adversarial networks (GANs), has emerged as a
crucial tool in precision medicine [5]. These advanced AI models skillfully address challenging problems like
privacy concerns, data shortages, and difficulties in modeling intricate human health data. These models
greatly improve the interpretation and analysis of data by producing synthetic data on patients that
preserve authenticity and realism, thus promoting precision medicine [6].

Despite its potential, the integration of generative AI into personalized medicine raises several challenges.
Issues related to model transparency, data bias, interpretability, regulatory compliance, and ethical
considerations remain major concerns. The reliability of AI-driven predictions heavily depends on the
quality and diversity of training datasets, as biases in data collection can lead to skewed or misleading
outcomes [7]. Additionally, the black-box nature of some generative AI models poses challenges in clinical
adoption, as healthcare professionals require clear justifications for AI-driven decisions. Addressing these
concerns is crucial to ensure the safe, effective, and equitable deployment of generative AI in clinical
practice [8].

Given the growing interest in generative AI and its applications in personalized medicine, a systematic
review is essential to synthesize existing evidence, evaluate methodological advancements, and identify
potential gaps in research. This systematic review aims to comprehensively assess the role of generative AI
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in personalized medicine, examining its impact on diagnosis, treatment, and patient outcomes.
Additionally, the review will critically evaluate the reliability, generalizability, and ethical considerations of
AI-driven models to provide insights into their future implications in healthcare. By systematically
analyzing the current literature, this review will contribute to the ongoing discourse on AI integration in
precision medicine and inform future research directions and policy frameworks.

Review
Methodology
Study Design

This systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) [9] guidelines to ensure methodological rigor and transparency. A structured
approach was used to identify, evaluate, and synthesize existing literature on the role of generative AI in
personalized medicine.

Eligibility Criteria

The inclusion criteria were established based on the Population, Intervention, Comparison, Outcomes, and
Study Design (PICOS) framework. Studies were included if they focused on patients or healthcare settings
where generative AI was applied to personalized medicine, encompassing areas such as genomics, drug
discovery, disease diagnosis, and treatment optimization. The intervention of interest was the use of
generative AI models such as GANs, VAEs, and transformer-based architectures for healthcare applications.
Studies comparing generative AI with conventional statistical methods, traditional ML approaches, or
clinical decision-making without AI intervention were included. The primary outcomes considered were
predictive accuracy, improvements in patient outcomes, efficiency in drug discovery, and ethical
considerations related to AI implementation.

This review included randomized controlled trials (RCTs), observational studies, retrospective analyses,
cohort studies, and computational modeling studies. Studies that were non-peer-reviewed, such as
preprints, editorials, and commentaries, were excluded. Only studies published in English were considered,
and those lacking methodological transparency or complete data were omitted.

Search Strategy

A comprehensive literature search was conducted across multiple electronic databases, including PubMed,
Web of Science, Scopus, CINAHL, and Google Scholar. A combination of Medical Subject Headings (MeSH)
terms and free-text keywords was used to refine the search. The primary search terms included “Generative
AI”, “Generative Adversarial Networks”, “Transformer models”, “AI in Precision Medicine”, “AI-driven Drug
Discovery”, “AI in Genomics”, “Personalized Treatment AI”, and “Machine Learning in Healthcare”. Boolean
operators (AND, OR, NOT) were applied to optimize the search strategy. Additionally, the reference lists of
included studies were manually reviewed to identify any relevant studies not captured in the initial search.

Study Selection

All retrieved studies were imported into EndNote reference management software (Clarivate, Philadelphia,
PA, USA), and duplicates were removed. The screening process was carried out in two phases. In the first
phase, titles and abstracts were reviewed by two independent researchers to identify potentially relevant
studies. The second phase involved a full-text review, where studies meeting the eligibility criteria were
assessed in detail. Any disagreements between the reviewers were resolved through discussion or
consultation with a third reviewer. The entire selection process was documented using a PRISMA flow
diagram to provide transparency on study inclusion and exclusion.

