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Abstract
Magnetic resonance imaging (MRI) is increasingly used as an investigation during fetal life,
particularly for assessment of intracranial masses, congenital diaphragmatic hernia,
myelomeningocele, and abdominal masses. As the number of scans increases, so is the variety
of congenital malformations being recognized. It is axiomatic that interpretation of the
findings is enhanced when attention is paid to the likely findings in the setting of known
syndromes, this information then dictating the need for additional acquisition of images. One
such syndrome is so-called "visceral heterotaxy", in which there is typically an isomeric, rather
than a lateralized, arrangement of the thoracic and abdominal organs. Typically associated with
complex congenital cardiac malformations, heterotaxy can also involve the central nervous
system, and produce pulmonary, gastrointestinal, immunologic, and genitourinary
malformations. In this review, we discuss how these findings can be demonstrated using fetal
MRI. 
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Introduction And Background
Magnetic resonance imaging (MRI) was initially used during fetal life in the early 1980s. Since
then, it has become more widely used, although its applications are still limited [1-5]. While
ultrasound is still the most commonly used modality to image the fetus, MRI has started to
become used for evaluation of the central nervous system, bronchopulmonary, and abdominal
malformations [6-14]. Cranial, pulmonary, and abdominal masses can also be evaluated
successfully using fetal MRI [15-18]. More recently, cardiac malformations have increasingly
been identified using fetal MRI [19-20]. The technique offers improved delineation of anatomy
when compared to echocardiography, providing multiple viewing planes, and is not limited by
maternal obesity, oligohydramnios, or the fetal lie [21].

So-called "heterotaxy" is a syndrome characterized by abnormal lateralization of the thoracic
and abdominal organs, which are arranged in fashions other than the expected arrangement
[22]. Cardiovascular, pulmonary, central nervous system, gastrointestinal, and immunologic
malformations can all be present in the setting of heterotaxy, and often present in specific
combinations. Clinically, the syndrome can be anticipated when there is an intracardiac lesion
or caval venous abnormality in the presence of any one of the following: right-sided heart,
abnormal arrangement of the abdominal organs, splenic abnormalities, bronchial isomerism, or
intestinal malrotation. Historically, the syndrome was segregated on the basis of the splenic
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anatomy into asplenia and polysplenia. This is now recognized as being less than ideal since
splenic anatomy is not the best discriminator of the two subsets of heterotaxy [23]. Despite
initial skepticism, it is now well-recognized that isomerism of the thoracic organs, involving the
atrial appendages of the heart, provided better segregation. Right isomerism, for example, is
typically associated with complex congenital cardiac malformations, such as complete
unbalanced atrioventricular septal defects, along with an absence of the spleen, and intestinal
malrotation. Left isomerism, in contrast, is more frequently associated with interruption of the
inferior caval vein, and multiple spleens, but less severe intracardiac lesions [24-26].
Heterotaxy may be better described as right or left isomerism as this better conveys the
arrangement of the visceral organs.

Many of the malformations associated with heterotaxy can now be detected by use of fetal MRI.
Recognition of the syndrome is important as an indicator to the need for further evaluation of
other organ systems, as well as the likely presence of intracardiac lesions. It also points to the
likelihood of impaired splenic function, even when there is a normally located solitary spleen,
or multiple spleens [27-29]. Survival, particularly in those patients with right isomerism and
functionally univentricular hearts, is also different from those with left isomerism, although
the latter feature is known to be the harbinger of complete heart block and fetal hydrops [30]. In
this review, we discuss how fetal MRI enhances the diagnosis and evaluation of the findings
associated with heterotaxy.  

Review
Central nervous system malformations
Malformations of the central nervous system include asymmetry in cerebral volumes,
craniorachischisis, holoprosencephaly (Figure 1), myelomeningocele (Figure 2), spina bifida,
Dandy-Walker syndrome (Figure 3), Chiari II malformation (Figure 2), abnormalities of the
corpus callosum (Figure 4), aqueductal stenosis (Figure 5), open neural tube defects (Figure 6),
spinal meningocele (Figure 7), and occipital meningocele (Figure 8) [31-42].

FIGURE 1: Holoprosencephaly and cortical atrophy
Panel A is a sagittal half-fourier acquisition single-shot turbo spin-echo (HASTE) image
demonstrating holoprosencephaly and cortical atrophy hydrocephaly. The falx cerebri and
interhemispheric fissure are also absent (arrowhead). The white arrow points to an enlarged kidney.
Panel B demonstrates an axial HASTE image demonstrating enlarged kidneys with multiple cysts
(white arrows). Image reprinted without changes from Koplay, et al. under the creative commons
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license.

