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Abstract

Magnetic resonance imaging (MRI) is generally used to identify, describe, and evaluate treatment responses
for focal hepatic lesions. However, the diagnosis and differentiation of such lesions require considerable
input from radiologists. In order to reduce these difficulties, radiomics is an artificial intelligence (Al)-based
quantitative method that employs the extraction of image features to reliably detect and differentiate focal
hepatic lesions. MRI radiomics is a novel technique for the characterization of focal hepatic lesions. It can
aid in preoperative evaluation, treatment approach, and forecast microvascular invasion. Although many
studies have illustrated its efficiency there are certain limitations such as the absence of a large diverse
dataset, comparison with other AI models, integration with histopathological findings, clinical utility, and
feasibility.
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Introduction And Background

Focal hepatic lesions represent a heterogeneous set of benign and malignant tumors with different
pathogeneses, clinical manifestations, and prognoses. It is common practice to employ magnetic resonance
imaging (MRI) to identify, describe, and evaluate treatment responses for these lesions [1]. However, due to
aberrant presentations, uncommon tumor development over time, and overlap in imaging characteristics,
characterizing such lesions can be difficult [1]. Subjective interpretation, inconsistent definitions, and reader
experience all have an impact on the qualitative assessment of imaging features, which might result in less-
than-ideal inter-reader agreement [1]. Differential diagnosis, predicting tumor aggressiveness, and

assessing therapy response present difficulties for radiologists [1]. In recent years, various quantitative
imaging methods have been proposed to overcome these difficulties. Radiomics is one such method that
employs the extraction of image features to reliably detect and differentiate focal hepatic lesions.

Review
Objective

The purpose of this article is to provide a comprehensive review of MR-based radiomics in the imaging of
focal hepatic lesions.

Methods

An electronic search was carried out in various search engines like PubMed, Scopus, and Google Scholar,
using keywords such as “radiomics,” “MRI,” “hepatic lesions,” “imaging,” “diagnosis,” and their
combinations. For this review, only articles published in English were considered. Nineteen articles were
selected for detailed analysis based on relevance to the topic.

What is radiomics?

Radiomics is a novel radiological technique that permits decrypting medical imaging into minable numerical
data and extracting high-throughput quantitative imaging features beyond human assessment [2]. Large
datasets with radiomic features allow for the improvement of liver imaging assessment through
sophisticated statistical models such as artificial intelligence (AI) and machine learning [1]. These models
help explain the features of tumors, guide therapy choices, and enable prompt modifications to treatment
plans [1]. Additionally, they tailor treatment plans to the specific needs of each patient [1].

Radiomics workflow

The radiomics workflow consists of several steps namely [3] - image acquisition, volumes of interest,
segmentation, feature extraction, data integration and mining, and model building.
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Image Acquisition

Relaxation times, scanner characteristics, acquisition settings, and image processing are variable parameters
that influence the quality of images in MRI. Radiomics characteristics which depend on variations between
voxel intensities instead of a particular voxel intensity would be ideal [4]. In order to mitigate this, a large
data acquisition preferably from multiple centers and representing a diverse set of populations is beneficial.

Volumes of Interest

The identification of areas of interest within a tissue or a lesion is crucial for radiomic analysis. Different
combinations of imaging data are used to form areas called “habitats” which have a particular set of
parameters like the flow of blood, necrotic content, cellular density, etc. [3]. “Habitats” are actually
subregions of the suspicious areas or lesions [3]. One of the main constraints in identifying such regions is
the absence of a universal protocol for imaging [5]. Since the feasibility of such a protocol is daunting, the
focus should be put on transparency of the protocols used [5].

Segmentation

There are mainly two types of segmentation which are used- semiautomatic and manual [6]. There are no
proper guidelines as to which type should be used. Semiautomatic segmentations are generally robust but
commonly images are segmented manually. Segmentation is a very important step in radiomics because the
subsequent analysis is based on this particular step. Evaluation by different clinicians and application of
different algorithms might prove to be useful in this regard [6].