Data Extraction

A standardized data extraction form was used to systematically collect relevant information from the
included studies. Extracted data included study details, study design, sample size, type of generative AI
model, application domain, comparison methods, outcome measures, and key findings. Additionally, ethical
considerations related to bias, data privacy, and regulatory compliance were recorded. The data extraction
process was independently conducted by two reviewers to ensure accuracy, and discrepancies were resolved
through discussion.

Risk of Bias Assessment

The risk of bias for the included studies was assessed using the Prediction Model Risk of Bias Assessment
Tool (PROBAST). This tool evaluates the risk of bias across four domains: participants, predictors, outcome,
and analysis. Each study was independently reviewed by two researchers, and any discrepancies were
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resolved through discussion. Studies were categorized as having low, moderate, or high risk of bias based on
the presence of limitations in one or more domains. Particular attention was given to the analysis domain,
as inappropriate statistical methods or overfitting could significantly impact the validity of findings. The
final risk of bias assessments were summarized in a tabular format for transparency.

Data Synthesis and Analysis

Due to variations in study designs and outcome measures, a narrative synthesis approach was adopted.
Findings were organized thematically based on key areas, including types of generative AI models used, their
applications in disease diagnosis and prognosis, their role in drug discovery and personalized treatment,
and the ethical and regulatory challenges associated with their implementation.

Ethical Considerations

Since this systematic review did not involve direct human or animal research, formal ethical approval was
not required. However, ethical concerns associated with the use of AI in personalized medicine, including
data privacy, algorithmic bias, interpretability, and regulatory compliance, were critically analyzed.
Ensuring transparency and fairness in generative AI applications remains a key priority for its integration
into personalized healthcare.

Results
Search Results

The initial database search identified 549 records from PubMed (n = 78), Web of Science (n = 92), Scopus (n =
154), CINAHL (n = 12), and Google Scholar (n = 213). After removing 292 duplicate records, 257 studies were
screened based on titles, of which 182 were excluded for irrelevance. The remaining 75 studies were sought
for retrieval, with 21 unavailable, leaving 54 for full-text eligibility assessment. Among these, 16 were
excluded as irrelevant, seven were review articles or commentaries, and four did not focus on precision
medicine. Ultimately, 27 studies met the inclusion criteria and were included in the systematic review
(Figure 1).
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FIGURE 1: PRISMA flowchart of the studies identified from different
databases
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

Characteristics of Included Studies

The included studies employed a range of generative models, with GANs being the most prevalent (16
studies), followed by VAEs (seven studies). Other models included U-Net, latent Dirichlet allocation (LDA),
and large language models (LLMs), each represented in one or two studies. The majority of the studies
adopted retrospective computational modeling designs, while a smaller number utilized deep learning-based
approaches, predictive modeling, or benchmarking frameworks (Table 1).

Author
Publishing
year

Study design
Underlying
generative
model

Applied
generative model

Focused application

Rampášek
et al. [10]

2019
Retrospective
computational modeling
study

VAE Dr. VAE Personalized drug response prediction

Ge et al.
[11]

2020

Retrospective
computational study with
simulation-based
validation

GANITE MCGAN Personalized treatment effect (ITE)

Xue et al. 2020 Computational modeling VAE VAE, S-VQ-VAE Representation of cellular states from gene
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[12] study in systems biology expression data

Elazab et
al. [13]

2020
Computational imaging
study

GAN GP-GAN Growth prediction of gliomas (brain tumors)

Yoon et al.
[14]

2020 Computational study GAN ADS-GAN Anonymization through data synthesis

Barbiero
et al. [15]

2021
Computational modeling
study

GAN WGAN Production realistic gene expression samples

Sui et al.
[16]

2021
Deep learning-based
radiogenomic study

VAE and
GAN

CVAE-GAN
Analyze the correlation between lung cancer
imaging and gene expression data

