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Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, with its prevalence doubling
approximately every decade. It is a significant contributor to disability-adjusted life-years in individuals
aged 50 and older, impacting a substantial portion of this population globally. The pathophysiology of AD is
primarily explained by two hypotheses: the amyloid cascade hypothesis and the tau hypothesis. While the
amyloid cascade hypothesis is widely accepted as the main contributor to AD, both mechanisms promote
neuroinflammation by driving the formation of amyloid-beta (Aβ) plaques and tau tangles, which are key
features of the neurodegenerative process. Recent studies highlight the critical role of the gut microbiome
(GMB) in the progression of AD. Gut dysbiosis has been linked to neuroinflammation, altered Aβ
metabolism, blood-brain barrier disruption, and changes in neuroactive metabolites. Targeting the GMB
offers potential therapeutic avenues aimed at restoring microbial balance and mitigating the effects of
dysbiosis. The gut-brain axis, crucial for neurological health, remains underexplored in AD, especially since
current research is limited to animal models and small human studies, leaving uncertainty about specific gut
bacteria’s roles in AD. Currently, pharmacological treatments for AD include cholinesterase inhibitors and
memantine. This review discusses newer and emerging treatments targeting Aβ and tau pathology,
alongside microbiome-based interventions. Larger, human-based studies with diverse populations are
essential to establish the therapeutic efficacy of these microbiome-targeted treatments and their long-term
impact on AD management.
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Introduction And Background
Defined by Alois Alzheimer in 1906, Alzheimer’s disease (AD) is known as the insidious onset and
progressive behavioral and cognitive decline mostly seen in individuals aged 65 and older [1,2]. This
neurodegenerative disease is counted as the fourth leading cause of disability-adjusted life-years lost in
those aged 75 and older and is globally recorded as affecting 22% of all persons aged 50 and above; however,
the disease prevalence doubles every 10 years [2,3]. The staging classification of the disease is outlined in
the Diagnostic and Statistical Manual of Mental Disorders, 5th edition and is distinguished by the degree of
behavioral and cognitive impairment [1]. It can be categorized as preclinical or presymptomatic, mild
cognitive impairment, and mild, moderate, and severe dementia stages [1]. The most common clinical
presentation observed is episodic short-term memory loss, specifically retaining the ability to recall long-
term memories while facing difficulty retaining new ones [1]. As the disease progresses, additional language,
visuospatial skills, and higher executive functioning, along with neuropsychiatric symptoms such as
disinhibition, agitation, psychosis, and wandering, are exhibited [1,2].

Although clinical presentation is usually sufficient for the initial diagnosis of AD, CSF biomarkers amyloid-
beta 42 (Aβ42), phosphorylated tau (p-tau), and total tau are confirmatory tools [1]. Two commonly known
pathophysiological mechanisms for AD are the amyloid cascade hypothesis and the tau hypothesis, with the
amyloid hypothesis being the most widely accepted [1]. AD is associated with the accumulation of both the
extracellular beta-amyloid protein fragment (also known as β-amyloid (Aβ) plaques) and intraneuronal tau
protein (also known as tau tangles) [4,5]. Although it remains unclear which pathophysiological mechanism
initiates the neurodegenerative process of AD, researchers suspect the incipient process is Aβ plaque
deposition followed by tau protein depositions [5]. Additionally, early-onset familial AD is linked to amyloid
precursor protein (APP) mutation and senile Aβ plaques, further supporting the hypothesis of Aβ deposition
as the initiating pathological event in AD [6]. However, recent evidence does challenge that Aβ deposition in
senile plaques is a late, nonspecific event, therefore proposing that tau phosphorylation and aggregation are
the favorable cause of neuroimmunomodulation decline in AD [7].
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Both hypotheses ultimately result in neuroinflammation, a central feature of AD, which is regulated by the
trillions of human bacteria, archaea, protozoa, viruses, and fungi, combined and referred to as the gut
microbiome (GMB) [8]. CNS immune response alteration in the context of AD can be a result of the
alterations made in the microbial-derived metabolites and peripheral immunity via GBM-mediated changes.
Although the precise mechanism remains elucidated, recent studies indicate that the potential alteration of
GMB is associated with AD compared to those without AD [8,9]. This narrative review aims to explore and
summarize the evidence regarding the implications of the GMB on AD.