Feature Extraction

Clinical images can be used to extract a variety of features, such as quantitative features extracted by
software using mathematical algorithms, qualitative features describing the shape and voxel intensity
histogram, and qualitative semantic features used in radiology to describe lesions [7]. Either straight from
the photos or after using filters or other transformations, these features can be retrieved. Shape
characteristics are a subset of quantitative features that characterize the geometric qualities and shape of
the traced area of interest (ROI) [8]. Without taking spatial links into account, first-order statistics
characteristics describe the distribution of individual voxel values [8]. Textural features, which are second-
order statistical features, compute the statistical correlations between contiguous voxels and indicate the
intra-lesion variability and spatial organization of voxel intensities [8]. After applying filters or
mathematical transformations to the images, statistical techniques such as fractal analysis, Minkowski
functionals, wavelet transform, and Laplacian transforms of Gaussian-filtered images yield characteristics of
higher-order statistics [8]. Radiomics is a technique that quantifies image qualities by extracting many
parameters from a single image. This approach, which was first created for fields studying molecular biology,
processes the data using sophisticated statistical techniques. The use of textural features and filters in signal
processing is the primary invention in radiomics [8]. The approach also leverages big-data analytics and
extensive data-analysis expertise from other omics fields [8]. Choosing which and how many parameters to
extract from photos presents challenges, though [9]. The amount of input variables determines the methods
for data analysis, which may have an impact on the outcome [9]. A preliminary analysis to identify the most
repeatable and reproducible parameters, reducing them through correlation and redundancy analysis, or
making an a priori selection based on their mathematical definition are some methods [9]. Another is to
start with all features offered by the calculation tool [9]. Machine learning methods are becoming used as
practical instruments for feature selection.

Data Integration and Mining

Radiomics requires a large amount of high-quality data for training. Such datasets are not available easily.
Most of the available datasets are retrospective and hence lack adequacy in the generalizability of results.
There is a need for prospective datasets. The correlation between different radiomic features can be
achieved through clustering.

Model Building

The three primary components of radiomic modeling are feature selection, modeling technique, and
validation [10]. Incorporating information beyond radiomics, such as clinical records, treatment data, and
biological/genetic data, feature selection should be robust and data-driven [10]. Selecting the right modeling
methodology is essential, and a thorough radiomic study cannot be completed without validation [10]. Data-
driven feature selection should be used to identify archetypal characteristics using dimensionality reduction
approaches and remove features that are not resistant to variability [10]. Feature discretization is the process
of converting continuous information into discrete binary interval features, and sample distribution
correctness is measured through bootstrapping [10]. The modeling methodology that is selected frequently
consists of a single, inherently limited technique [10]. While not necessary, using many modeling techniques
is desirable. The modeling methodology that is selected frequently consists of a single, inherently limited
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technique [10]. The main measures used in validation approaches to evaluate the performance of the model
are discrimination and calibration [10]. The best-case scenario would involve the use of several machine-
learning techniques and thorough documentation of the implementation.

Radiomics quality score (RQS)

In order to evaluate previous and upcoming radiomic research and ensure adherence to best-practice
protocols and justification for non-compliance, the RQS has been developed [11-13]. Publications should
report research design, protocols, quality assurance procedures, and standard operating procedures in great
detail, avoid making too optimistic promises about robustness and generalizability, and explicitly state how
the study has progressed the profession by identifying unmet requirements [11-13]. For radiomics to
advance, strict reporting criteria are required, and a growing number of publications now support and
encourage the submission of substantial supplemental materials [11-13]. In order to reduce bias and
improve the utility of prediction models, the RQS also addresses the inadequate reporting of prediction
model research, mandating complete and unambiguous reporting of data [11-13]. A case in point is the
endeavor known as Transparent Reporting of a Multi-Variable Prediction Model for Individual Prognosis or
Diagnosis (TRIPOD) [14].