Zhang et
al. [17]

2021
Computational modeling
study

GAN GANDA
Generation of intratumoral nanoparticles
distribution (nps)

Piacentino
et al. [18]

2021
Computational modeling
study

GAN GAN-based ECG Anonymize private healthcare data

Ahmed et
al. [19]

2021
Computational modeling
study

GAN omicsGAN Improved disease phenotype prediction

Rafael-
Palou et
al. [20]

2022 Predictive modeling study U-Net U-HPNet Predicting the progression of lung nodules

Ahuja et
al. [21]

2022
Unsupervised machine
learning in clinical
informatics

LDA MixEHR
Large-scale automatic phenotyping using
electronic health record (EHR) data

Jahanyar
et al. [22]

2023
Computational biology
study

GAN MS-ASGAN
Evaluating tabular biomedical data generated
by GANs

Shi et al.
[23]

2023
Computational predictive
modeling study

GAN CSAM-GAN
Predicting prognostic outcomes in cancer
using multimodal data

Wang et
al. [24]

2023
Computational predictive
modeling study

VAE MOICVAE Predict cancer drug response

Yamanaka
et al. [25]

2023
Computational predictive
modeling study

VAE DRAGONET Generate new drug candidate molecules

Strack et
al. [26]

2023
Computational predictive
modeling study

GAN Wasserstein-GA Monitor brain tumor changes

Gao et al.
[27]

2023
Computational predictive
modeling study

GAN
BrainStatTrans-
GAN

Generate corresponding healthy images of
patients, further used to decode individualized
brain atrophy

Moon et
al. [28]

2023
Retrospective in silico
study

GAN AttentionGAN
Predict short-term anatomical treatment
outcomes for different anti-vascular endothelial
growth factor agents

Shi et al.
[29]

2023
Retrospective
computational imaging
study

GAN GANCMLAE
Precisely detect individual brain atrophy
patterns in Alzheimer’s disease (AD) and mild
cognitive impairment (MCI)

Bernardini
et al. [30]

2023
Retrospective
observational study

GAN CCGAN Clinical data imputation

Li et al.
[31]

2023
Retrospective
observational study

GAN GAN-boosted SSL
Improve prediction models trained on
electronic health records (EHRs)

Hsu and
Lin [32]

2023
Retrospective
computational study

VAE SCAN
Predicting cancer patient prognosis using small
medical datasets

Zhou et al.
[33]

2024
Retrospective
computational modeling
study

CGAN SCGAN
Counterfactual explanations in breast cancer
prediction

Zhu et al.
2023

Retrospective
computational modeling GAN GluGAN Personalized glucose monitoring
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[34] study

Benary et
al. [35]

2023 Diagnostic study LLMs

ChatGPT,
Galactica,
Perplexity, and
BioMedLM

Supporting tool in precision oncology

Huang et
al. [36]

2023
Retrospective
benchmarking study

LLMs
ChatGPT-3 and
ChatGPT-4

Benchmarking ChatGPT-4 on a radiation
oncology in-training exam and Red Journal
Gray Zone cases

TABLE 1: Characteristics of included studies
VAE: variational autoencoder, Dr. VAE: drug response variational autoencoder, GANITE: generative adversarial nets for individualized treatment effect, MCGAN: Monte Carlo generative

adversarial network, S-VQ-VAE: structured vector quantized variational autoencoder, GAN: generative adversarial network, GP-GAN: growth prediction generative adversarial network, ADS-

GAN: anonymization through data synthesis using GAN, WGAN: Wasserstein generative adversarial network, CVAE-GAN: conditional variational autoencoder generative adversarial network,