Review
Composition and function of the GMB
The human gastrointestinal tract represents an immense interface that encounters a plethora of
environmental factors and antigens; annually, 60 tons of food is passed through the tract, comprising a wide
variety of bacteria, archaea, and eukaryotes that collectively constitute the gut microbiota. This gut
microbiota has coevolved over time with the host, adapting to the physiologic responses and dietary
patterns. Through this, the microbiota developed specialized functions like supporting digestion and
modulating immune responses, and the host developed intestinal barriers and immune tolerance [10]. It
provides physiological and immunological functions like strengthening gut integrity, harvesting energy, and
protecting against pathogens [11]. Gut microbiota consists of Firmicutes, Bacteroidetes, Actinobacteria,
Proteobacteria, Fusobacteria, and Verrucomicrobia, with Firmicutes and Bacteroidetes representing 90% of
gut microbiota, with Clostridium genera accounting for 95% of Firmicutes phyla [12]. The estimated cell
count for the makeup is more than 10 trillion cells, with hundreds to thousands of microbial species in
everyone. There are more genes in the microbiome than in the human genome. The gut microbiota is capable
of converting host-derived biochemical molecules, interfering with endocrine and metabolic processes
(Figure 1), and activity of therapeutic drugs [13]. For example, one recent research study showed that gut
microbiota modulates xenobiotic metabolism through a variety of mechanisms involving the re-activation
of otherwise inactive drug metabolites, immune cell dynamics, and alteration in the level of enzymes in the
gut and liver. This can alter the quality and toxicity of the medicine, which in turn can cause clinical
derangements and confusion with other diseases that also alter the enzymes in the gut and liver [14-17].

FIGURE 1: Bidirectional communication between CNS and gut
interaction of gut microbiota
The biodirectional communication produces neuroactive molecules that influence brain function and the release of
gut-derived molecules, such as neurotransmitters and hormones, which signal to the brain. The brain, in turn, can
influence gut function through the ANS. This communication network, involving both neural and immune
pathways, is essential for maintaining overall health and well-being.

ANS: autonomic nervous system

Figure created with BioRender; image credit: Muhammad Rizwan
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Gut-brain axis
The gut-brain communication is mediated by neural, immune, and endocrine pathways, with gut microbes
and their metabolites playing a crucial role in neurological health. Enteroendocrine cells in the gut
epithelium [18] secrete over 20 signaling molecules influenced by microbial metabolites like short-chain
fatty acids (SCFAs) and bile acids. They enter the systemic circulation and affect CNS functions, including
ingestive behavior. Dietary intake significantly regulates these microbial activities. SCFAs are key mediators
produced from dietary fiber, activating L cells to release peptides such as GLP-1, which controls satiety and
behavior [19,20]. Immune pathways also play a critical role; in a healthy gut, immune responses shift toward
anti-inflammatory actions, mediated by regulatory T cells. Therefore, dysbiosis can lead to local and
systemic inflammation, affecting the CNS through immune cell activation and release of inflammatory
mediators, highlighting the bidirectional communication between the gut and brain [21]. Disruptions of this
gut microbiota are linked to disorders such as autism spectrum disorder, Parkinson’s disease, AD,
depression, and anxiety. Alterations in microbial diversity can negatively impact the CNS, influence brain
function, and contribute to the development and progression of these neuropsychiatric conditions [22,23].