MRI radiomics in differentiation between the benign and malignant type
of focal hepatic lesions

Starmans et al. created a radiomics model to use (MRI) to differentiate between benign and malignant
primary solid liver lesions [15]. Between 2002 and 2018, 486 patients from three tertiary referral hospitals
were used to evaluate the machine learning-developed model [15]. The findings revealed an internal
validation mean area under the curve (AUC) of 0.78 and an external validation AUC of 0.74 and 0.76 [15]. In
addition, it was discovered that the model could be used for a wide range of MRI acquisition procedures [15].
The research indicates that radiologists may be able to enhance the diagnostic process for patients with liver
abnormalities by pursuing additional optimization and generalization. There is substantial potential for the
model to discriminate between benign and malignant lesions [15]. The purpose of the study by Wu et al. was
to assess the classification of hepatic hemangioma (HH) and hepatocellular carcinoma (HCC) using
radiomics and precontrast MRI [16]. From magnetic resonance scans of HCC and HH, the researchers
retrieved 1,029 radiomics characteristics after enrolling 369 consecutive patients with 446 lesions [16].
Radiomics characteristics were utilized to identify HH and HCC using four classifiers [16]. Additionally, two
abdominal radiologists conducted a qualitative categorization analysis [16]. Receiver operating characteristic
(ROC) analysis was used to assess the diagnostic performances [16]. The findings demonstrated that when
four sequences were added, the logistic regression classifier had superior predictive power [16]. There was no
statistical difference in the diagnostic performance of the optimal radiomics-based combined model
between experienced radiologists (10-year experience) and less experienced radiologists (2-year experience)
[16]. According to the study's findings, a radiomics signature can be created and verified as an additional tool
for differentiating between HH and HCC [16]. In order to differentiate hepatic epithelioid angiomyolipoma
(HEAML) from HCC and focal nodular hyperplasia (FNH), two radiomics-based models were developed and
validated by Liang et al. [17]. Preoperative contrast-enhanced CT and MRI scan data from 170 and 137
patients, respectively, were used in the study [17]. From each patient's ROI, quantitative texture and wavelet
features were recovered [17]. The random forest approach was utilized to create radiomic signatures, while
multivariate linear regression and 10-fold cross-validation were employed to develop fusion models [17].
The outcomes demonstrated that the random forest algorithm-based radiomics signatures had the best
prediction performance in both CT and MRI data [17]. It was discovered that the fusion models were very
good at differentiating HEAML from FNH and HCC, which suggests that they could be used as diagnostic
tools for customized treatment plans [17]. The purpose of the study by Zhao et al. was to create and verify a
radiomics-based model for the preoperative distinction between HCC and fat-poor angiomyolipoma (fp-
AML) in noncirrhotic livers using contrast-enhanced MRI (CE-MRI) [18]. A dataset including three cohorts -
a training cohort, an internal validation cohort, and an external validation cohort - was used to evaluate the
model on 165 patients from three different medical centers [18]. The combined model outperformed the
other models in terms of AUC [18]. The combined model's diagnostic accuracy, sensitivity, and specificity
were better than the two radiologists' respective ones [18]. In both validation cohorts, the combined model
outperformed the models of the two radiologists and was much higher than the junior model [18]. The
objective of the work by Zhang et al. was to assess the variability of radiomic characteristics in HCC that
were retrieved from several diffusion-weighted images (DWIs) with b-values [19]. Twelve healthy volunteers
and 34 HCC patients made up the research population [19]. Sequences were performed on each case at 10 b-
values between 0 and 1,500 s/mm2 [19]. For every case series, 74 radiomic characteristics 19 first-order
statistical features, and 55 texture features were retrieved using the 3D Slicer Radiomics software [19]. The
research discovered that b-values in HCC were a determining factor in the intensity histogram
characteristics and texture features obtained from DWIs [19]. About 26%, 28%, and 46% of the radiomic
properties were accounted for by low variations (%COV <30), moderate changes (30< %COV <50), and
significant variations (%COV >50) [19]. A minor dependence was seen in about 4% of radiomic
characteristics, but about 70% exhibited positive or negative dependence on b-values [19]. Additionally, the
study discovered that radiomic characteristics with good repeatability were retrieved from DWIs'
neighboring b-values [19]. Hepatic cancer and normal liver can be distinguished using 12 radiomic
characteristics [19]. The study by Oyama et al. assesses the precision of T1-weighted MRI in the
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categorization of liver cancers [20]. Fifty HCCs, 50 metastatic tumors (MTs), and 50 HHs were among the 150
hepatic tumors evaluated in the study. For categorization, persistence pictures and texture features were
computed [20]. There were three models of classification in use [20]. The study discovered that employing
texture analysis, HCC, and MT categorization had an accuracy of 92%, with degree 1 persistence images
yielding the highest accuracy of 85% [20]. These techniques enable the classification of hepatic tumors with
a high degree of accuracy, which may be helpful for computer-aided diagnosis using MRI [20]. The purpose
of the research by Jansen MJA, Kuijf HJ, Veldhuis WB, Wessels FJ, Viergever MA, Pluim JPW was to evaluate
the utility of gadoxetate disodium-enhanced MRI in the differential diagnosis of hepatic cavernous
hemangioma (HHE) and HCC [21]. Radiomic texture parameters were evaluated for classification and
differentiation using data gathered from 135 HCC and HHE lesions [21]. Over 50% of radiomic features had
substantial differentiating power, according to the results, with the gray-level co-occurrence matrix feature
SumEntrp doing well in classification [21]. For multivariate analysis, the SFS algorithm was used since it
produced superior results to alternative algorithms [21]. The study suggests that HCC and HHE can be
effectively diagnosed using gadoxetate disodium-enhanced MRI radiomic characteristics, which may help
with clinical diagnosis [21].