GANDA: generative adversarial network for distribution of nanoparticles, ECG: electrocardiogram, omicsGAN: omics data-integrated generative adversarial network, U-Net: U-shaped

convolutional neural network, U-HPNet: U-Net-based high-performance network, LDA: latent Dirichlet allocation, MixEHR: mixed-membership model for electronic health records, MS-ASGAN:

multi-scale attention-based synthetic generative adversarial network, CSAM-GAN: cross-scale attention mechanism GAN, MOICVAE: multi-omics integration conditional variational

autoencoder, DRAGONET: drug gene interaction network generator, Wasserstein-GA: Wasserstein generative adversarial architecture, BrainStatTrans-GAN: brain statistical transformation

GAN, AttentionGAN: attention-based generative adversarial network, GANCMLAE: GAN with convolutional multi-level autoencoder, AD: Alzheimer’s disease, MCI: mild cognitive impairment,

CCGAN: clinical completion generative adversarial network, GAN-boosted SSL: GAN-boosted semi-supervised learning, SCAN: small-data cancer network, CGAN: conditional generative

adversarial network, SCGAN: sparse conditional generative adversarial network, GluGAN: glucose generative adversarial network, LLMs: large language models, ChatGPT: chat generative

pretrained transformer, BioMedLM: biomedical language model, SSL: semi-supervised learning, EHR: electronic health record.

The applications of generative AI in these studies were highly diverse, reflecting the broad potential of these
technologies in personalized medicine. Several studies focused on drug response prediction, leveraging
models such as drug response variational autoencoder (Dr. VAE) [10] and multi-omics integration
conditional variational autoencoder (MOICVAE) [24] to tailor treatments based on individual patient data.
Another prominent area was treatment effect estimation, where models like generative adversarial nets for
individualized treatment effect (GANITE) [11] and sparse conditional generative adversarial network
(SCGAN) [33] provided insights into individualized therapeutic outcomes. Medical imaging synthesis and
analysis were also well-represented, with studies like growth prediction generative adversarial network (GP-
GAN) [13] and generative adversarial network for distribution of nanoparticles (GANDA) [17] demonstrating
the utility of generative AI in modeling tumor growth and nanoparticle distribution. Additionally, biomarker
and gene expression modeling were explored using VAEs and GANs to decode cellular states [12] and
generate synthetic gene expression data [15].

Clinical data imputation and phenotyping emerged as another critical application, with studies such as
clinical completion generative adversarial network (CCGAN) [30] and mixed-membership model for
electronic health records (MixEHR) [21] addressing challenges in electronic health record (EHR) analysis.
Disease progression and prognosis prediction were also key themes, with models like U-Net-based high-
performance network (U-HPNet) [20] and cross-scale attention mechanism GAN (CSAM-GAN) [23] offering
tools for forecasting outcomes in conditions such as lung nodules and cancer. Finally, two studies
highlighted the emerging role of LLMs, including ChatGPT, in clinical decision support, particularly in
precision oncology [35,36]. These studies underscored the ability of generative AI to handle small datasets
[32], integrate multimodal data [23], and facilitate personalized treatment planning.

Overall, the included studies showcased the transformative potential of generative AI across various facets
of personalized medicine. The predominance of GANs and VAEs reflected their versatility in tasks ranging
from data synthesis to predictive modeling [10,12-20,22-24,26-31,33,34], while the inclusion of LLMs
pointed to new frontiers in AI-assisted healthcare [35,36]. The findings collectively emphasized the growing
importance of generative AI in addressing complex, individualized medical challenges.

