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Abstract
The cancer stem cell vascular niche is a physical and biological unit composed of a
conglomerate of innate cancer stem cells and progenitor cells that are recruited into this
dynamic and highly complex milieu. Collectively they modify the extracellular matrix and form
a permissible microenvironment to facilitate the renewal, proliferation, invasion, and
differentiation of the cancer stem cells, and those of the auxiliary cells. The angioarchitecture
within the tumor is grossly abnormal as these vessels are of varying caliber and arborization.
These abnormal tumor vessels can be generated from endothelial progenitor, hematopoietic,
monocytic and mesenchymal stem cells derived from the bone marrow (BM). Recent studies
have observed that tumor endothelium is also derived from cancer stem cells transforming our
understanding of the intimate relationship between cancer stem cells and vascular niche.
Given these observations, it is conceivable that mutation at the level of vasculature may
translate to an abnormal vascular niche discharging unregulated stem cell signals and thus
propel aberrant cancer stem cells to achieve their lethal malignant potential. In this review we
summarize the cellular and molecular components of stem cell vascular niche with a special
emphasis on brain tumors.
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Introduction And Background
The idea of cancer initiating cells associated within the tumor-angioarchitecture was first
mentioned in the monograph, A classification of tumors  by Bailey and Cushing in 1926 [1]. They
described the unipolar astroblasts whose "tails become attached to the walls of capillaries". The
temporal-causal relationship of vascular development and tumorigenesis was indisputably
demonstrated by Folkman, and refined by Jain and others [2-3]. In late 1990s, Holash, et al.
suggested that dormant tumor cells commonly resided in the proximity of blood vessels, and as
the tumor expands they "co-opt" new vessels toward themselves [4]. The glioblastoma (GBM)
vessels are tortuous, highly permeable and characterized by abnormalities in their cellular
components and basement membrane. These vessels are used as a means to support their
needs and as conduit along which they invade and proliferate. These work underpinned the
functional relevance of tumor vascular niche. Recently Gilberston and others [5] have shown
that brain cancer initiating cells – the cancer stem cells (CSC) are closely located with  pre-
existing vascular trees. Together they re-shape the neo-angioarchitecture and by encompassing
auxiliary cells and their surround basal-matrix, they form the vascular niche complex where
cancer stem cells evolve and propagate. It is the cellular activity within these complexes that
dictate the robustness of tumorigenesis.  It is plausible that within these niches cancer stem
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cells remain in a steady state between proliferation and quiescence prior to further expansion
and invasion, hence the dormant phase of tumorigenesis.

Review
The cancer stem cell hypothesis
There is a striking resemblance between neural stem cell biology and glioma biology. Both can
be identified with similar markers, such as nestin and CD133 [6-7]. In the case of the neural
stem cell, the balance between proliferation and differentiation is highly regulated. While in
glioma, there is marked dys-regulation of the balance between proliferation and
differentiation, resulting in uncontrolled self-renewal and associated tumor growth and
incomplete differentiation (Table 1). Recent studies have suggested tumors initiate from cells
that harbor chromosomal defects that predispose themselves to further genomic mutation.
Accumulated genomic defects eventually reach a threshold where they decouple from
physiological cell-cycle regulatory checkpoints and undergo unchecked proliferation [8-9].
Within those cluster of mutated cells lies a subpopulation of tumorigenic cells that shares a
number of characteristic similar to stem cells, characters such as the ability to self-renewal,
proliferate, invade, and differentiate. This population of "stem-like" cells within the tumor may
serve as the reservoir for future cancer-initiating cells. Furthermore, the open chromosomal
structure observed in these cells exposes them to the risk of accumulating deleterious
mutations over the lifetime of the organism. This accumulation of aberrant genetic changes has
been suggested to be the principle cause of cancer formation [10]. This hypothesis suggests that
expansion of transformed stem-like cells (cancer stem cells) replenishes the tumorigenic
cancer cells that perpetuate the growth of the tumor. Singh, et al. have provided experimental
evidence in the role of this sub-population of cells in the initiation of GBM, the most
devastating of the brain tumors [11]. Subsequent studies have suggested that this cancer stem
cell population may undergo aberrant differentiation in addition to genetic instability and
epigenetic change, resulting in cellular heterogeneity that is commonly observed within the
tumor mass [12-13].
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 Neural Stem Cells Vascular Niche Cancer Stem Cell Vascular Niche

Anatomical
location

Restricted to dentate gyrus and Subventricular
Zone Any region occupying tumor

Epoch Presents normally during development and adult
neurogenic niches Present only in pathological state of glioma.