MRI radiomics in the prediction of microvascular invasion (MVI)

The goal of the study by Feng et al. was to create and validate a combined intratumoral and peritumoral
radiomics model for primary HCC patients that used gadolinium-ethoxybenzyl-diethylenetriamine (Gd-
EOB-DTPA) enhanced MRI to predict MVI prior to surgery [22]. One hundred ten HCC patients and 50 HCC
patients participated in the study [22]. They had a curative hepatectomy and a preoperative Gd-EOB-DTPA
enhanced MRI evaluation. 38.2% and 40.0% of the patients were MVI-positive, respectively [22]. Ten
features were chosen by supervised machine learning to create an MVI prediction model [22]. With its
excellent AUC, sensitivity, and specificity, combined intratumoral and peritumoral radionics model assisted
doctors in making accurate treatment decisions prior to surgery [22]. In a study by Chong et al., MVI and
recurrence-free survival (RFS) were predicted using radiomics-based nomograms for 356 patients with
solitary HCC < 5 cm [23]. In the validation cohort, the AUCs of the MVI nomogram were 0.879 by logistic
regression analysis and 0.920 by random forest [23]. Patients with an MVI had a median RFS of 30.5 months
and > 96.9 months, respectively [23]. Recurrence was independently predicted by age, histologic MVI,
alkaline phosphatase, and alanine aminotransferase, with an AUC of 0.654 in the RFS validation sample [23].
According to the study's findings, preoperative radiomics-based nomograms that use random forests could
be used as biomarkers to predict MVI and RFS [23].

MRI radiomics in hepatic metastasis

The objective of the study by Xu et al. was to develop a radiomics nomogram that would distinguish
intrahepatic mass-forming cholangiocarcinoma (IMCC) from colorectal cancer liver metastasis (CRLM) using
multiparameter MRI [24]. A training cohort of 133 patients, an internal validation cohort of 57 patients, and
an external validation cohort of 51 patients were all included in the study [24]. The least absolute shrinkage
and selection operator algorithm was utilized to extract and select radiomic features from the images [24]. A
clinical model was built using MRI results and clinical factors [24]. The radiomics model was built using six
characteristics, and in both the training and external validation cohorts, the radiomics signature
outperformed the clinical model in terms of discriminating [24]. Preoperatively, the radiomics nomogram
may prove to be a dependable and noninvasive means of prognosticating treatment plans [24]. The purpose
of the study by Granata et al. was to determine how well radiomics features from portal and arterial MRI
phases may predict clinical outcomes for patients with colorectal liver metastases [25]. Retrospective
investigation of individuals with pathologically proven colorectal liver metastases and MRI examination in a
preoperative context following neoadjuvant treatment were part of the study [25]. The cohort comprised 30
patients with a single lesion and a median age of 60 years, as well as 51 patients with 121 liver metastases
and a median age of 61 years [25]. The study came to the conclusion that radiomics can provide a more
individualized approach by identifying biomarkers and prognostic factors that may influence treatment
decisions in individuals with liver metastases [25].