FIGURE 2: Neural tube defect with tonsillar herniation
Panel A is a T2-weighted sagittal image of a 23-week gestational age fetus demonstrating a
lumbosacral neural tube defect (encircled) with cerebellar tonsillar herniation (arrow). Panel B
demonstrates is a T2-weighted sagittal image demonstrating a myelomeningocele (encircled) from
L2 to the end of the sacrum. Panel C demonstrates the myelomeningocele (encircled) in the axial
plane. Panel D is a T2-weighted axial image demonstrating hydrocephalus. The findings are
consistent with Chiari II malformation. Image reprinted without changes from Nemec, et al. under
the creative commons license.
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FIGURE 3: Dandy-Walker malformation
Panel A is an axial image demonstrating a direct communication between the fourth ventricle and
cisterna magna while Panel B is a sagittal image demonstrating an enlarged posterior fossa,
findings consistent with Dandy-Walker malformation. Image reprinted without changes from Sohn,
et al. under the creative commons license.

FIGURE 4: Colpocephaly
Panel A is an axial T2-weighted single shot fast spin echo (SSFSE) image demonstrating
colpocephaly (arrows) in a 26-week gestational age fetus. Panel B is a sagittal T2-weighted SSFSE
image demonstrating absence of the corpus callosum. Image reprinted without any changes from
Glenn, et al. under the creative common license.
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FIGURE 5: Aqueductal stenosis

2015 Loomba et al. Cureus 7(5): e269. DOI 10.7759/cureus.269 5 of 24

https://assets.cureus.com/uploads/figure/file/1946/lightbox_1432054058-1427672498-figure_5.png


Panel A is a T2-weighted sagittal image in a 30-week gestational age fetus demonstrating absence
of the septum pellucidum, enlargement of the third ventricle (arrow), and ventriculomegaly(*). Panel
B is a T2-weighted sagittal image demonstrating lack of a fluid-filled aqueduct of Sylvius (arrow).
These findings are consistent with aqueductal stenosis. Image reprinted without changes from
Hosseinzadeh, et al. under the creative commons license.

FIGURE 6: Neural tube defect
Sagittal T2-weighted HASTE image demonstrating an open neural tube defect. 
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FIGURE 7: Meningocele
An axial T2-weighted image demonstrating a meningocele.

FIGURE 8: Meningocele
Axial (A) and Sagittal (B) T2-weighted HASTE images demonstrate a cystic collection along the
dorsal aspect of the occipital region, which is compatible with a meningocele. 

Fetal MRI for diagnosis of these entities can be performed using a 1.5 Tesla magnet and a
multi-coil phased-array torso surface coil. After obtaining localizers, T2-weighted images of the
brain should be obtained in three planes utilizing steady-state free precession (SSFP)
sequences. For fetuses less than 30 weeks' gestation, an echo time (TE) of 140 should be used,
while a TE of 100 should be used for fetuses greater than 30 weeks' gestation. A slice thickness
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of 3 mm for fetuses less than 24 weeks' gestation and 4 mm for fetuses greater than 24 weeks
should be used. Next, a T1-weighted axial image should be obtained, followed by axial
diffusion-weighted imaging (DWI) images with apparent diffusion coefficient (ADC) through
the brain. Axial images of the brain with echo-planar imaging can be obtained next. T2-
weighted images of the body should be obtained in three planes utilizing SSFP sequences to
assess the spinal cord. A TE of 8 and slick thickness of 4 mm should be utilized.

For neural tube defects, a slightly modified protocol can be used. The protocol is as described
above, including the axial DWI with ADC images. After this, T2-weighted half-Fourier-acquired
single-shot turbo spin Echo (HASTE) images should be obtained with slight modifications.
Images in the coronal and sagittal planes should be obtained with a TE of 80 and slice thickness
of 4 mm. The axial images should be obtained with TE of 140 and slick thickness of 4 mm. T1-
weighted gradient-echo (GRE) axial images through the body should be obtained from the
cranial portion of the spine to the caudal portion of the defect using 4 mm thick slices.
Thereafter, axial images using true fast imaging with steady-state free precession (True-FISP)
through the body with 4 mm thick slices should be obtained to complete the evaluation.