Cellular
contribution

Minor contribution of vascular endothelium from
neural stem cells. Primarily from progenitors of
endothalial and its associated axuillary cells 

Possible contribution of vascular endothelium
from cancer stem cells, in addition to progenitors
of endothalial and its associated axuillary cells

Genetical
stability Genetic abnormality is absent Significant genetic and epigenetic mutation

Vessel
architecture

Normal vessels with normal tissue oxygen
delivery.

Vessels are highly tortuous and present with
tissue hypoxia

Migration No abnormal migration Prolific migration and infiltrates normal tissue.

TABLE 1: Difference in vascular niche between normal neural stem cells and cancer
stem cells

If cancer is viewed as developmental cues gone awry, then it is not surprising that cancer and
stem cells share many molecular mechanisms mediating important cellular processes such as
self-renewal, differentiation, and possible "fate determined" migration [14]. Furthermore,
tumors exhibit a cellular hierarchy similar to that found during normal development [10]. This
hierarchy allows tumors to recruit new blood vessels and coax other cell types to the tumor
milieu. This system functions independently of the normal physiologically regulated systems
(Figure 1).
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FIGURE 1: Schematic representation of proposed model for
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stages of gliomagenesis
Dormant stage Cancer stem cells destined to become glioma are present adjacent to blood
vessels. The endothelial cells are quiescent at this stage and the tumor milieu contains low
levels of monocytic cells. With increased proliferation of cancer stem cells there is an increased
infiltration of monocytes. This is also associated with activation of endothelial cells. With the
accompanying breakdown of ECM, the endothelial cells form nascent endothelial cord. The
generation of reactive oxygen and nitrogen species aids this process

The cellular constituency of the cancer stem cell-vascular
niche complex
Calabrese and colleagues have reported that there is a population of Nestin +/CD133+ in brain
tumor, which is located in areas of increased micro-vessel density [15]. These vessel-associated

cancer stem cells were in direct contact with the capillary networks, whereas CD133- cancer

cells were diffusely distributed with no apparent vascular localization [16]. Moreover, CD133+

tumor cells were shown to home towards endothelial vascular tubes and initiate contact along
the entire length of exposed vasculature. The location and microenvironment dependence of

these initiating glioma stem cells have also been confirmed in other tumors [17]. In addition to

these CD133+ cells within the tumor, there exists endothelial progenitors and bone marrow
(BM) derived cells. A number of animal models have suggested the contribution of endothelial
progenitor and BM-derived cells in tumor neo-vascularization [18-19]. This supports the notion
that vasculogenesis is an important epoch in tumor growth.

The role of endothelial progenitor cells in the formation of the
vascular niche
It is widely believed that circulating endothelial progenitor cells and bone marrow-derived
progenitors home into the site of robust neo-vascularization. This is despite the fact that
purified populations of EPC has been challenging to isolate and culture as homogenous
populations. Though prominent markers such as CD133 and KDR are expressed by endothelial
progenitor cells, these markers are non-specific and label several cells types outside of the
classified EPC subtype. Once arriving at the tissue site, under the influence of local VEGF and
PDGF, these circulating progenitor cells dock onto the "co-opting" blood vessels, vessels that
have partially or completely dissociated basal matrix mediated by E and P selectins [20-21]. The
ensuing extravasation forms the initial step in the sprouting of new vessels within the tumor
and in their periphery [22]. The evidence for the contribution of BM-derived endothelial
progenitor cells (EPCs) in tumor angiogenesis is relatively well-established [23-24]. However,
the ontogenesis of these EPCs is still debatable. Most endothelial progenitor cells do not
differentiate into mature endothelial cells but may rather affect vasculogenesis by releasing of
proangiogenic cytokines. It is plausible that BM derived EPCs are derived from putative
hemangioblasts which are the precursors of both hematopoietic and endothelial cell lineages.
These hemangioblasts express phenotypic markers of hematopoietic stem cells (HSCs) [25] as
well as differentiated endothelial cells [26-27] and are thus antigenically difficult to distinguish
from EPCs since both express CD133, a stem cell's marker. Moreover, both cell types may have
resided in the same location within the adult bone marrow. Once in peripheral blood, they home
to sites of tissue ischemia, trauma, or tumor growth, where they differentiate into endothelial
cells to support vascular remodeling [28-30]. Studies in various solid tumors have revealed that
EPCs differentiate into mature ECs, and these ECs are incorporated into the lumen of emerging
neovasculature [31].