By obtaining radiomic characteristics and pharmacokinetic information, the study by Li et al. sought to
determine whether HCC and hepatic metastasis of rectal cancer (HMRC) could be distinguished using
dynamic contrast-enhanced MRI (DCE-MRI) [26]. DCE-MRI was performed on 75 patients, of whom 34 were
HMRC cases and 41 were HCC cases [26]. Pharmacokinetic parameters and radiomic characteristics were
computed using a dual-input, tracer kinetic model and specialized picture post-processing software in this
investigation [26]. The hepatic perfusion index, endothelium transfer constant, and initial area under the
gadolinium concentration curve (IAUC) within the first 60 seconds (IAUC) between the HCC and HMRC
groups were found to differ significantly [26]. In addition, there were statistically significant variations
between the two groups in 17 radiomic characteristics [26]. Based on radiomic characteristics, Fisher's
discriminant analysis model has an accuracy of 89.3% [26]. The purpose of the study by Shu et al. was to use
radiomics to predict synchronous liver metastasis (SLM) in primary rectal cancer [27]. One hundred ninety-
four patients’ T2WI scans yielded 328 radiomics characteristics [27]. To minimize the feature dimension and
create the radiomics signature, the least absolute shrinkage and selection operator (LASSO) regression
method was employed [27]. To choose features with an 85% contribution, surplus characteristics were sorted
using principal component analysis (PCA) [27]. The net benefit was assessed using decision curve analysis
and a linear regression prediction model [27]. The model with the highest net benefit was the one based on
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the LASSO dimensionality building [27]. When paired with LASSO characteristics and clinical risk factors,
the radiomics nomogram demonstrated strong predictive ability [27]. According to this, radiomics based on
primary rectal cancer may offer a non-invasive method of estimating the risk of SLM in clinical settings
[27]. In order to assess the HMRC, the study by Hu et al. sought to determine the clinical utility of employing
radiomics models based on various MRI sequences [28]. Baseline MRI was performed on 140 individuals with
pathologically diagnosed rectal cancer between April 2015 and May 2018 [28]. Based on the findings of the
imaging tests, surgical pathology, and liver biopsy, the patients were split into two groups [28]. Using the
software, logistic regression models including specific radiomic features were created for the training and
test cohorts of data [28]. The study found that hepatic metastasis may be accurately assessed by the
combined model (T2WI+DWI+ADC), the T2WI model, and the ADC model; the train set's AUC was 93.5%,
89.2%, and 90.6%, while the test set's AUC was 80.8%, 80.5%, and 81.4%, respectively [28]. With a high AUC
that was on par with the T2WI and ADC models and the best fit to the calibration curve's diagonal reference
line, the combined model performed the best [28]. The purpose of the study by Shahveranova et al. was to
use integrated models based on clinical features and MRI radiomics to predict local tumor progression (LTP)
in patients with CRLM [29]. With regard to the 67 tumors in 42 consecutive CRLM patients, the study
collected 11 radiomics features for every phase and tumor [29]. Two integrated models were made using
feature reduction and machine learning, and a clinical model was built using clinical data [29]. According to
the findings, 16.6% of patients and 16.4% of tumors had LTP [29]. Before microwave ablation, the existence
of extrahepatic metastases was linked to a higher risk of LTP [29]. In both periods, radiomics scores were
considerably higher in patients with LTP [29]. In terms of predicting LTP, the combination model that
included clinical data and Phase 2-based radiomics features had the best discriminative performance [29].