Risk of Bias Assessment

The PROBAST assessment revealed variation in the risk of bias among the included studies. Of the 27
studies, 6 were classified as low risk, 12 as moderate risk, and 9 as high risk of bias. Common sources of bias
included poor model transparency, insufficient validation, and limited generalizability due to reliance on
small or non-diverse datasets. The analysis domain showed the highest prevalence of bias, particularly in
studies that did not account for overfitting or lacked external validation. Notably, studies with low risk of
bias had well-documented methodologies, rigorous validation strategies, and comprehensive reporting,
enhancing their reliability in the context of personalized medicine applications (Table 2).
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Study Participants Predictors Outcome Analysis Overall risk of bias

Rampášek et al. [10] Low Moderate Moderate Low Moderate

Ge et al. [11] Moderate High Moderate Moderate Moderate

Xue et al. [12] Low Moderate Low Low Moderate

Elazab et al. [13] High Low Moderate High High

Yoon et al. [14] Moderate Moderate Moderate Moderate Moderate

Barbiero et al. [15] Low Low Moderate Low Low

Sui et al. [16] Moderate Moderate Moderate High Moderate

Zhang et al. [17] High Moderate High High High

Piacentino et al. [18] Low Low Low Low Low

Ahmed et al. [19] Moderate Moderate High Moderate High

Rafael-Palou et al. [20] High High High High High

Ahuja et al. [21] Low Moderate Moderate Low Moderate

Jahanyar et al. [22] Moderate Low Moderate High Moderate

Shi et al. [23] High High Moderate High High

Wang et al. [24] Low Moderate Low Moderate Moderate

Yamanaka et al. [25] Moderate Moderate Moderate Moderate Moderate

Strack et al. [26] High High High High High

Gao et al. [27] Low Low Low Low Low

Moon et al. [28] Moderate Moderate Moderate High Moderate

Shi et al. [29] High High Moderate High High

Bernardini et al. [30] Low Moderate Low Moderate Moderate

Li et al. [31] Moderate Moderate Moderate Moderate Moderate

Hsu and Lin [32] High High High High High

Zhou et al. [33] Low Low Low Low Low

Zhu et al. [34] Moderate Moderate Moderate Moderate Moderate

Benary et al. [35] High High Moderate High High

Huang et al. [36] Low Moderate Low Moderate Moderate

TABLE 2: Risk of bias assessment using the PROBAST tool

Discussion
The systematic review highlights the rapid evolution and diverse applications of generative AI in
personalized medicine. By synthesizing findings across domains such as drug response prediction, medical
imaging synthesis, clinical data imputation, and prognostic modeling, this review underscores the versatility
of generative models in addressing individualized healthcare challenges. Below, we interpret these results
through five thematic lenses, comparing them with broader trends in AI-driven medical research and
emphasizing their contributions to advancing precision medicine. 

Foundations of Generative AI in Precision Medicine

GANs and VAEs dominated the included studies, collectively accounting for 23 out of 27 studies. GANs were
particularly prevalent, reflecting their unparalleled ability to synthesize high-dimensional data, such as
medical images (e.g., gliomas in GP-GAN) [13] and gene expression profiles (e.g., omicsGAN) [19]. VAEs,
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used in seven studies, excelled in probabilistic modeling and dimensionality reduction, enabling tasks like
drug response prediction (Dr. VAE) [10] and cellular state representation (S-VQ-VAE) [12]. 

The dominance of GANs aligns with their historical success in image synthesis, but their adaptation to non-
image data, such as tabular EHRs (CCGAN) [30] or glucose time series (GluGAN) [34], demonstrates their
expanding utility. Comparatively, VAEs’ strength in handling uncertainty and latent space interpretability
makes them ideal for scenarios requiring probabilistic outputs, such as treatment effect estimation (SCGAN)
[33]. These findings mirror broader trends in AI research, where GANs and VAEs are often juxtaposed: GANs
prioritize data fidelity, while VAEs emphasize structured latent representations. 

Existing studies outside this review, such as those by Goodfellow et al. [37] on GANs and Kingma and Welling
[38] on VAEs, established these models as cornerstones of generative AI. However, the included works
extend their applications beyond foundational tasks. For instance, GANs’ role in anonymizing data
(anonymization through data synthesis using GAN (ADS-GAN)) [14] and VAEs’ use in small dataset learning
(small-data cancer network (SCAN)) [32] highlight innovations tailored to healthcare’s unique constraints,
such as privacy concerns and data scarcity. 