The role of BM-derived cells in the vascular niche formation
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BM-derived mesenchymal stem cells  (MSCs) also play an important role in post-natal
vasculogenesis, notably during tissue ischemia and tumor vascularization. Their primary
function is related to the formation of the perivascular cells and the associated matrix. These
putative perivascular progenitor cells are recruited by PDGF-stimulated VEGF expression in
tumor endothelial cells to support and stabilize the nascent vessels [32]. Although these
pericytic cells are loosely associated with tumor blood vessels and reduced in number when
compared with normal tissue vasculature [33], they appear to be important cell constituents in
tumor angiogenesis [34].  These pericytic cells contribute to the early phase of angiogenic
sprouting, tube formation, and survival of the vascular niche within tumors [35]. They are cells
that guide the endothelial cell cord at the advancing edge of neovascular formation, and later
on they secure the integrity of the nascent vessels. Systemically administered MSCs target sites
of growing tumors [36]. Congruent with the hypoxic conditions within gliomas, an associated
rise in HIF-1a expression leads to recruitment of BM-derived MSC to promote
neovascularization in GBM via interplay between MMP9 and VEGF [20]. Although MSCs do not
express VEGF receptors, Ball, et al. recently identified that VEGF-A can stimulate PDGF
receptors, which in turn regulates MSC migration and proliferation [37]. Recent evidences
suggest that MSCs may even be the progenitor cells from which fibroblasts within the tumor
stroma are derived [38].

Monocytes and fibroblastic cells in the formation of CSC-vascular niche complex

There is a temporal window just prior to the expansion of the tumor mass which enables the

incorporation of BM-derived progenitor cells into the tumor vessel-wall [39,40]. Within this
window of time, the recruited cells generate a conducive microvascular environment. At that
juncture, the pre-existing vessel wall within this defined space serves as an independent niche
for the recruitment and insertion of EPCs, MSCs and other monocytic progenitors cells. The
recruitment of these progenitor cells by CSCs helps in the establishment of a nascent vascular

niche for tumorigenesis. CD11+ circulating monocytes recruited into the vascular niche acquire
an endothelial-like phenotype and are incorporated both into the lumen and perivascular
space. These monocytic cells provide "reconstitute and instructive" signals for tumor
establishment [41,42].

An emerging hypothesis states that CSCs drive tumorigenesis by directly inducing an
inflammatory phenotype within the cancer stem cell-vascular niche complex, thus catapulting
a conductive to an inductive environment [43]. This occurs by recruiting immunocytes and
promoting stromal remodeling as seen in aberrant stem cell–vascular niche that contributes to

