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Abstract

Interferon-stimulated genes (ISGs), whose production is triggered by interferons, are known to defend the
host from pathogenic and cancer-specific antigens, one of which is by inducing apoptosis in infected or
mutated cells. It has been reported recently that specific ISGs aid cancer cells in evading
immunosurveillance and inflammatory cells by inhibiting the apoptosis process. This report reviewed four
apoptosis-regulating ISG proteins: interferon-stimulated gene 15 (ISG15), interferon alpha-inducible
protein 27 (IF127), interferon alpha-inducible protein 6 (IF16), and radical S-adenosyl methionine domain
containing 2 (RSAD2), demonstrating anti-apoptosis function, and considered them protumorigenic.
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Introduction And Background

Interferon-stimulated genes (ISGs) were first discovered as transcriptional genes produced by interferons
between late 1979 to 1984 when researchers were investigating methods to trigger interferon production in
fibroblast cells as a potential treatment for viral infections [1]. The characterization of numerous ISGs
evolved gradually, and their functional roles were discovered between 1985 and 1987 [2]. ISGs are produced
by immune cells that are macrophages, dendritic cells, T-cells, neutrophils, plasma cells, natural killer cells,
and other connective tissues, including vascular endothelial cells and fibroblasts, and regulated by specific
interferons. ISGs are part of innate immunity and have a role in inducing the death of virally infected cells
[3]. The ISG transcription is induced by interferons, which are proteins in the family of cytokines produced
by dendritic cells to activate host defence [4,5].

ISGs induced by type 1 interferons (IFN-1) included the IFI6, IF127, interferon-induced protein with
tetratricopeptide repeats (IFIT), ISG15, 2'-5-oligoadenylate synthetase like (OASL), RSAD2, and myxovirus
resistance 1 (MX1) genes that are involved in cell apoptosis, cell growth regulation, and angiostatic effects
mediation. For types 2 and 3 (IFN-2 and IFN-3), the C-X-C motif chemokine ligand 10 (CXCL10), interferon
regulatory factor 8 (IRF8), indoleamine 2,3-dioxygenase 1 (IDO1), interferon regulatory factor 1 (IRF1),
interleukin 10 receptor subunit beta (IL-10RB), and interferon-induced protein 44-like (IF144L) genes are
produced in response to inflammation and autoimmune pathologies [6-8].

Recent reports suggest that some ISGs have roles that function against defence mechanisms and exhibit
anti-defensive characteristics that promote tumour progression. Studies on the tumour microenvironment
(TME) of breast and colorectal cancer, which comprises cancerous and non-cancerous cells, including
fibroblasts, immune cells, blood vessel-forming cells, and proteins, have shown that the upregulation of
ISGs is associated with the inhibition of apoptosis and depletion of CD8 T-cells, which are crucial for
eliminating cancer cells [9-11].

The change in the role of ISGs from defensive to anti-defensive is likely the result of transmutation
following epigenetic reprogramming and immunoediting. This review focuses on the ISGs involved in the
apoptosis process to promote tumour progression.

Review
ISGs and apoptotic regulation

Apoptosis is a programmed cell death regulated by the immune system to maintain normal tissue
homeostasis and body defence mechanisms in the event of cellular injury or pathogenic exposure. Cell self-
destruction via apoptosis involves the caspase cascade pathway and leads to proteolytic
degradation/condensation of the nucleus and cytoplasm, which results in cell death. ISGs aid the process in
both virally infected and cancer cells via three caspase-mediated pathways: the extrinsic, intrinsic, and
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endoplasmic reticulum (ER) stress pathways (Figure 7) [12,13].
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FIGURE 1: ISGs regulating apoptotic pathways
TRAIL: tumour necrosis factor related-spoptosis-inducing ligand; FADD: Fas-associated protein with death

domain; tBID: truncated active BID fragment; BID: BH3 interacting-domain death agonist; BAX: Bcl2 like protein 4;
BAK: BRI1-associated receptor kinase 1

The image was created with BioRender.com.