Pathophysiology 
The GMB is a dynamic and complex ecosystem comprising trillions of microorganisms, including bacteria,
viruses, fungi, and archaea, that reside in the human gastrointestinal tract. This microbial community plays
an essential role in various physiological processes, including digestion, metabolism, immune regulation,
and the maintenance of intestinal barrier integrity [24,25]. The pathophysiology of AD is complex and
multifactorial, involving genetic, environmental, and lifestyle factors [26]. The GMB represents a novel and
increasingly recognized contributor to this complexity, through mechanisms such as neuroinflammation,
modulation of Aβ metabolism, disruption of blood-brain barrier (BBB) integrity, and the production of
neuroactive metabolites [26]. The GMB may play a critical role in the development and progression of AD
[27-29]. Understanding these mechanisms opens new avenues for potential therapeutic interventions
targeting it [30]. The concept of the gut-brain axis has introduced the idea that the GMB also significantly
impacts brain function and health. Emerging evidence suggests that dysbiosis, or an imbalance in the gut
microbiota, may contribute to the development and progression of neurodegenerative diseases, particularly
AD [30,31].

AD is characterized by the accumulation of Aβ plaques and tau protein tangles in the brain, leading to
neuroinflammation, synaptic dysfunction, and neuronal loss. While the exact etiology of AD is not fully
understood, a growing body of research implicates GMB as a potential modulator of the disease’s
pathogenesis [31-33]. Neuroinflammation is a central feature of AD and is thought to play a key role in its
pathogenesis. The GMB is closely linked to the immune system and can influence inflammatory responses
in the body. Dysbiosis can lead to the disruption of the intestinal barrier, resulting in increased intestinal
permeability, often referred to as “leaky gut.” This allows bacterial endotoxins, such as lipopolysaccharides
(LPS), to translocate into the bloodstream. Once in circulation, LPS can cross the BBB and trigger an
inflammatory response in the brain by activating microglia, the brain’s resident immune cells [8,27,32-35].

Activated microglia then release pro-inflammatory cytokines such as IL-1β, tumor necrosis factor alpha
(TNFα), and IL-6, which can exacerbate neuronal damage and contribute to the progression of AD [36].
Chronic neuroinflammation is thought to promote the formation of Aβ plaques and tau tangles, further
driving the neurodegenerative process. Therefore, gut dysbiosis-induced systemic inflammation and
microglial activation represent a significant pathway through which the GMB may contribute to AD
pathology (Figure 2) [25].
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FIGURE 2: Gut dysbiosis mechanism in AD
The gut dysbiosis mechanism allows bacterial endotoxins and LPS to enter the bloodstream, thereby resulting in
a leaky gut. These harmful molecules cross the BBB, activating microglia in the brain. In response, microglia
release inflammatory cytokines, which trigger the deposition of Aβ plaques, contributing to the development of AD.

Aβ: amyloid-beta; AD: Alzheimer’s disease; BBB: blood-brain barrier; LPS: lipopolysaccharides; TNFα: tumor
necrosis factor alpha

Figure created with BioRender; image credit: Fariha F. Nassar

Aβ is a peptide that aggregates to form plaques, one of the hallmark features of AD. The production and
clearance of Aβ are tightly regulated processes, and any imbalance in these processes can lead to its
accumulation in the brain. The GMB may influence Aβ metabolism through several mechanisms [26]. Certain
gut bacteria can produce amyloid-like proteins that may stimulate cross-seeding of Aβ in the brain,
promoting its aggregation. Additionally, the GMB can modulate the activity of enzymes involved in Aβ
production, such as β-secretase (BACE1) and γ-secretase, through the production of microbial metabolites.
For example, SCFAs produced by gut bacteria have been shown to influence Aβ processing. While SCFAs
have neuroprotective effects at physiological levels, dysbiosis can alter their production, potentially leading
to changes in Aβ metabolism that favor plaque formation [8,24,27].