Generative AI as a Multimodal Integrator

A striking theme across the studies is the integration of multimodal data to address complex medical
questions. For example, Sui et al. [16] fused radiogenomic data using a conditional variational autoencoder
generative adversarial network (CVAE-GAN) architecture to correlate lung cancer imaging with gene
expression, while Shi et al. [23] employed attention-based GANs to combine genomic, imaging, and clinical
data for cancer prognosis. These approaches reflect a paradigm shift from single-modality analyses to
holistic, patient-specific modeling. 

The emphasis on multimodal integration resonates with broader AI research, where models like
transformers have revolutionized natural language processing (NLP) and vision tasks. However, generative
models offer unique advantages in healthcare: they can impute missing data (MixEHR) [21], synthesize
complementary datasets (e.g., healthy brain images in brain statistical transformation GAN
(BrainStatTrans-GAN)) [27], and simulate counterfactual scenarios (SCGAN) [24]. Such capabilities address
critical gaps in traditional methods, which often struggle with incomplete or siloed data. 

Compared to non-generative multimodal frameworks (e.g., convolutional neural networks (CNNs) for
imaging combined with logistic regression for clinical data), generative models provide a unified
architecture for joint learning. For instance, U-HPNet by Rafael-Palou et al. [20] used a U-Net-based
hierarchical probabilistic network to model lung nodule progression, leveraging both imaging and temporal
data. This contrasts with conventional predictive models that treat modalities separately, often leading to
fragmented insights. 

Generative AI in Low-Resource Settings

A significant subset of studies addressed the challenge of limited data, a pervasive issue in healthcare. VAEs
like MOICVAE [24] and SCAN [32] demonstrated robust performance in predicting drug responses and
cancer prognosis using small datasets, while GANs such as MS-ASGAN [22] generated synthetic gene
expression data to augment schizophrenia research. These approaches mitigate reliance on large-scale
datasets, which are often impractical in niche medical domains. 

This focus on data efficiency contrasts with conventional deep learning, which typically requires millions of
samples. For example, traditional CNNs for tumor detection demand extensive labeled imaging data,
whereas GP-GAN [13] achieved accurate glioma growth predictions using longitudinal MRIs from limited
patients. Similarly, LLMs like ChatGPT [35] provided decision support in precision oncology without
requiring task-specific training data, instead leveraging pretrained knowledge. 

Existing studies in federated learning and transfer learning have also tackled data scarcity, but generative
models offer a distinct advantage: they create new data rather than merely adapting existing models. For
instance, synthetic ECG generation via GANs [18] preserves patient privacy while enabling algorithm
training, a solution unmatched by non-generative methods. 

Tailoring Interventions With Generative AI 

The reviewed studies exemplify how generative AI enables granular personalization. For example, GANITE
[11] estimated individualized treatment effects (ITEs) by simulating counterfactual outcomes, while
attention-based generative adversarial network (AttentionGAN) [28] predicted anatomical changes in
macular degeneration patients based on anti-vascular endothelial growth factor (VEGF) agent specifics.
These models move beyond population-level insights to deliver patient-specific predictions, a cornerstone
of precision medicine. 
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This marks a departure from classical statistical models, such as Cox regression for survival analysis, which
identify average risk factors but fail to account for individual heterogeneity. In contrast, CSAM-GAN [23]
incorporated multimodal data to predict cancer outcomes at the patient level, capturing nuances like
genetic mutations and treatment history. Similarly, drug gene interaction network generator (DRAGONET)
[25] designed de novo drug molecules tailored to individual gene expression profiles, a feat unattainable
with traditional QSAR (quantitative structure-activity relationship) models. 

