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Abstract

Artificial intelligence (AI) models, like Chat Generative Pre-Trained Transformer (OpenAl, San Francisco,
CA), have recently gained significant popularity due to their ability to make autonomous decisions and
engage in complex interactions. To fully harness the potential of these learning machines, users must
understand their strengths and limitations. As AI tools become increasingly prevalent in our daily lives, it is
essential to explore how this technology has been used so far in healthcare and medical education, as well as
the areas of medicine where it can be applied. This paper systematically reviews the published literature on
the PubMed database from its inception up to June 6, 2024, focusing on studies that used Al at some level in
medical education, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
guidelines. Several papers identified where Al was used to generate medical exam questions, produce
clinical scripts for diseases, improve the diagnostic and clinical skills of students and clinicians, serve as a
learning aid, and automate analysis tasks such as screening residency applications. Al shows promise at
various levels and in different areas of medical education, and our paper highlights some of these areas. This
review also emphasizes the importance of educators and students understanding AI's principles,
capabilities, and limitations before integration. In conclusion, Al has potential in medical education, but
more research needs to be done to fully explore additional areas of applications, address the current gaps in
knowledge, and its future potential in training healthcare professionals.

Categories: Other, Medical Education
Keywords: machine learning algorithms, medical education assessment, medical examination, natural language
processing models, teaching undergraduate and postgraduate

Introduction And Background

Artificial intelligence (AI) refers to technologies designed to mimic human intelligence, and its applications
have evolved significantly over the years. Initially, Al was used in narrow fields like digital searching and
facial recognition and for tasks such as analyzing cardiac rhythms [1,2]. However, recent advancements in
natural language processing (NLP) have greatly expanded Al's capabilities, enabling systems to engage in
more complex tasks, such as having conversations in human language [3,4]. When combined with machine
learning (ML) algorithms, which allow Al to process large amounts of data and make decisions based on
patterns, these systems have the potential to perform tasks autonomously with minimal human input [5]. In
medical education, these developments have opened up new opportunities for Al to support learning in
various ways. Generative Al models, like Chat Generative Pre-Trained Transformer (ChatGPT; OpenAl, San
Francisco, CA), are increasingly being used to answer student queries, create personalized lessons, provide
tailored feedback, and even facilitate simulations of virtual patients based on aggregated data [6,7]. In
clinical practice, Al is already making an impact, such as using automated systems that analyze heart
rhythms with defibrillators [8]. As Al tools gain popularity and adoption in healthcare and education, it
becomes crucial for medical educators to comprehend how these tools integrate into their curricula [9-11].
However, to fully capitalize on these technologies, it is essential that medical educators and students
understand the strengths and limitations of Al tools. This paper aims to provide a systematic review of how
Al is currently being applied in medical education. It focuses on studies that assess Al's role across different
educational stages, from medical school to postgraduate training and continuing medical education (CME).
The goal of this study is not only to highlight the positive contributions of AI in medical education so far but
also to identify gaps in knowledge and encourage further research to explore the full potential of Al in
training healthcare professionals.

Materials and methods

Search Strategy

In this systematic review, the authors adhered to the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses guidelines. Two independent researchers (E.H. and I.G.) conducted a literature search on the
PubMed database using the keywords "artificial intelligence" AND "medical education" from inception up to
June 6, 2024, with a third researcher (M.M.) involved to reach a consensus when needed. The practice of
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backward citation was also used to locate additional articles. This was done by reviewing the references or
citations within an article from the search synthesis to find studies relevant to our research topic. Only
PubMed was used because it is a repository for clinical medicine and medical education; other databases or
search tools, such as Scopus, Web of Science, or Google Scholar, were not used, as their literature is not
limited to biomedical, clinical, or medical sciences, which was our main focus. The search strategy
registration was not required by our institution, as our study did not involve human subjects.

Selection Criteria

Articles were selected based on the following inclusion criteria: 1) article discussion of medical education at
the level of medical school, postgraduate training, or CME; 2) discussion of Al, including any subset of Al
such as ML models, generative Al large language models (LLMs), or NLP models; 3) reporting of numerical
data relevant to Al in medical education; and 4) text available in the English language. The exclusion criteria
for articles were as follows: 1) discussion of medical education without mentioning AI; 2) discussion of Al
without mentioning medical education; 3) discussion of neither AI nor medical education; 4) letters,
editorials, expert opinions, and other descriptive reports; and 4) unpublished studies or preprints.