Furthermore, the GMB can affect the clearance of Aβ. The glymphatic system, which is involved in the
clearance of waste products from the brain, including Aβ, can be influenced by systemic inflammation and
immune responses originating from the gut. Dysbiosis-induced neuroinflammation may impair glymphatic
clearance, contributing to the accumulation of Aβ in the brain [24,26]. This connection extends to its impact
on the BBB; the BBB is a selective permeability barrier that protects the brain from potentially harmful
substances in the blood while allowing the passage of essential nutrients and signaling molecules [8]. The
integrity of the BBB is crucial for maintaining a stable environment for neuronal function, as dysbiosis has
been shown to compromise BBB integrity through several mechanisms [25,27]. Firstly, the production of LPS
by gram-negative bacteria in the gut can lead to systemic inflammation, which may weaken the BBB
[25,33,34]. Inflammatory cytokines, such as TNFα, can disrupt tight junctions between endothelial cells in
the BBB, increasing its permeability [25,26]. This allows harmful substances, including LPS and pro-
inflammatory cytokines, to enter the brain, where they can induce neuroinflammation and contribute to AD
pathology [8]. Secondly, gut-derived metabolites, such as SCFAs, play a role in maintaining BBB integrity.
SCFAs, particularly butyrate, are known to strengthen tight junctions in the BBB. Dysbiosis, which can result
in reduced SCFA production, may therefore compromise BBB function and allow for the infiltration of
neurotoxic substances into the brain [28,35,37].

The GMB produces a variety of metabolites that can influence brain function and health. These include
SCFAs, neurotransmitter precursors, and bile acids. Dysbiosis can alter the production of these metabolites,
potentially contributing to the pathogenesis of AD. SCFAs, such as acetate, propionate, and butyrate, have
been shown to exert neuroprotective effects by modulating immune responses, enhancing BBB integrity, and
promoting the production of brain-derived neurotrophic factor (BDNF), a protein involved in synaptic
plasticity and neuronal survival. Dysbiosis-induced reductions in SCFA production may, therefore, impair
these protective mechanisms, contributing to AD progression [8,25,27].

Moreover, the GMB can influence the synthesis of neurotransmitters such as serotonin and gamma-
aminobutyric acid, which play critical roles in mood regulation and cognitive function. Dysbiosis may lead to
altered levels of these neurotransmitters, potentially contributing to the cognitive and behavioral symptoms

 

2024 Mroke et al. Cureus 16(11): e73681. DOI 10.7759/cureus.73681 4 of 10

https://assets.cureus.com/uploads/figure/file/1213621/lightbox_fca957806fa811efad7fa50422003814-Screen-Shot-2024-09-10-at-2.14.46-PM.png
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


observed in AD [28]. Additionally, bile acids, which are metabolized by gut bacteria, have been implicated in
the regulation of neuroinflammation and Aβ metabolism. It can lead to changes in bile acid composition,
which may influence AD pathology through effects on the brain’s immune response and Aβ clearance [25,36-
38].

Therapeutic interventions 
The treatment modality in patients with AD patients involves alleviating symptoms, halting the progression
of neurodegeneration, and preserving cognitive function [39]. Currently, two classes of pharmacological
therapy are approved for the management of AD, which include cholinesterase inhibitors and memantine
[40]. Newer therapeutic interventions under investigation target the overproduction of Aβ42 using γ-
secretase inhibitors, β-secretase inhibitors, or α-secretase enhancers; decrease Aβ accumulation in senile
plaques through aggregation inhibitors; and enhance Aβ clearance via active or passive immunotherapy.
Other novel approaches like focused ultrasound with microbubbles have shown promising results in animal
models, but more research is needed to apply to humans; there is a need to consider that this requires
advanced ultrasound training by physicians for its implementation [41-43]. Additionally, there are
treatments targeting tau pathology, including drugs that inhibit the aggregation of p-tau, such as leuco-
methylthioninium bis(hydromethanesulfonate), a methylene blue derivative; drugs targeting glycogen
synthase kinase 3 that reduce tau phosphorylation; and immunotherapies that elicit an immune response
against hyperphosphorylated tau protein [39].