Pulmonary malformations
Congenital pulmonary malformations are limited in heterotaxy, but will include isomerism of
the bronchi, as revealed by a ratio of bronchial lengths of less than 1.5. Right as opposed to left
bronchial isomerism can be determined by assessing the bronchial angles, with angles less than
135 degrees being consistent with left bronchial isomerism, and angles greater than 135
degrees being consistent with right bronchial isomerism (Figures 9-10). The lungs themselves
also show isomeric lobation, which is concordant with the bronchial arrangement [25, 43-44].
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FIGURE 9: Bronchial isomerism and interruption of the inferior
caval vein
A balanced turbo field echo imaging of a 28-week gestational age fetus. Panel A is a coronal slice
demonstrating bronchial isomerism while panel B demonstrates a right-sided stomach (right-sided
arrow), a leftward pointing cardiac apex (left-sided arrow). Panel C demonstrated interruption of the
inferior caval vein with azygos continuation (arrow). Panel D is an axial slice demonstrating the
prominent azygos vein (arrow) running to the right of the abdominal aorta while panel E
demonstrates the azygos vein draining into the superior caval vein. Image reprinted without
changes from Dong, et al. under the creative commons license.
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FIGURE 10: Bronchial isomerism
A coronal T1-weighted image demonstrating bronchial isomerism with bronchial angles consistent
with right isomerism. There is also a midline liver noted in this slice.

Assessment of the fetal pulmonary system should begin by three plane localizers, followed by
T2-weighted HASTE imaging in three planes. For a fetus with the gestational age of less than
30 weeks, a TE of 140 should be used, with a TE of 100 to be used otherwise with a slice
thickness of 4 mm. Next, imaging of the body should be obtained by T2-weighted HASTE
images in three planes. Axial images through the body should then be obtained using EPI (bone)
to evaluate the vasculature. This should allow for ample visualization of the entire fetus, with a
particular focus on the bronchi and lungs.

Cardiovascular malformations
Cardiovascular malformations in the setting of heterotaxy can vary from simple to complex.
While complex cardiovascular malformations can be found with either right or left isomerism,
they are more frequently observed with right isomerism. Atrioventricular septal defects and
double outlet right ventricle are frequently noted with right isomerism, and ventricular
imbalance may often necessitate a univentricular approach to palliation. Other lesions, such as
Tetralogy of Fallot (Figure 11), may also be seen. Pulmonary venous connections are, by
definition, always anomalous in the setting of right isomerism, even if the pulmonary veins
return to the heart. This is because the connections must be anatomically anomalous in the
setting of isomeric right atrial appendages. In about half of the cases with right isomerism,
nonetheless, the pulmonary veins will drain into an extracardiac confluence. Left isomerism is
typically associated with septal defects, coarctation of the aorta, and interruption of the
inferior caval vein with azygos continuation (Figures 9, 11). The pulmonary veins in this setting
are often connected to the heart in symmetrical fashion. A left-sided superior caval vein may be
present with either right or left isomerism (Figures 11-12). In right isomerism, however, the
vein will drain to the roof of the left-sided atrium, whereas in left isomerism, it typically drains
through the coronary sinus. A right-sided aortic arch may also be present (Figure 12).
Discordant ventriculoarterial connections can be found with either variant, but are more
common with right isomerism (Figure 13). Left-handed, rather than right-handed, ventricular
topology can also be found with either variant. The heart may be in either the left or right chest,
while the cardiac apex may point leftward or rightward (Figure 14) [22, 24, 45].
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FIGURE 11: Tetralogy of Fallot
Balanced turbo field (bTFE) images of a 28-week gestational age fetus with tetralogy of Fallot.
Panel A is a sagittal slice demonstrating obstruction of the right ventricular outflow tract (arrow) while
panel B is a coronal slice demonstrating a ventricular septal defect (arrow). Panel C is an axial slice
demonstrating valvar pulmonary stenosis (arrow) while Panel D demonstrates a persistent left
superior caval vein (arrow). Image reprinted without changes from Dong, et al. under the creative
commons license.