Review

Results

The initial search of the PubMed database yielded 781 articles, with another 286 identified through backward
citation searching. After applying inclusion and exclusion criteria to the 1,067 articles, 195 articles were
sought for retrieval, and all 195 articles were retrieved. After retrieval, 113 reports were further excluded
after a review of the entire text, thereby leaving 82 articles for final inclusion in this review (Figure 1).
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FIGURE 1: The PRISMA flowchart

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses

Image credit: This is an original image created by the author Ishank Gupta

Assessing AI’s Clinical Knowledge and Decision-Making Through Standardized Assessments

Fourteen studies employed the LLM ChatGPT as their Al tool of choice [12-25]. Among these, six studies
directly compared the performance of GPT-3.5 and GPT-4.0 [12,18,20,22-24], with GPT-4 consistently
demonstrating superior performance over GPT-3.5. The model was evaluated across various disciplines of
medicine: surgery [12], parasitology [13], microbiology [14], neurology [18], and bioethics [21]. Three studies
compared ChatGPT's performance with human test-takers [13,16,24]. Eight studies assessed ChatGPT's
performance on national medical board exams [15,17,19,20,22-25], including the German medical licensing
examination [24], the European Exam in Core Cardiology [15], the Family Medicine Board Exam in Taiwan
[17], and the United States Medical Licensing Examination (USMLE) Step 3 study question bank [23]. Some
studies did not specify the ChatGPT version used [17], and in four studies, questions in languages other than
English were utilized [17,20,24,25]. A common limitation across these studies was ChatGPT's inability to
interpret questions involving tables, graphs, or images, restricting evaluations to text-based questions only.

Using Al Tools to Craft Medical Illness Scripts and Exam Questions

Several studies utilized ChatGPT to generate medical examination questions and illness scripts. Yanagita et
al. assessed whether ChatGPT-4 could create illness scripts for diseases according to Japanese medical
education standards [26]. Another study aimed to compare script concordance tests (SCTs) generated by
ChatGPT with those created by clinical experts [27]. Hudon et al. used a mixed-method approach, evaluating
three SCTs generated by ChatGPT alongside three SCTs crafted by clinical experts and gathering feedback
through a web-based survey from clinician-educators and resident doctors specializing in psychiatry in

2025 Hallquist et al. Cureus 17(3): €79878. DOI 10.7759/cureus.79878 3of 11


https://assets.cureus.com/uploads/figure/file/1363424/lightbox_d5213720f63811efa172c9dee35c30fe-Fig.-1.png
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

Cureus

Part of SPRINGER NATURE

Study

Yanagita
etal.
[26]

Hudon
etal.
[27]

Klang et
al. [28]

Cheung
etal.
[29]

Study purpose

Aims to
investigate
whether Al can
generate illness

scripts

Comparing SCTs
generated by
ChatGPT with
those produced by
clinical experts

Writing multiple
choice
examination
questions for
medical students

Comparison of
graduate medical
exam MCQs:
University
Professors vs.
ChatGPT-
generated

Quebec, Canada [27]. Klang et al. generated 210 multiple-choice questions (MCQs) using ChatGPT-4, and
Cheung et al. used ChatGPT to generate 50 MCQs for medical examinations [28,29]. These studies are listed

questionsl/illness Study features

in Table 1.
Number of
Al tool
used .
scripts
184 disease
GPT-4
illness scripts
Three ChatGPT-
generated SCTs
ChatGPT
vs. three expert-
created SCTs
210 MCQs
GPT-4
generated by Al
50 MCQs
generated by
ChatGPT and 50
ChatGPT

MCQs drafted by
two university
professors

Three physicians
assessed each
illness script using a
three-tier grading

scale

102 educators
evaluated the six
SCTs based on
three preset criteria

Al-generated
questions reviewed
by specialist
physicians.
Physicians were
blinded to the source
of the questions

Evaluated by five
independent
assessors. Scoring
is based on a
standardized system

Results

The illness scripts
received “A,” “B,” and
“C” ratings of 56.0%
(103/184), 28.3%
(52/184), and 15.8%
(29/184), respectively