As we previously pointed out, GMB plays an important role in AD, and therapeutics for AD impacting GMB
include probiotics, prebiotics, postbiotics, synbiotics, and fecal microbiota transplantation (FMT). Among
these, probiotics have been extensively studied in human clinical trials, with encouraging outcomes. Recent
evidence from 27 animal and 11 human trials showed that probiotics had a significant positive effect on
slowing cognitive decline in patients with AD [44].

Several mechanisms are behind the pathogenesis of AD, of which neurotrophic factors, oxidative stress, and
inflammation play major roles [45]. It is found that BDNF, a neurotrophic protein, has a protective role in
degenerating neurons in AD, and patients with AD exhibit significantly lower serum BDNF levels compared
to healthy individuals, particularly in the later stages of the disease [46]. Evidence highlights that probiotics,
particularly Lactobacillus plantarum DW2009, have several beneficial roles in preserving and halting the
decline of cognitive function among patients with AD. They have a downregulatory effect on inflammatory
factors like IL-1β, leading to an upregulation of BDNF. Hence, early intervention with Lactobacillus
plantarum supplement helps alleviate mild cognitive impairment, highlighting the importance of the gut-
brain axis [47,48]. Oxidative stress plays a key role in AD by promoting Aβ accumulation, altering neuronal
lipids, increasing harmful byproducts like 4-hydroxynonenal and malondialdehyde, modifying proteins, and
increasing levels of lipid peroxidation and protein carbonyls. Probiotics may help counteract this by boosting
antioxidant enzymes like superoxide dismutase, effectively reducing oxidative damage and its effects on AD
progression [47]. There is strong research that investigated the microbiome of multispecies in probiotics
containing Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium bifidum, Lactiplantibacillus
plantarum, and Lactobacillus fermentum that highlighted their potentials as probiotics supplements in
cognitive improvement among patients with AD. However, these studies were carried out over a short
duration of approximately 12 weeks; this time limitation poses challenges in fully understanding the long-
term impact of probiotics as AD disease progresses over years. The short duration may not capture sustained
or cumulative effects, and variations in individual responses might not be fully representative [29,48,49].
Nonetheless, recent studies conducted within the past decade on microbiome and probiotics showed
promising evidence of cognitive improvement in patients with AD when given in the early stages of the
disease.

Dietary interventions 
The GMB produces metabolites in association with the intestinal mucosa, thus maintaining health and
homeostasis [50,51]. The gut microbiota is dependent on food and may be altered depending on an
individual's particular diet. To illustrate, fermentation of a high-fiber diet in the gut releases metabolites
that help regulate colonic epithelium proliferation [50]; these metabolites enter the systemic circulation and
induce beneficial immunomodulatory effects on other organs of the body. This explains the correlation
between a high-fiber diet and the reduction in risk of various cancers, cardiovascular diseases, obesity, and
diabetes mellitus [52,53]. In some animal studies, deficiency of dietary fiber has been shown to cause
cognitive impairment and memory loss and negatively impact activities of daily living [54]. These studies
further demonstrated structural changes in the hippocampus and disturbances in the gut microbiota, which
may be associated with cognitive decline [54]. Dietary factors have also been shown to influence the risk of
AD [55,56]. Deficiency of antioxidants in the diet, like vitamins E and C, and vitamins B9, B6, and B12, may
play a role in disease development. Antioxidants reduce Aβ-induced lipid peroxidation and oxidative stress,
thus suppressing inflammation [55,57,58]. In addition, vitamin D and minerals like calcium and magnesium
in recommended amounts have a beneficial effect on AD patients. A high-fat diet and excess saturated fatty
acids promote hyperinsulinemia, inflammation, and hypercholesterolemia, which may cause oxysterols to
accumulate in the brain of Alzheimer’s patients, worsening disease progression [57]. A high carbohydrate
diet also seems to affect cognitive ability and may play a role in mild cognitive impairment; however,
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carbohydrates in the form of dietary fiber are an exception.