2015 Loomba et al. Cureus 7(5): e269. DOI 10.7759/cureus.269 11 of 24

https://assets.cureus.com/uploads/figure/file/1950/lightbox_1432054256-1427672659-figure_11.png


FIGURE 12: Congenital diaphragmatic hernia
Axial FIESTA images of 35-week gestational age fetus with asplenia and congenital diaphragmatic
hernia. Panel A is an axial slice demonstrating a left-sided stomach (arrow) that is in the thoracic
cavity due to a left-sided congenital diaphragmatic hernia. The heart is pushed into the right chest.
Panel B demonstrates an inferior caval vein (open arrow) anterior and rightward to the abdominal
aorta (closed arrow). Panel C demonstrates a right aortic arch (closed arrow) and a left sided
superior caval vein (open arrow). Panel D demonstrates a right- and left-sided superior caval vein
with a bridging vein between the two (arrow). No spleen was identified. Image reprinted without
changes from Dong, et al. under the creative commons license.
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FIGURE 13: Congenital malformations of the heart
Balanced turbo field (bTFE) images of a 34-week gestational age fetus. Panel A demonstrates the
aorta arising from the right ventricle as demonstrated by the anterior location of the ventricular
mass. The pulmonary artery arises from the left ventricle as demonstrated by the posterior location
of the ventricular mass. Panel B is an axial slice demonstrating a ventricular septal defect. Image
reprinted without change from Dong, et al. under the creative commons license.
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FIGURE 14: Dextroposition and dextrocardia
Fiesta images of a 24 week gestational age fetus. Panel A is a coronal slice demonstrating the heart
in the right chest with a leftward pointing apex. There is a left-sided stomach and right-sided liver.
Panel B demonstrates the heart in a right chest with a rightward pointing apex. Image reprinted
without change from Dong, et al. under the creative commons license.

Protocols for cardiac MRI vary considerably as, thus far, experience is limited. After three plane
localizers are obtained, it is reasonable to obtain T2-weighted HASTE images in three planes
through the body. Next, cine acquisition using True-FISP should be obtained in multiple
planes. This can be done by obtaining three orthogonal planes in the thorax, or by using
localizers to set up specific image planes corresponding to those of fetal echocardiography.
These include transverse views allowing for the equivalent of the four-chamber, five-chamber,
pulmonary outflow, and aortic arch views from echocardiography. Sagittal views offer the
equivalent of the short axis of the left ventricle, a short axis of the tricuspid and aortic valves,
long axis of the arterial duct, and long axis of the aortic arch. Angulated views allow for the
provision of the equivalent of long axis views of the left ventricle, and a ductal arch view with
both the aortic arch and arterial duct visible. For evaluation of the fetus in its entirety, T2
weighted HASTE images should be obtained in three planes, with a TE of 140 if less than 30
weeks gestational age, and a TE of 100 if greater than 30 weeks gestational age with 4 mm slice
thickness. The fetal body should have already been imaged adequately with aforementioned
T2-weighted HASTE imaging acquired in three planes.
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Gastrointestinal malformations
Gastrointestinal malformations are to be anticipated in heterotaxy, with abnormal
lateralization of the abdominal organs being the rule. Historically, the position of the
abdominal organs has been described in terms of situs solitus, situs inversus, or situs
ambiguous. The true value of these terms, however, is limited. Use of "situs ambiguous", in
particular, implies unnecessary uncertainty since it does not provide any account of the
location of the different organs. It is best simply to describe the lateralization in terms such as
left-sided stomach and right-sided liver for so-called "situs solitus" (Figure 14), right-sided
stomach and left-sided liver for "situs inversus" (Figure 15), and right- or left-sided stomach
with midline liver for "situs ambiguous" (Figures 9-10). The gallbladder and the pancreas may
also lie on the other side of the abdomen from what is expected.
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FIGURE 15: Abnormal abdominal situs
T2-weighted HASTE image in the coronal plane demonstrating a right-sided stomach and left-sided
liver. Image reprinted without change from Martin, et al. under the creative commons license. 

Apart from abnormal lateralization of the major organs, other gastrointestinal malformations
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are to be anticipated. While not purely gastrointestinal malformations, tracheoesophageal
fistulas (Figure 16) and congenital diaphragmatic hernias (Figure 17) can be associated with
heterotaxy [14, 37, 46-48]. Perhaps the most frequent gastrointestinal manifestation,
nonetheless, is malrotation [49]. Routine screening for malrotation in the setting of heterotaxy
is currently under debate, since screening studies in asymptomatic infants likely offer no
benefit [50]. Prophylactic Ladd's procedures carried out in asymptomatic patients may be
harmful, particularly in patients who have had cardiac palliation with a shunt, since the
procedure increases the risk of shunt thrombosis [51]. Omphalocele (Figure 18) has also been
noted in those with heterotaxy and is always associated with a degree of malrotation [14, 48,
52-53]. Biliary atresia, duodenal atresia, agenesis of the dorsal pancreas, and anal atresia are
also found [54-58]. Heterotaxy, furthermore, is known to carry a higher risk of portosystemic
shunts, known as Abernethy malformations [59-61].