No significant
distinctions between
the two types of SCT
scenario (p = 0.84)

One question (0.5%)
was defined as false;
15% of questions
required revisions

No significant
difference in question
quality among the
groups

Areas of errors in
Al-generated
content

Cardiovascular and
psychiatric systems
had the highest
number of “C” ratings

Inaccurate medical
terminology and
inaccuracies in age-
sensitivity, gender-
sensitivity, and
geographic
sensitivity

In the relevance
domain, the Al was
inferior to humans

Conclusions

GPT-4
generates
illness scripts
rapidly and
with high
quality

ChatGPT is
useful for
developing
educational
materials

GPT-4 can
assist in
creating
multiple-
choice
medical
exam

questions

ChatGPT
can generate
MCQs for
medical
graduate
exams

TABLE 1: Overview and description of studies where Al tools were used to generate multiple

choice medical examination questions and illness scripts

Al: artificial intelligence; GPT: Generative Pre-Trained Transformer; SCTs: script concordance tests; MCQs: multiple-choice questions

Al as a Learning Aid in Medical School, Residency Training, and CME

Thirty publications examined the role of Al in enhancing medical education, encompassing a range of
applications. Fifteen studies focused on using Al as a teaching tool for medical students [30-44]. Nine
explored Al's applications in residency training [35,36,45-51], and six investigated AI's potential role in
CME [31,35,36,52-54]. Price et al. proposed an ML model to enhance outcomes in medical specialty board
recertification among physicians [54]. Six studies suggested that Al can improve training in diagnosis,

communication, and radiograph interpretation for medical professionals [38,43-45,48,52]. These studies are

listed in Table 2.
Control
Study Study group group  Study summary
present
Monlezun et Machine learning-enhanced causal inference analysis of a multisite cohort to boost medical
al. [30] Medical students No trainees' skills in counseling patients about nutrition and also improve their own dietary
’ habits
Medical students
Ruberto et A simulation platform that adjusts to a participant's cognitive load in real-time, offering

and postresidency g
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al. [31] or CME
Y d
=gl Medical students

Shulruf [32]
Nakawala et X

Medical students
al. [33]
Fazlollahi et i

Medical students
al. [34]

Medical students,
Allen et al. residents,
[35] and postresidency

or CME

Medical students,
Mirchi etal. residents,

[36] and postresidency
or CME
Del Blanco X
Medical students
etal. [37]
Cheng et al.
9 Medical students
[38]
Wang et al.
9 Medical students
[39]
Denny et al. i
Medical students
[40]
Maicher et
: Medical students
al. [41]
Hamdy et al.
v Medical students
[42]
Suebnukarn
d
an Medical students
Haddawy
[43]
Woo et al. X
Medical students
[44]
Merritt et al. X
Residents
[45]
Bissonnette Residents
et al. [46]
Lin et al. Residents
I
[47]
Hershberger i
Residents
et al. [48]

Yes

Yes

No

No

No

Yes

Yes

No

No

No

No

No

No

potential for advancing expertise in resuscitation medicine

The addition of expert-led + Al-assisted tutoring to the surgical curriculum showed potential
benefits, with the expert-led + Al group outperforming and improving more in the end-of-
surgical block OSCE compared to the expert-led group

A context-aware software framework for thoracocentesis training in surgical workflows
yielded results comparable to traditional mentor-based training

A randomized clinical trial showed that VOA feedback led to better performance and skill
transfer than remote expert instruction in surgical training

SVMs offer more accurate predictions of competency in laparoscopic training tasks than
conventional methods of evaluation

The virtual operative assistant, an Al tool, accurately classified skilled and novice
participants, highlighting the potential of integrating Al and virtual reality simulation into
surgical education

A game-like simulation to improve novices' perceptions and performance during their first
operating theater experience. The simulation was effective in reducing fears and errors, and
enhancing perceived knowledge and collaboration among the students

An Al-based medical image learning system significantly enhanced medical students' ability
to identify hip fractures on pelvic X-rays

Alteach (AITEACH Limited, Cambridge, UK), a virtual case system using NLP and hospital
records, generated clinical cases for medical students, improving their clinical thinking skills

A novel electronic advisor system using NLP to identify geriatric medicine competencies by
analyzing medical students' clinical notes. Such models can be used to assess specific
competencies among trainees