The Mediterranean diet affects the gut microbiota and is associated with less cognitive decline in patients
with mild cognitive impairment or stroke [59]. Moreover, the Dietary Approaches to Stop Hypertension
(DASH) diet has been shown to have a neuroprotective effect in improving cognitive deficits, memory, and
spatial learning. The role of the Mediterranean plus DASH intervention for the neurodegenerative delay
(MIND) diet was studied and showed significant neuroprotective effects comparable to those observed with
the DASH-only diet in the group that had high adherence to the MIND diet [59]. These studies show a
promising role of diet and GMB in enhancing cognition and overall brain health. This role should be
investigated further with a larger sample size and may aid in developing specific diet interventions to
prevent or slow the progression of AD.

FMT
FMT involves transferring feces from a healthy donor into the GI tract of a recipient for therapeutic purposes
such as the management of clostridium difficile infection, inflammatory bowel disease, metabolic syndrome,
autoimmune disease, and neurological disorders [60-62]. Recent clinical trials performed on mice have
shown the benefit of FMT in controlling symptoms of AD. Compared to prebiotics, probiotics regulate gut
microbes and improve cognitive impairment [61]. In one study, the transplantation of fecal microbiota from
wild-type mice into transgenic model mice expressing APP, presenilin-1, and microtubule-associated
protein tau transgenes showed a reduction in the formation of Aβ plaques, neurofibrillary tangles, glial
reactivity, and cognitive impairment. Additionally, this study included several case reports providing
evidence of FMT use in Clostridium difficile patients with AD, showing successful treatment of the infection
and improvements in cognitive decline [24]. FMT is delivered either by upper or lower GI routes. Upper GI
route includes esophagogastroduodenoscopy, nasogastric, nasojejunal, or nasoduodenal tube. The lower GI
route involves colonoscopy, retention enema, and oral capsule [63,64]. Patient preparation for successful
FMT involves standard screening protocols, recipient education, and antibiotic restriction 12-24 hours
before fecal infusion [60,61]. The recipient needs bowel lavage regardless of upper or lower GI routes [64].
The bowel should be free of contaminated fecal material before the donor feces infusion. Some studies
suggested the use of loperamide one hour before FMT to ensure that the transplanted feces stay at least four
hours long in the intestines [65]. Regardless, there is insufficient evidence to showcase a superior route for
FMT. The route of delivery should be based on an individual patient’s situation [61]. While promising in
animal models, large-scale human trials are needed to confirm FMT’s role in managing AD and to establish
standardized clinical protocols.

There is considerable evidence suggesting that FMT may have a role in the prevention and treatment of AD.
A recent study concluded that mice treated with FMT demonstrated better spatial learning ability and
memory compared to the non-FMT-treated mice [61,66]. This study showed the neuroprotective effects of
FMT against AD in APPswe/PS1dE9 transgenic mice, which included improvement in cognitive deficits,
decrease in neuroinflammation, and amyloid beta accumulation [66]. The gut microbiota in AD patients
notably differs from that within healthy patients; thus, AD patients may not be able to metabolize certain
peptides and inflammatory mediators [67]. In healthy patients, the gut bacteria produce tryptophan and
SCFAs during metabolism, which decrease inflammation. FMT-treated mice restore the SCFA, which disrupts
amyloid beta oligomers, thus halting AD disease progression and contributing to improved cognition [67].
These studies in animals show a promising role of FMT for prevention and management of AD; however,
ethical obligations have limited studies in humans. [63]. We advise conducting additional investigations on
humans regarding the role of FMT in regulating cognition, on a larger scale, keeping the ethical obligations
in mind.