Radiomic-clinical integration

The purpose of the study by Liu et al. was to determine how well MRI radiomics can differentiate
intrahepatic cholangiocarcinoma (ICC) from HCC [30]. One hundred twenty-nine HCC patients and 48 ICC
patients provided data for analysis. Radiomics characteristics were extracted from axial fat suppression T2-
weighted imaging (FS-T2WI), axial arterial-phase (AP), and portal-venous-phase (PVP) DCE-MRI sequences
using a 7:3 training and validation group [30]. The optimal radiomic characteristics were chosen using the
LASSO approach [30]. With every sequence, radiomic models were created using logistic regression [30].
These models included a joint radiomics model (JR model), a clinical model with optimal clinical variables
(C model), and a radiomics-clinical model incorporating ideal radiomic characteristics [30]. According to the
findings, MRI-based radiomics may be able to assist in the noninvasive separation of ICC and HCC [30]. The
goal of the study by Yang et al. was to create a radiomics nomogram based on T2-weighted imaging that
could distinguish between benign liver lesions with rich blood supply and hepatocellular cancer [31]. One
hundred forty-four individuals with benign blood-rich liver lesions and hepatocellular cancer had their
imaging and clinical data examined [31]. Three prediction models were created: a fusion model that
integrated clinical and radiomic parameters, a clinical model, and a radiomic model [31]. The most accurate
prediction model was compared to junior and senior radiologists' diagnostic performance [31]. In both the
training and validation sets, the fusion model significantly outperformed senior and younger radiologists in
terms of discrimination capabilities [31]. By avoiding the need for repeating contrast chemicals and
enhancing conventional imaging diagnosis, the T2WI-based radiomics nomogram enables early clinical
diagnosis and targeted treatment [31].

Comparison of MRI radiomics models with Liver Imaging Reporting and
Data System (LI-RADS) and European Association for the Study of the
Liver (EASL) diagnostic criteria

Jiang et al. assessed the diagnostic accuracy of radiomics models, the EASL criteria, and the LI-RADS for
HCC in high-risk patients [32]. Two hundred eleven individuals had liver surgery after receiving gadoxetic
acid-enhanced MRI between July 2015 and September 2018 [32]. A three-dimensional, multi-sequence
whole-tumor radiomics signature was created and verified in a separate group of patients [32]. The
outcomes demonstrated 86 and 82% for the LI-RADS criteria, 91 and 71% for the EASL criteria, and 73 and
71% for the radiomics signature, respectively [32]. Comparable AUCs were found for the LI-RADS, EASL, and
radiomics signature criteria [32].

Discussion

Radiomics might be used to identify liver metastases, particularly hepatic malignancy. The distinction
between benign and malignant tumors can be made and confirmed using a radiomics signature. Prior to
surgery, the combined intratumoral and peritumoral radionics model can help physicians make well-
informed treatment decisions. Hepatic tumors, including liver metastases, may be reliably distinguished
from non-hepatic tumors (HCC) and liver carcinoma (HHE) using fusion models. Nomograms based on
preoperative radiomics can be utilized as biomarkers to forecast RFS and MVI. Additionally, by identifying
biomarkers and prognostic factors that affect treatment decisions, radiomics can offer a more customized
approach. Noninvasive ICC and HCC separation may be aided by MRI-based radiomics while HCC and HHE
can be successfully diagnosed using gadoxetate disodium-enhanced MRI radiomic features, which may help
with clinical diagnosis. Delta radiomics texture features can detect and quantify the underlying biological
changes brought on by radiation delivery in hepatic lesions.
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Although many studies have illustrated its efficiency, there are certain limitations like the absence of a large
dataset, demographic variability in patients, multicentric data requirement, comparison with other Al
models like deep learning convolutional neural networks, integration with histopathological findings,
outcome precision, overfitting or underfitting, clinical utility, feasibility and studies involving different
types of hepatic lesions.

Conclusions

MRI radiomics is a novel technique for characterizing focal hepatic lesions. It can aid in preoperative
evaluation, treatment approach, and forecast microvascular invasion. The distinction and characterization
of benign, as well as malignant focal hepatic lesions with integration into clinical practice, is the ultimate
aim of radiomics. However, to do so, it is necessary to conduct further research that will address important
limitations in this field such as the presence of a diverse dataset that is generalizable, minimal or absent
overfitting or underfitting problem, and clinical feasibility.
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