A virtual standardized patient system that assesses students' history-taking skills by
understanding, responding, and providing immediate feedback on their performance

The online VICEE effectively assessed medical students' non-psychomotor clinical
competencies

COMET, an intelligent tutoring system, assessed clinical reasoning in problem-based
learning among students. Such clinical reasoning models can be combined with traditional
tutoring strategies to effectively emulate human tutor hints

An intelligent tutoring system capable of engaging in a natural language dialogue with a
student

An Al-driven simulation platform to evaluate and provide real-time feedback to residents on
a standardized, simulated conversation

Machine learning algorithms were used to assess surgical performance among trainees
executing a virtual reality hemilaminectomy

A novel hybrid prediction algorithm, CBCF, predicts the difficulty level of each case to create
personalized training programs for radiology trainees

The NLP model, ReadMI, was used to enhance motivational interviewing skills among
residents to encourage patients to change high-risk lifestyle behaviors

TABLE 2: Studies showing Al as a learning aid

CME: continuing medical education; Al: artificial intelligence; OSCE: objective structured clinical examination; VOA: virtual operative assistant; SVMs:
support vector machines; COMET: collaborative intelligent tutoring system; NLP: natural language processing; VICEE: Virtual Clinical Encounter
Examination; CBCF: content-boosted collaborative filtering

NLP, Motion Analysis, Clinical Skills, and Building Competence in Stakeholders
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Thirty-four studies examined ML's capabilities in automating analysis tasks rather than direct applications
to medical education [55-88].

Studies using NLP: Two studies evaluated the clinical competency of residents using NLP in clinical
assessments [57,58]. Seven investigated the use of Al to assess medical school or residency applications [63-
69]. One paper explored the potential of Al in assisting with writing letters of recommendation [76]. One
study used Al in a virtual Q&A session for fellowship applicants, finding that many applicants considered
the Chatbot helpful [56]. One used NLP to evaluate medical students’ clinical notes to assess their exposure
to the American Association of Medical College geriatric competencies [72]. Two reported on AI's role in
analyzing feedback from clinical supervisors and its correlation with clinical entrustment decisions [74,75].

Al in motion analysis and clinical skills: Four studies used AI models to assess and evaluate clinical skill
expertise via operational exposure and surgical hand movements [59-62]. Another focus is predicting correct
answers based on students' eye movements while viewing whole slide images [71]. One study used ChatGPT-
assisted training to enhance clinical skills among pediatric trainees [73], and three focused on Al in medical
imaging [85-87]. Additionally, one study examined Al's ability to detect racial stereotypes in medical
scenarios [70].

Building competency in Al among stakeholders: Twelve papers addressed building competence in
stakeholders regarding Al Of these, eight focused on teaching AI fundamentals at the medical school level
and postgraduate training [77-84] and one on the current state of Al education in German universities [88].
Abid et al. proposed a one-month elective on Al and ML for fourth-year medical students [81]. One study
used surveys to measure the use of ChatGPT among faculty members [55].

Discussion

Advancements of Al in Medical Education and Assessments

GPT-3.5 was launched in November of 2022, and GPT-4 was launched in March of 2023. GPT-4 has
demonstrated significant advancements in accuracy and clinical reasoning compared to its predecessor,
GPT-3.5, in medical assessments. Notably, while ChatGPT-3.5 failed the UK Radiology Fellowship Exam,
ChatGPT-4 passed with a score of 75.5% [22]. Meyer et al. observed that while GPT-4 successfully passed all
three German medical licensing examinations tested, GPT-3.5 only passed one out of three [24]. These
improvements position GPT-4 as a more reliable tool for delivering precise responses to complex medical
queries [12,18,24]. In other studies, ChatGPT achieved an accuracy rate of 76.4% in surgical subspecialties
[12], 60.8% in parasitology [13], 80% in microbiology [14], 64% in neurology [18], and an accuracy rate of
59.6% in bioethics [21]. Chen et al. found that ChatGPT excelled in bioethical questions related to death and
physician-patient relationships but faced challenges with topics like abuse and informed consent [21].
Therefore, current Al capabilities may not be consistent enough to handle complex ethical decisions in
medicine autonomously. This necessitates and emphasizes the need for human oversight, especially in
critical scenarios [21].

