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Abstract

Minimally invasive spinal interventions have a steep learning curve from a technical perspective, as they are
associated with performing precise maneuvers where the surgeon may or may not have direct or full
visualization of the patient’s anatomy. Augmented reality (AR), where models of the patient’s anatomy can
be overlaid within the surgical field, has offered promise to improve the operative experience. We present a
qualitative review of recent advances in applications of AR technology in minimally invasive spinal
procedures in both clinical and educational settings. We explore current evidence of experiences with this
technology and highlight key areas for future development. Through this review, we aim to provide a deeper
understanding of the current state of AR in transforming both the clinical and educational realms of
minimally invasive spinal surgery.
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Introduction And Background

Technological advances in spinal surgery have mitigated many postoperative concerns associated with
traditional open surgical approaches. Using small incisions to access the spine, minimally invasive surgical
spine (MISS) techniques are able to reduce soft tissue injuries, decrease postoperative pain, and limit blood
loss [1]. When considering common MISS procedures such as lumbar puncture, spinal biopsy, vertebroplasty,
kyphoplasty, and radiofrequency ablation, patients value having expanded therapeutic options that offer
faster recovery and improved cosmesis [2,5].

While it is beneficial that these techniques are less invasive, they can present significant technical
challenges [4]. MISS relies on precision using specialized instruments and advanced tools involving robotics
and lasers. With this steep technical learning curve, limited visualization, and complex anatomical
structures, the mastery of these techniques can be difficult for even the most experienced clinicians.
Augmented reality (AR) technology can help surgeons with the precision and accuracy required in these
MISS interventions by overlaying virtual elements in the real-world environment. With its ability to provide
enhanced visualization and spatial guidance, AR can be applied beyond procedural settings as an
educational tool as well.

This review will describe the currently available AR products for minimally invasive spinal interventions,
applications of AR in these settings, and areas for future directions.

Review
Overview of AR systems

AR is a software system that projects 3D holographic images of anatomical structures directly onto the
surgical field. Surgeons are able to visualize the images of structures, such as pedicles and discs, through
specialized headsets or glasses without having to take their eyes off of the patient. In addition to proprietary
headsets, commercial headsets have been used to display surgical AR visualizations. The wireless Microsoft
HoloLens® (Microsoft Corporation, Redmond, WA, USA) display headset is a mixed-reality system that is
voice controlled, incorporates hand tracking, and allows for adjustments to interpupillary distance [5]. The
Apple Vision Pro™ (Apple Inc., Cupertino, CA, USA) and Meta Quest® (Meta Platforms, Inc., Menlo Park, CA,
USA) display headsets are other mixed reality systems with similar features. Yet, the limited battery life and
bulkier frames can pose challenges in the preoperative planning workflow and intraoperative use [6].

Several AR systems are currently being used or explored for MISS, as summarized in Table 1. Various AR
systems are commonly applied for pedicle screw placement [7]. However, these systems differ in design, cost,

and functionality. The first AR system approved for preoperative planning for MISS was OpenSight®
(Novarad, Provo, UT, USA). XVision® (Novarad) has a surgical tracking system and display that projects all
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Name
OpenSight®
XVision®

VisAR®
ImmersiveAR™

SurgicaIAR®

the graphical details onto the surgeon’s retina but requires intraoperative imaging CT scans for the overlay
[6]. The use of registration markers in the system to align the virtual anatomy elements with the real-time
environment can also become a limitation when markers may not work as effectively in rigid or irregular
anatomical locations. ImmersiveAR™ (ImmersiveTouch Inc., Chicago, IL, USA) technology has been

incorporated into intraoperative and educational settings [5]. VisAR® (Novarad), an AR visor, is precise and
uses low-cost hardware but also relies on preoperative scans being available. However, pending FDA

approval, SurgicalAR® (Medivis, New York, NY, USA) incorporates artificial intelligence-driven landmark
registration to mitigate issues with inaccurate models with features to aid preoperative and intraoperative

needs.