Emerging technologies and approaches
Recent avant-garde microbiome research has acknowledged a significant connection between AD and gut
microbes. Metagenomics, metabolomics, and bioinformatics are the innovative technologies that have
refined our understanding of how the GMB impacts the neurodegenerative system. These technologies
provide intuition into how gut dysbiosis may contribute to AD pathogenesis through the comprehensive
analysis of microbiomes and their metabolic products [28]. The metagenomic technique is a rapidly
developing technology that works by sequencing the collective DNA of gut microbes, which researchers can
use to identify and characterize the microorganisms present; furthermore, determining their relative
affluence and their functional capabilities. It helps in the identification of microbe metabolites, such as LPS
and SCFAS, that potentially influence brain health. In the context of AD, metagenomics has been
instrumental in identifying specific gut microbiota that may be associated with the disease [8]. Metabolomics
is a rising technology that allows a comprehensive analysis of small metabolites produced by microbes and
their interaction with the host catabolism. Metabolomics has uncovered changes in the levels of harmful
metabolites like LPS in AD patients. Raised LPS levels can lead to systemic inflammation and may worsen
AD pathology by enhancing Aβ aggregation and tau phosphorylation [68]. These findings emphasize the
potential of metabolomics in identifying new biomarkers for AD and developing microbiome-based
therapeutic strategies. Bioinformatics is a technique that involves computerized technology to collect, store,
analyze, and display biological data and information, such as DNA and amino acid sequences.
Bioinformatics helps researchers identify the specific microbial agent and their metabolites by analyzing
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DNA sequences that may lead to the progression of AD.

The idea of using personalized microbiome-based therapies for Alzheimer’s is another appealing area of
research. It combines our understanding of gut health with brain health, targeting to create customized
treatments that could help people with Alzheimer’s live better lives. The GMB is highly divergent, with
significant variability across individuals, making it challenging to draw consistent conclusions from
bioinformatics analyses. This complexity can lead to difficulties in replicating findings across different
studies, and integrating multi-omics data is complex and difficult to interpret [69]. For this reason,
physicians need to focus on grasping a better understanding of the basics and the needs of the current era
[70].

Research gaps and future studies
There are still several unanswered questions about the gut-brain axis in AD, despite tremendous
advancements. Most research has been conducted on animal models and small-scale human studies, which
has limited the conclusions. For example, regarding FMT as an AD complementary therapy, a limited number
of studies have been conducted in mice/rats, with promising but not conclusive results. Regarding humans,
only two case studies showing promising results have been conducted so far [25]. Because of small-sample
studies, the results may not be generalizable and potentially contain confounding biases from subgroup
factors like lifestyle, gender, ethnicity, and others that could also be associated with different gut
mycobiome signatures [65]. To determine the causal links between the development of AD and gut
microorganisms, longitudinal studies, systematic reviews, and metagenomic and Mendelian randomization
studies that monitor microbiome changes over time in large would be crucial. Individuals vary remarkably in
the composition of their microbiomes, which influences how they react to treatments [71]. Large-scale
clinical trials are required to assess the effectiveness of individual microbiome-modulating treatments [24].

Conclusions
This narrative review outlines the GMB participation and contribution to the characteristic progressive
neurodegeneration of AD and entails the crucial role of the gut-brain axis in affiliation with neurohealth.
The GMB produces various metabolites that contribute to the intestinal mucosa to maintain holistic health
and homeostasis. Additionally, the research reviewed in this article highlights the prospective utilization of
GMB-based therapeutics for AD treatment and/or management. Dietary factors have implications to
influence the risk and even the inflammation associated with AD; specifically, deficiencies in antioxidants,
which reduce Aβ-induced lipid peroxidation and oxidative stress. Furthermore, there is evidence that the
MIND diet perpetuates neuroprotective effects observed in AD, including improvement in cognitive deficits,
memory, and spatial learning. Finally, FMT studies conducted in animals suggested beneficial regulation of
gut microbes and improvement in cognitive deficiencies. Despite the promising role of diet and GMB in
enhancing cognition and overall brain health, there remains a discernment in various AD studies due to
preliminary research conducted only on animal specimens or on small sample sizes. More large-scale trials
should be conducted with a focus on the targets as reviewed in this narrative, particularly the microbiome-
gut-brain axis, which can greatly impact the morbidity and mortality associated with AD.
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