In several studies, Al tackled difficult medical licensing or subspecialty board exams, which consist of
complex questions requiring years of preparation, deductive reasoning, and extensive knowledge. In one
study by Friederichs et al., ChatGPT answered 65.5% of progress test questions correctly, surpassing German
medical students in their first three years of study [16]. ChatGPT also achieved a passing score on the
European Exam in Core Cardiology with an accuracy rate of approximately 60% [15] but failed the 2022
Family Medicine Board Exam in Taiwan with only 41.6% accuracy [17]. Additionally, ChatGPT performed
well on the USMLE Step 3 study question bank, achieving an overall accuracy of 84.7% [23]. In two studies,
ChatGPT outperformed human test-takers [16,24], whereas in one study, it performed less effectively [13].
This shows the evolving capacity of Al to comprehend and process intricate medical information in a very
short period. However, there are varying performance outcomes across studies when handling questions in
languages other than English, where the model's linguistic database is less robust [17,24,25]. Despite the
challenges, ChatGPT, even in its beta version, achieved satisfactory or high percentile scores, highlighting
its growing capabilities in medical knowledge [15,19,20,22-25]. However, there is a need for dedicated
research to better understand the factors influencing AI's test performance, including language disparities,
and to determine whether the assessed knowledge is universally applicable or specific to a particular country
[89]. Close collaboration between Al developers and medical professionals will be essential to ensure the
effectiveness of these tools [18]. This partnership becomes crucial, especially when considering the ethical
implications of Al applications in healthcare.

Using Al Tools to Craft Medical Illness Scripts and Exam Questions

ChatGPT is a deep learning-based language model trained on vast amounts of text data to generate human-
like responses. While it does not store information between interactions, it can generate medical
examination questions and illness scripts based on patterns learned during its training. Several studies have
demonstrated its ability to produce such content. In the study by Yanagita et al., three physicians evaluated
the Al-generated illness scripts for 184 diseases using a grading scale: "A" for sufficient, "B" for partially

2025 Hallquist et al. Cureus 17(3): €79878. DOI 10.7759/cureus.79878 6 of 11


javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

Cureus

Part of SPRINGER NATURE

lacking but acceptable, and "C" for deficient. The results showed that GPT-4 successfully generated complete
illness scripts for all diseases, with 56.0% rated "A," 28.3% rated "B," and 15.8% rated "C." This study
concluded that GPT-4 could promptly create useful illness scripts [26]. In the study by Hudon et

al., SCTs generated by ChatGPT were compared with those created by clinical experts and found that
respondents found it challenging to distinguish between the Al-generated scripts and those generated by
clinicians. Although ChatGPT demonstrated its capability to produce SCTs aligned with the authors '
predetermined clinical criteria, some outputs were criticized for oversimplifying or caricaturing scenarios
[27]. Hudon et al. underscored ChatGPT's potential as a tool for writing SCT but highlighted the need for
further refinement to ensure clinical accuracy and educational effectiveness [27].

Klang et al. generated 210 MCQs using GPT-4, which were then reviewed by physicians unaware of their
origin. Of these, only one question was classified as "false,” and 15% required some revisions. The study
concluded that generative Al is a valuable supplementary tool for developing medical exam questions,
provided specialist oversight exists [28]. Similarly, Cheung et al. used ChatGPT to generate 50 MCQs for
medical examinations, finding their quality comparable to those written by university professors [29].
Therefore, generative Al tools like ChatGPT are highly efficient for producing high-quality medical scripts
and clinical vignettes more quickly than their human counterparts. However, despite their advantages, these
tools are prone to errors and should be used as adjunctive resources, with thorough review by experienced
medical professionals.

Using Al to Enhance Learning, Assessment, and Diagnostic Capabilities

Al holds significant promise as a learning aid, particularly in training simulations. Wang et al. demonstrated
this by using a virtual patient simulator that allowed students to interact using natural language. Students
who engaged with this system showed improvements in clinical skills, as assessed automatically by the
simulator based on their performance [39]. Similarly, Merritt et al. found that residents using AI-driven
simulated case presentations, with Al acting as a primary care physician, reported enhanced communication
skills and confidence in future interactions [45]. Hershberger et al. further supported this, showing that Al
analysis of resident interview transcripts had moderate agreement with human raters (Kappa = 0.52) and a
narrower range of agreement (Kappa = 0.313-0.658) when evaluating reflective statements, open-ended
questions, closed-ended questions, and readiness-to-change assessments [48]. These findings underscore
Al's potential to augment learning outcomes and assessment capabilities in educational settings,
particularly in healthcare training. Overall, the results were promising, with AI tutors showing partial
agreement with human decision-making and significant improvements across various learner groups in
medicine: medical students, residents, and those in CME.