myeloproliferative diseases [44]. The migration of hematopoetic pro-angiogenic cells, most
notably macrophages and mast cells, aids in the production of pro-angiogenic factors,
proteases, and growth factors responsible for the creation of a microenvironment that
stimulates epithelial-cell migration, survival, and proliferation. Of particular importance are
monocytic cells such as macrophages, a key component in the cellular constituent of
inflammation. In inflammatory tissues, macrophages are predominantly of the M1 phenotype.
These cells produce high levels of reactive oxidation species (ROS) and inflammatory cytokines,
resulting in potent antimicrobial, immuno-stimulatory and tumor cytotoxic functions. In
response to tumor-derived cytokines these macrophages acquire the M2 phenotype [45]. They
are a potent source of the mediators that perpetuate the inflammatory process, and they release
reactive oxygen and nitrogen species. ROS have also been shown to modify the activity of
myeloid-derived suppressor cells (MDSCs). MDSCs are directly involved in tumor angiogenesis;
they stimulate angiogenesis and ECM breakdown through the production of angiogenic growth
factors and MMPs. Secretion of MMPs and other proteinases by macrophages in the vascular
niche enhance cancer-cell motility, dispersion and invasion. The reactive oxygen and nitrogen
molecules can directly damage DNA and modify the proteins that are involved in DNA repair.
Moreover, MDSCs inhibit anti-tumor immunity. In combination with nitric oxide, MDSC-

2011 Tse et al. Cureus 3(9): e37. DOI 10.7759/cureus.37 6 of 16



derived ROS contribute to the generation of peroxynitrite [46]. The latter causes the nitration
of various tyrosines on proteins, including the T-cell receptor CD8. This modification alters

antigen recognition and thereby induces T-cell tolerance [47].

In addition to monocytic cells there is influx of fibroblasts, and some of the monocytic cells
may undergo epigenetic transformation with fibroblastic/myofibroblastic morphology [48,49].
These cells produce chemokine such as stromal-cell-derived factor1 (SDF1), a mitogen in its
own right. Myofibroblast-derived SDF1 promotes the proliferation of mammary carcinoma cells
that express its high-affinity receptor CXCR4, and likely contributes to cancer growth through
the regulation of angiogenesis by attracting endothelial progenitor cells [50].  Being highly
mobile, fibroblasts form the advancing edge of the tumor with the nascent vascular cord in tow.
The cancer cells will adhere along these conduits to spread to the surrounding normal tissue
ignoring tissue boundary and autonomy that have partly destroyed or interrupted during matrix
modification [51].

Cancer stem cells derived endothelium

Recently it has become evident that glioma stem cells have cell lineage potential beyond what

was conventionally assigned to them. CD133+ glioma stem cells that carry chromosomal
abnormalities also generate genetically aberrant endothelial cells that profoundly contribute to
the vascular architecture of the glioma [52,53]. Such tumor derived endothelial cells produce
VEGF and have the potential to generate highly vascularized anaplastic tumors. When the
GBM-derived endothelium was genetically targeted and killed, the entire tumor became
necrotic suggesting the vital role the new born endothelium play in the survival of tumor.
These studies also highlighted the crucial role of Notch in the transition of tumor stem cells
into tumor endothelial cells. It is noteworthy that Notch has been shown to play an important
role in modulating cancer stem cell renewal and proliferation. Mutation in Notch leads to

uncontrolled proliferation and renewal of cancer stem cells [54].

Molecular regulators of CSC-Vascular Niche Complexes
Hypoxia and its associated signal transduction pathways: Most cells have to be within 100-200 µm
from its blood supply to receive adequate nutrition.  Beyond this distance there is a precipitous
drop in O2 diffusion efficiency. Tumors are known to utilize glycolysis to generate lactate from

glucose even in the presence of abundant oxygen, a phenomenon known as Warburg effect [55].
This potentially serves two purposes, first it enables the tumor cells to generate intermediates
for cells growth and division [56]; second by relying less on mitochondria for ATP generation,
and there is high mitochondrial membrane potential conferring apoptosis resistance [57].
These inhibited mitochondria in tumor cells transmit pseudo hypoxic redox signals and
activate HIF-1a even during normoxia [58]. They are coordinately regulated by oncogenes such
as PI3K-Akt and Myc [59]. The excess lactate generate by this aerobic glycolysis also promotes
angiogenesis and matrix breakdown, events that facilitate metastasis [60]. Glycolysis also leads
to decreased production of a-ketoglutarate, a direct product of Krebs cycle, which may also
promote HIF-1a activation because it is a cofactor for the prolyl hydroxylation reaction that
degrades HIF-1a [58]. In a study by Michelakis et al, administration of dichloroacetate, a drug
that forces pyruvate to enter Krebs cycle significantly inhibited glioma and is in clinical

trial [61]. Both in vivo and in vitro, Dichloroacetate inhibited HIF-1a as well as suppressed
angiogenesis.