Company

Novarad (Provo, UT,
USA)

Augmedics Inc.
(Arlington Heights, IL,
USA)

Novarad (Provo, UT,
USA)

ImmersiveTouch Inc.
(Chicago, IL, USA)

Medivis (New York,
NY, USA)

FDA
approval
status

501(k)

clearance

501(k)
clearance

501(k)
clearance
501(k)

clearance

Pending

Year of
approval

2018

2021

2022

2024

Procedural applications

Preoperative planning, spinal injection, percutaneous vertebroplasty,
kyphoplasty, pedicle screw navigation, and spinal rod implant

Pedicle screw placement and osteotomy

Intraoperative pedicle screw implementation and neurosurgical
navigation

Pedicle screw implementation

Pedicle screw and interbody placement

TABLE 1: Currently available AR systems for minimally invasive spine surgery

AR, augmented reality

Clinical applications of AR in MISS

The integration of AR in MISS shows great promise in optimizing clinical treatment outcomes and
procedural accuracy. Like virtual reality, AR projects overlays to differentiate anatomical landmarks and
expand the surgeon’s field of view [8]. These models can help assess potential risks and provide real-time
augmented feedback to influence surgical recommendations, particularly for challenging cases. For
example, Bardeesi et al. (2024) report using Smartbrush (Brainlab AG, Munchen, Germany) to create a
preoperative 3D model for a patient with spondylolisthesis [9]. The program was used to calculate
measurements for Kambin’s triangle (i.e., an area defined by the superior articulating facet, exiting superior
nerve root, and superior endplate of the inferior vertebral body) and transfacet corridors (i.e., the area
between the superior articulating process and inferior articulating process), lending insight into the largest
possible cannula size and the decision to proceed with a right-sided transfacet minimally invasive
transforaminal lumbar interbody fusion. Similarly, CT imaging can be loaded onto robotic software such as
Microsoft HoloLens to determine screw size, entry points, and trajectories for pedicle screw instrumentation
[10]. Other popular AR devices approved for preoperative use and simulation have been shown to reduce
errors in the training and simulation environments, but head-mounted displays are still of limited use in
intraoperative settings [5,11].

AR guidance in real-time MISS is proven to be effective in improving accuracy, precision, efficiency, and
safety. Integrating AR allows for greater navigation and spatial awareness, leading to fewer errors in
procedures like pedicle screw placement. A systematic review noted that of 13 articles investigating screw
placement accuracy, all but one had accuracy rates of at least 94% when graded with the Gertzbein and
Robbins scale, a scale used to classify the accuracy of pedicle screw placement [8]. Notably, the first AR-
assisted spinal surgery was a spinal fusion procedure conducted in 2020 with the XVision system [12]. Six
pedicle screws were inserted with a clinical accuracy of 100%. Precision analysis revealed linear and angular
deviations comparable to prior cadaver data. Furthermore, AR has been shown to reduce operation times,
prompting superior recovery outcomes and fewer complications in patients [13]. Hu et al. (2020) compared a
group of percutaneous vertebroplasty cases assisted with AR to traditional fluoroscopy cases, and they found
a shorter procedural duration as well as more entry points [14]. Likewise, significantly shorter times have
been observed in rod bending procedures using the HoloLens system [15].

AR in MISS can also reduce attention shift during operations since visualizations appear in the surgeon’s
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direct line of sight [13]. A study measuring attention shifts in different AR systems and traditional
navigational tools revealed significantly fewer shifts with AR, regardless of the type of setup [16]. AR has
been applied to a variety of MISS techniques, including in radiofrequency ablation for difficult-to-treat
osteolytic lesions, puncture positioning procedures, screw placement in minimally invasive transforaminal
lumbar interbody fusion, and more [17-19]. These new methods have mitigated high levels of occupational
radiation exposure by replacing traditional fluoroscopy techniques [8].

Overall, current evidence suggests AR can achieve similar or greater results on performance measures
compared to conventional systems. However, additional long-term data and large-scale clinical trials must
be performed to validate the early success of AR in MISS.

Educational applications of AR in MISS

AR has demonstrated considerable potential, not only in enhancing surgical techniques and improving
outcomes, particularly in MISS, but also as an effective teaching tool. Recent evidence underscores the value
of AR platforms in significantly advancing surgical training and performance. For example, Gasco et al.
(2014) found that using AR as a teaching aid in pedicle screw placement resulted in a 50% reduction in errors
compared to traditional visual and verbal training methods [20]. In line with these findings, another study
highlights the role of AR in improving the safety of pedicle screw placement despite lacking surgical
experience. In this study, 10 candidates without surgical experience applied 36 pedicle screws using the C2-
C3 posterior transpedicular fixation technique on 3D-printed vertebra models. The results revealed that
77.8% (14/18) of screws in the AR group were safely inserted, compared to 33.3% (6/18) in the freehand
group (p =0.018) [21]. Yu et al. (2019) found that a combination of virtual and AR aids in educating trainees
for percutaneous transforaminal endoscopic discectomy [22]. This technology significantly reduces puncture
and fluoroscopy times during training while also improving training effectiveness for young surgeons [22].