Al’s utility can extend beyond language skills into diagnostics. Cheng et al. applied Al to generate fracture
probability maps on X-rays, significantly enhancing students' accuracy in identifying hip fractures, even
without Al assistance [38]. Additionally, McFadden and Crim reported that primary care physicians at a CME
conference who used Al-driven simulations showed marked improvement in diagnosing case vignettes,
indicating enhanced diagnostic capabilities [52]. Suebnukarn and Haddawy developed the collaborative
intelligent tutoring system, an automated tutor for small groups, which made choices consistent with
human tutors 62%-83% of the time [43]. Another Al tutor, CIRCSIM-Tutor (Illinois Institute of Technology,
Chicago, IL, and Rush College of Medicine, Chicago, IL), demonstrated significant learning gains in
students, particularly in problem-solving questions, as evidenced by pretest and posttest comparisons [44].
While these studies report that Al improved diagnostic skills, communication skills, and radiograph
interpretation for medical professionals, many studies were limited by the absence of control groups

and relied on self-assessment for measuring outcomes.

Need for Structured AI Education in Medicine

Understanding the basic principles of Al is essential for its effective use, yet this knowledge may be limited,
given the technology's relatively recent development. One study revealed that 66% (n = 29) of the surveyed
faculty had utilized ChatGPT [55]. Understanding the normal operating parameters and limitations of Al is
essential to ensure its effective application and to prevent undesired outcomes. Brief introductions to Al
have proven beneficial in various contexts and cultures. For instance, a 2022 study of students in Lebanon
found that those who received Al education from their medical school were more knowledgeable about Al
than those who did not [90]. Another 2022 study in Germany demonstrated that an online class improved
students’ self-perceived Al readiness [36]. Similarly, a 10-hour pilot class for medical students at the
University of British Columbia helped students better understand ML concepts [83,86]. Most learners
reported increased confidence and satisfaction with Al-related courses [77-88]. These studies underscore the
importance of Al education and indicate a positive trend toward embracing Al in the medical field to
enhance both learning and clinical practices. Most students who completed the elective proposed by Abid et
al. reported high satisfaction and increased confidence and understanding of AI [81]. The authors
recommended incorporating such initiatives into medical school curricula to enhance Al literacy among
future physicians [81]. However, caution is advised when relying on self-reported competence, as definitions
can vary, and self-assessed competence may not always align with objective measures [91].
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Limitations

The study on Al in medical education reveals several key limitations. Many studies included were
qualitative, making it difficult to generalize the results or draw definitive conclusions. Additionally,
confidence intervals or p values were often unavailable, and while the authors tried to quantify the findings,
most studies remained qualitative by nature. This is likely due to the relatively recent introduction of Al
models like ChatGPT to the public, meaning the existing literature consists of smaller, less structured
studies. Many studies also lacked control groups or relied on self-assessment, which could introduce bias.
The review was also limited to studies from PubMed, leaving out potentially relevant research from other
sources. Furthermore, only studies in the English language were included, and unpublished data or
preprints, which may provide more robust or cutting-edge conclusions, were not considered. ChatGPT's
inability to interpret questions involving tables, graphs, or images restricted evaluations to text-based
questions only. While AI showed promise in generating medical content, human oversight was often
necessary to correct errors in the outputs. Additionally, AI faced challenges in ethical decision-making,
emphasizing the need for human oversight.

Conclusions

Al holds great promise as a learning aid and teaching tool in medical education. While research on its
application in this field is encouraging, further studies with objective assessments and control groups are
necessary to draw more definitive comparisons. Meanwhile, techniques like fine-tuning can enhance Al
accuracy for specific tasks. Before integrating Al into teaching or personal study, educators and students
should understand the principles, capabilities, and limitations of ML. Although comfort levels with Al vary
among different groups, brief introductory sessions have been shown to effectively reduce unease when
encountering this technology.
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