Tumor blood flow not only varies spatially and temporally during tumor growth but it also
changes according to the state of its angioarchitecture [62].  It is particularly true for vessels
that are within the inner mass of the tumor, where the vessels are chaotic and sinusoidal in
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appearance and the blood flow is non-laminar and may even be stagnant in some part of its
course [63]. Hypoxia induced expression of HIF-1a leads to increase expansion [64] and

tumorigenic potential [65] of CD133+ glioma stem cells which could lead to increased tumor
derived neo-angiogenesis [52,53]. The expression of HIF-1a and VEGF are relatively robust in
the region of relative hypoxia and in the presence of Angiopoietin -2, they signal endothelial
proliferation, basal laminar fragmentation, and facilitate sprouting [65,66]. Angiopoietin-1
recruits perivascular/mural cells, which stabilizes nascent vessels and maintains their integrity;
however, the expression of Angiopoietin-1 changes during the course of tumor expansion. The
exact etiology of the preferential spatial/ temporal expression of these factors remains unclear.
This altering expression could potentially be the cause of involution and dysmorphic
transformation of the neovascular tree. The hostile microenvironment with low pH, low partial
O2 pressure and necrotic tissue sustains tumor progression and potentially drug resistance. It is

particular true in the "older" central core of the tumor [4,67], a region routinely associated with
tumor necrosis.  It is plausible that the confounding effects of low oxygen tension combined
with dysmorphic vascular tree favors cancer stem cells differentiation as opposed to cancer
stem cell renewal.

Cancer stem cells cultured in the presence of vascular endothelial cells showed a five-fold
increase in growth as well as maintenance of aggregated tumor spheres and self-renewal
capacity [15]. These features were absent in those cells cultured without endothelial cells or
their associated signaling factors. In vivo, cells that are associated with the cancer stem cell
niche, influence the fate of all neighboring cell types including naïve neuronal cells. The multi-
directional regulatory process within this angio-architecture is orchestrated by stem cell
related trophic and angiogenic factors such as members of the Wnt, Sonic Hedgehog (SHH) and
TGF-β family, and also the intercellular physical contact. These contacts interact with
anchoring molecules within the ECM such as VCAM-1/VLA-4, fibronectin, heparans, and other
integrin [68-71]. ECM receptors such as integrin-a6 expressed on GBM cancer stem cells
promote their maintenance [72]. When these integrins on cancer stem cells are targeted, there
is a decrease in self-renewal, proliferation and tumor forming capacity. Indeed cilengitide, an
inhibitor of integrins avb3 and avb5 (which are in clinical trials) have shown good response in

preclinical trials [73]. Additionally, some of the factors and proteins sequestered within the
cellular matrix are liberated by the proteinases and trigger intracellular changes via their
surface signal transduction pathways. Glioma perivascular niche may thus offer a therapeutic
target, especially VEGF secreted by endothelial cells as well as integrins expressed by glioma
stem cells.

Growth factors and signaling pathways that affecting vascular proliferation and arborization of the
vascular tree:  Cancer stem cells secrete a multitude of chemokines and growth factors that
induce changes in local tumor stroma including the recruitment and proliferation of BM-
derived cells to support new vessel development. Notably, VEGF is the most studied factor and
is responsible for the coordination of new vessel formation and vascular maintenance. It plays
an autocrine and paracrine role within this niche. Additionally, cancer cells may also secrete
placental growth factor (PlGF), which promotes adult vasculogenesis by enhancing EPC
recruitment and vessel formation at the site of tumor neovascularization [74].