FIGURE 16: Horseshoe kidney
T2-weighted HASTE imaging of a 33-week gestational age fetus. Panel A consists of a sagittal
image demonstrating a horseshoe kidney (arrow). Panel B is a sagittal slice also demonstrating a
horseshoe kidney and a pouch in the upper esophagus (arrow) consistent with a diagnosis of
tracheoesophageal fistula. Image reprinted without change from Martin, et al. under the creative
commons license.
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FIGURE 17: Congenital diaphragmatic hernia
Coronal (A), sagittal (B and C), and axial T2-weighted HASTE images demonstrate a large left-
sided diaphragmatic hernia containing stomach (black arrow), left hepatic lobe (thick white arrow),
and loops of bowel (small white arrows).

FIGURE 18: Omphalocele
T2-weighted HASTE imaging of a 21-week gestational age fetus. Panel A is an axial image
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demonstrating intestinal loops lined with peritoneal membranes that are outside of the abdomen.
Panel B is a sagittal slice demonstrating bowel loops outside of the abdomen as well as insertion of
the umbilical cord. Image reprinted without change from Martin, et al. under the creative commons
license. 

When imaging the fetus with a focus on the body, localizers should be obtained in three planes
to determine the fetal lie. Next, T2-weighted HASTE images of the brain should be obtained in
three planes. Once again, a TE of 140 should be used for gestational age of less than 30 weeks
and 100 if greater than 30 weeks with a slice thickness of 4 mm. Next, T2-weighted HASTE
images of the body should be obtained in three planes with a TE of 80 and slice thickness of 4
mm. SSFP images should then be obtained in three planes using a flip angle of 110 and slice
thickness of 6 mm. This should be followed by T1-weighted coronal images of the body to
assess for anorectal malformations. If there is a particular concern for a tracheoesophageal
fistula, then T1-weighted sagittal images of the body should be obtained.

Immunologic malformations
Abnormalities of the spleen are to be expected in those with heterotaxy. While not absolute
rules, multiple spleens are more commonly noted in those with left isomerism, with an absence
of the spleen typically found in those with right isomerism. Some fetuses, nonetheless, will
have a normally-sized solitary spleen, which can either be right- or left-sided [23-24]. While
discussion of visceral function is beyond our current scope, splenic dysfunction can be noted,
even in the presence of a normally located solitary spleen, and in those with multiple spleens
[29]. The spleen can be assessed using the fetal body protocol as outlined for assessment of
gastrointestinal malformations. Imaging the spleen, however, may be difficult and may not be
reliable in the fetus.

Genitourinary malformations
Heterotaxy is associated with malformations of the genitourinary system, including horseshoe
kidney (Figure 16), ectopic ureters, ureteral duplication, cystic kidneys (Figures 1, 19), solitary
kidney, and cloacal duplication [58, 62-63]. These malformations may be assessed using the
fetal body protocol outlined above, although all stacks should be extended to include the fetal
pelvis.
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FIGURE 19: Multicystic kidney
T2-weighted HASTE imaging of monochorionic, monoamniotic twins. Panel A demonstrates the
affected twin is on the right with a thickened and distended bladder. Panel B is an axial slice
demonstrating a multicystic kidney (arrow). Reprinted without change from Bischoff, et al. under the
creative commons license

Other malformations
There are few other malformations that do not fall into one of the other categories above. Cleft
lip and cleft palate, for example, do not lend themselves to any of the previous categories, but
are known to exist in heterotaxy. Imaging of the cleft lip or cleft palate can be done with any of
the above protocols, with attention to ensure that brain images are extended to include the
entirety of the fetal head.

Conclusions
As the indications for fetal MRI increase, so does the need to recognize underlying syndromes
or clinically recognized constellations of symptoms, such as is known to exist in so-called
visceral heterotaxy. Associated findings should prompt more detailed assessment of other
systems than those of the original interest. The findings will then better facilitate appropriate
counseling. 
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