Comparisons with non-generative personalized approaches, such as reinforcement learning for treatment
optimization, reveal trade-offs. While RL excels in dynamic decision-making, generative models provide a
probabilistic framework for exploring hypothetical scenarios (e.g., “What if Patient X received Drug Y?”).
This is exemplified by the counterfactual explanations in breast cancer prediction of SCGAN [33], offering
clinicians actionable insights into alternative therapeutic paths. 

Expanding the Frontiers of Clinical Decision Support

Though limited to two studies, the inclusion of LLMs like ChatGPT [35] and biomedical language model
(BioMedLM) [36] signals an emerging frontier. These models demonstrated proficiency in interpreting
clinical literature, answering oncology exams, and providing gray-zone case analyses, suggesting their
potential as real-time decision aids. 

The ability of LLMs to parse unstructured text, such as EHR notes or research articles, complements
traditional generative models focused on structured data. For instance, while GANs synthesize images and
VAEs model drug responses, LLMs contextualize findings within the broader medical knowledge base. Huang
et al. [36] illustrated this by benchmarking ChatGPT-4 on radiation oncology exams, achieving performance
comparable to human trainees. This capability aligns with efforts like BioBERT [39] but extends beyond
information retrieval to generative reasoning. 

However, LLMs’ reliance on pretrained knowledge raises questions about hallucination and reproducibility, a
challenge noted in Benary et al. [35]. Unlike GANs/VAEs, which are trained on domain-specific data, LLMs
may generate plausible but unverified recommendations. This contrasts with models like Dr. VAE [10], whose
outputs are grounded in perturbation experiments, highlighting a need for hybrid frameworks that combine
LLMs’ linguistic prowess with generative models’ data-driven rigor. 

Synthesis and Comparative Reflections 

The reviewed studies collectively underscore generative AI’s capacity to address three pillars of personalized
medicine: prediction (e.g., prognosis), prescription (e.g., drug design), and personalization (e.g.,
counterfactual analysis). Compared to non-generative AI, these models excel in scenarios requiring
synthetic data generation, multimodal integration, and individualized output, capabilities critical for
precision medicine’s evolution. 

Notably, the proliferation of GANs and VAEs mirrors their established roles in general AI research but adapts
them to healthcare’s ethical and technical constraints (e.g., privacy-preserving synthetic data). Meanwhile,
the nascent adoption of LLMs opens avenues for democratizing expert-level knowledge, albeit with caveats
around reliability. 

When juxtaposed with existing systematic reviews on AI in healthcare, such as those focusing on diagnostic
imaging or predictive analytics, this review highlights generative models’ unique value in creating rather
than merely analyzing data. For instance, while prior studies celebrated CNNs for tumor detection,
generative models like GP-GAN [13] and GANDA [17] advance the field by simulating disease progression and
therapeutic responses, offering dynamic insights static models cannot provide. 

Conclusions
GANs and VAEs emerged as foundational tools, excelling in tasks ranging from synthetic data generation
(e.g., anonymized ECGs, tumor growth simulations) to probabilistic modeling of drug responses and cellular
states, while their adaptability to multimodal data integration bridged gaps between imaging, genomics,
and clinical records. The ability of these models to address data scarcity, through synthetic data
augmentation, small-dataset learning, and privacy-preserving synthesis, demonstrates their critical role in
overcoming resource limitations in healthcare. Furthermore, the shift toward patient-specific interventions,
exemplified by counterfactual treatment effect estimation and de novo drug design, highlights generative
AI’s unparalleled capacity to tailor insights at the individual level. The nascent integration of LLMs, though
limited in scope, signals a paradigm shift toward AI-driven clinical decision support, blending linguistic
reasoning with data-driven precision. Collectively, these studies illustrate how generative AI redefines
personalized medicine by transforming raw data into actionable, individualized insights, thereby enhancing
prediction, prescription, and patient-centric care. This synthesis not only validates the versatility of existing
models but also sets the stage for a future where generative technologies become indispensable in
addressing medicine’s most complex, individualized challenges.
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