Another characteristic of cancer stem cells is their ability to migrate and infiltrate the
surrounding normal tissue.  Cancer stem cells acquire mobility by undergo Epithelial-
mesenchymal transition (EMT). EMT is usually restricted to embryonic development and tissue
repair. The activation of this process is crucial for invasive growth and metastasis. Induction of
EMT in cancer cells is achieved by a combination of stromal factors, such as HGF, TGFβ, tumor
necrosis factor-α and MMPs, and by activating mutations in the RAS proto-oncogene [75-77].
The expression of VEGFA and MMPs, are regulated by hypoxia and pro-inflammatory cytokines.
MMPs via their protease activity are required for the degradation of the cellular matrix, a
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prerequisite for vessel sprouting.

The other set of signaling pathways important in this process include signaling proteins
activated via TGF and EGF receptors. Signal transducer and activator of transcription3 (STAT3)
promotes both wound repair and carcinogenesis [78].  Mice that express a constitutively active
form of STAT3 in the epidermis develop skin cancer with a shorter latency; the number and
malignancy of the tumors were also increased. STAT3 suppresses re-epithelization thus
creating a persistent inflammatory state that resembles a chronic wound and a permissible
milieu for tumorigenesis [79]. Re-epithelialization terminates neo-angiogenesis, prunes and
normalizes the neoangiomatous arcades within the granulating tissue, resulting in decreased
influx of cells and reestablishing a quiescent state. In the case of tumorigenesis it closes the
temporal window for cancer stem cells proliferation and initiates tumor involution.

It has been known that STAT-3 is essential for the maintenance of an undifferentiated
embryonic stem cells pool and the pluripotency of its constituent cells [80]. The importance of
STAT-3 has also been addressed in glioblastoma stem cells (GBM-SC).  Small molecule
inhibitors (STA-21 and S31-201) or short hairpin RNA reduce GBM-SC proliferation and
neurosphere formation [81]. It is noteworthy that PTEN negatively regulates STAT-3 and mTOR
resulting in stem cells/cancer stem cells quiescence, and PTEN is mutated or deleted in 44%
and 60% of GBM patients respectively [82,83]. Hence dysregulation of STAT-3 may be an
important event in activation of cancer stem cells.

In the past, Osetopontin has been seen as an important player in the regulation of stem cell
renewal particularly at the stem cell niche, it is a negative regulator in the stem cells niche
where it helps to limit the size of the stem cell pool [84]. However, the expression of this
extracellular matrix associate protein has been linked to tumor progression and metastasis of
breast and other solid tumor including GBM. The casual relation of this process relies on the
activity of avß3 integrin mediated Janus Kinase 2 (JAK-2) phosphorylation [85]. Paradoxically,

Osetopontin deregulates stem cells/cancer stem cell quiescence by increased phosphorylation
of STAT-3 in an environment where excess avß3 is available. This frees the cancer stem cells

from the regulatory restrain imposed by terminal differentiation. This equilibrium with the
vascular niche determines the direction of tumor progression or tumor involvement or
quiescence.

The function of cancer stem cell vascular niche complexes
and future direction
The cancer stem cells theory of tumorigenesis is intertwined with the theory of dormancy of
cancer. Recent study has postulated that cancer cells are under constant scrutiny by the

immune system [86]. For cancer stem cells, quiescence might be a protective response to a
microenvironment that is hostile to its survival and lacks tumorigenic recruitment signals. It
has been shown that immuno-editing can promote epithelial-mesenchymal transition and

favor cancer stem cells [87]. The decisive force that propels cancer stem cells to achieve a higher
degree of autonomy within the niche remains unclear. It is unlikely to be an isolated stochastic
event, rather an integration of multiple random events that are closely linked chronologically
which ignites the angiogenic switch and the maturation of the vascular elements. The influx of
foreign cells such as circulating monocytic cells and vascular progenitors along with the factors
expressed by these cells may have fueled epigenetic changes in the naive cells and altered the
cellular matrix (Figure 2). The possibility of aberrant signaling events induced by an altered
micro-environment, leading to reversible epigenetic changes in each cell type, underscores the

heterogeneity within the developing tumor [88]. This allows abrupt changes in the phenotypic
expression of the cancer cells, overwhelming the immuno-surveillance and immuno-
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suppression. It also confers mobility of the cells to prepare for invasion and distant metastasis.
Since these epigenetic changes are reversible they may not be easily recognizable in the final
tumor. Other factors that may play a pivotal role in this process are loss of contact inhibition,
the rise in hypoxic gradient, and increase in interstitial tension within the niche. All of these
processes are intimately linked to further epigenetic alternation and play an important role in
malignant transformation resulting in quasi-malignant phenotypes.