In addition to enhancing performance, safety, and efficacy in training, AR may affect the perceived difficulty
of MISS. In Schmidt et al.’s (2024) study, 12 neurosurgical residents compared their experiences in
simulation training performing minimally invasive transforaminal lumbar interbody fusion on a lumbar
spine model with and without AR in the microscope [23]. The residents reported that their ability to
maintain anatomical orientation and manage workload was better with AR, including significantly lower
mental demand (p = 0.003) and perceived procedural difficulty (p = 0.019) [23].

AR additionally offers significant advantages for surgical training logistics, such as cost reduction by
replacing expensive, nonreusable resources like cadavers and 3D-printed models in surgical training [8].
Thus, AR technology can expedite the learning process, allowing healthcare systems to train more surgeons
in complex techniques efficiently. By shortening the learning curve, AR can enhance the proficiency of
novice physicians, making training more accessible and cost-effective [5]. While still in its early stages in
spinal surgery, AR shows great promise in improving surgical education and intraoperative performance.

Challenges and limitations

Barriers to the widespread adoption of AR in MISS include a combination of technological, logistical, and
user-related challenges. Mechanical and visual discomfort associated with AR devices, such as head-
mounted displays, may cause sensory overload due to mixing visual input with holographic data, resulting in
fatigue during prolonged procedures [24]. Furthermore, adapting to AR-assisted workflows requires
familiarity with the technology and integrating it seamlessly into traditional surgical techniques. This
challenge is heightened for surgeons not accustomed to AR interfaces.

Financial barriers further hinder AR adoption, as some systems rely on intraoperative cone beam CT
imaging, which is expensive and inaccessible in resource-limited settings [25]. Moreover, the lack of
standardized protocols for assessing clinical outcomes in AR-guided procedures remains a limitation. For
instance, there is no universally accepted protocol to grade pedicle screw placement accuracy or safety [24].
Additionally, the accuracy of AR project overlays in the surgical field needs to continue to be evaluated in a
variety of challenging clinical scenarios, such as irregular or complex anatomy, as inaccurate projections
may potentially hinder its implementation in clinical workflows.

Despite these hurdles, advancements in real-time visual recognition and processing have improved AR
systems, enabling automated segmentation of anatomical structures, real-time holographic overlays of
patient anatomy, and precise tracking of surgical tools within the operative field. These innovations reduce
attention shifts, line-of-sight interruptions, and reliance on ionizing radiation, making AR a promising tool
for enhancing surgical accuracy and efficiency [25,26].

Future directions

Ongoing studies are exploring the use of AR and other navigation technologies in MISS. The Surgical
Navigation or Free Hand Technique in Spine Surgery trial is evaluating the accuracy and safety of pedicle
screw placement using AR surgical navigation compared to traditional freehand surgical techniques in
patients with spinal deformities (NCT05107310) [27]. Accurate screw placement is critical in these cases to
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prevent vascular, neural, or pulmonary complications while ensuring optimal fixation for deformity
correction. By incorporating AR, the study aims to reduce the need for revision surgeries.

Another study, the NeuroSuitUp project, focuses on neurorehabilitation in patients with cervical spinal cord
injuries using brain-computer interfaces, robotic systems, and AR to promote dormant neuroplasticity
(NCT05465486) [28]. Although primarily a rehabilitation study, its use of AR and man-machine interfaces
has implications for MISS by advancing precision and understanding of CNS plasticity.

Additionally, researchers at Strasbourg University are developing an AR-based lumbar puncture simulator,
which uses haptic feedback to replicate the sensation of puncturing the ligamentum flavum (NCT05269238)
[29]. This innovation enhances procedural training by allowing clinicians to practice in a realistic yet
controlled environment. These studies demonstrate the potential for AR to improve outcomes and address
challenges associated with minimally invasive spinal procedures.

Conclusions

AR guidance in MISS holds promise with advancements in real-time processing and the adoption of
technology. By addressing current challenges, AR has the potential to revolutionize surgical precision and
efficiency. Ongoing research and innovation on navigation systems, neurorehabilitation, and training
simulators underscore the versatility of AR in spinal procedures. As these technologies mature, they are
likely to become indispensable tools in the field.
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