FIGURE 2: Glioma stem cells and vascular niche milieu
Tumor core are in hypoxic states that causes the increase of HIF1α. This increase in
transcription factor HIF1a leads to increased VEGF expression with a consequent increase in
endothelial cells and neoangiogenesis. This is aided by the dissociation of the basal lamina via
overexpression of MMP and heparanase. This breakdown causes endothelial cells to generate
nascent vascular cords that differentiate to functional vasculature. The increased in M2
macrophage leads to increased reactive oxygen and nitrogen species perpetuating the
inflammatory process. The migration and differentiation of cancer stem cells to cancer cells is
aided by the action of SDF1 released by the fibroblasts that are associated with the tumor.

It is clear that brain tumors especially gliomas are highly dependent on angiogenesis for their
growth. This provides an overwhelming rationale for anti-angiogenic approaches for treating
these deadly tumors. Recent studies have suggested that anti-angiogenic therapy may indeed
be necessary to "normalize" the glioma vasculature for antitumor agents to reach an effective
concentration. Most of these agents target the VEGF or PDGF ligand/receptor interaction that
target both cancer cells and endothelial cells. Increased doses of anti-angiogenic agents
currently in trial could produce complete tumor regression, but such doses are accompanied
with immense side effects. Several agents targeting angiogenesis have been approved for use in
non-CNS tumor. Multiple drugs are in various stages of trials in glioma and other CNS tumors
(Table 2).
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Agent Phase Target

2ME2 Phase II Inhibits HIF-1a

Cediranib Phase II VEGFR and PDGFR inhibitor

Pazopanib Phase II VEGFR and PDGFR inhibitor

PTC299 Phase II Inhibits VEGF at the post-transcriptionally

Sorafenib Phase I/II VEGFR, PDGFR and BRAF inhibitor

Sunitinib Phase II VEGFR and PDGFR inhibitor

Tandutinib Phase II Inhibits PDGFR

Vandetanib Phase I/II Inhibits VEGFR and EGFR

Vatalanib Phase I/II VEGFR and PDGFR inhibitor

ABT510 Phase II Inhibits CD36 receptor

Aflibercept Phase I/II Decoy receptor for VEGF

ATN161 Phase II Peptide inhibits integrin a5ß1

Bevacizumab Phase II/III Monoclonal antibody binds to VEGF

Cilengitide Phase II/III RGD synthetic peptide inhibits integrin avß3 and avß5

CT322 Phase I Fibronectin based VEGFR inhibitor

Interferon Alfa 2b Phase II Inhibits angiogenesis

TM601 Phase I Peptide binds to Annexin A2

TABLE 2: Antiangiogenic agents currently at various stages of clinical trial for glioma
(peptide/proteins are marked in shaded boxes)

Conclusions
A vascular niche complex is a permissible environment in which the cellular and humoral
elements that support repair and remodeling of healthy tissue have gone disarray. As in wound
healing and tissue repair, the side population of tissue stem cells and its associated cells are
activated; aided by the influxes of vascular progenitors and inflammatory cells, they rebuild
and remodel the injury site and restore normal tissue architecture. In tumorigenesis, the
activation and the formation of the cancer stem cells-vascular niche complex is the corollary of
having a chance event in which a stem cell with deleterious mutation takes root in an
epigenetically corrupted niche. The formation of this permissible milieu is the pre-requisition
for cancer stem cells to achieve their malignant potential.

Tumor angiogenesis has long been the target in therapeutic designs; numerous strategies have
been formulated to disrupt its formation. With the concept of Cancer stem cell vascular niche
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complex, it may be more beneficial in finding way to "normalize" this milieu by putting more
emphasis on the supportive cells and the matrix.
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