Extrinsic Pathway

The extrinsic pathway is initiated when pathogens stimulate IFN-1 production, triggering the transcription
of ISGs such as ISG15 and IF127. These ISGs enhance the recruitment and activation of FADD. FADD is an
adaptor molecule that transmits apoptotic signals from death receptors on the cell surface, such as the
TRAIL receptors to initiate the caspase cascade [14-16].

Intrinsic Pathway

The intrinsic pathway is initiated through contribution by a set of ISGs, such as MX1, CXCL-10, and RSAD2,
through different mechanisms. They are found to be assisting in truncating BID in the cytoplasm. The
truncated BID then activates BAX and BAK to increase the mitochondrial membrane permeability and
release of cytochrome c; this then triggers caspase-9 to activate the caspase cascade within the nucleus [17-
19].

ER Stress Pathway

The ER stress pathway is initiated when misfolded proteins accumulate in the ER, leading to the activation
of inositol-requiring enzyme-1 (IRE1) on the ER membrane. IRE1 activation can trigger downstream
signalling events that include the activation of the caspase-3 cascade, inducing apoptosis in the cell during
pathological conditions. However, MX1 in a prostate cancer study was found to be upregulated in ER stress
pathway binding with heme-oxygenase (HO) as a downstream target in causing apoptosis in cancer cells
[20].

In the initial phases of cancer development, interferons initiate the defence mechanism against cancer by
inducing ISG transcription, activating the pathway proteins caspases 3 and 7, and triggering the apoptosis
process [21,22]. A few ISGs have been linked to the latter, such as IF127, IFIT, ISG15 and MX1 in breast
colorectal, cervical and prostate cancers, respectively [23-26]. However, recent evidence suggests that ISGs
also have a role in promoting tumour growth [27].

Tumour-promoting ISGs through apoptosis inhibition
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Cancer

Breast cancer

Colorectal cancer

Prostate cancer

Lung cancer

Colorectal cancer

Pancreatic cancer

Breast cancer

Gastric cancer

Oral cancer

Oral squamous cell
carcinoma

Esophageal
squamous cell
carcinoma

Pancreatic cancer

Cholangiocarcinoma

Breast cancer

Hepatocellular and
gastric cancer

Pancreatic cancer

A review of the literature found several reports claiming that ISGs promote tumorigenesis by facilitating
cancer cell growth, progression, metastasis, migration, and invasion. The studies, which investigated
immunosuppression, cell growth regulation, angiostatic effects mediation, epithelial-mesenchymal

transition, and glycolysis alteration in cancer cells, showed that ISGs are overexpressed in breast, colorectal,

pancreatic, oral, oesophagal, stomach, and liver cancers (Table 7).

Experiment/analysis

MDA-MB-231 subclone
D3H2LN, Cos1 and
HEK293t cell lines

LS 174T cell line and FFPE
tissue

LNCaP, PC-3 and 22RV-1
cell lines and FFPE tissue

HPAEDPIC cell line

FFPE tissue

Panc1, Mia paca 2, ASPC-1
cell lines and FFPE tissue

Bioinformatics

GES-1 and STAD cell lines

HEp-2

TSCCA and TCA8113 cell
line, FFPE tissue

KYSE150, KYSE520,
KYSE510, KYSE410,
KYSE450, KYSE180, 81 T,
and TE1 cell lines

Bioinformatic analysis

SNU308 cell line

MCEF-7 cell lines

LH86, Huh7, HLCZ01,
HLCZ02, HGC-27 and
BGC-823 cell lines

AsPC-1, MiaPaCa-2, BxPC-
3, Patu8988, Panc-1 and
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Mode of action

ISGylation, increase in EGFR recycling,
and Akt signalling

L1 gene-mediated NF-kB signalling

Overexpression under hypoxic conditions

Positive association of PHMG-P with an
increase in expression of MX1

Positive expression with lymph node
metastasis in end-stage patients

Increase in expression in cancer tissues in
end-stage clinical patients

The increase in mMRNA expression in the
high/low-risk overall survival groups was
the opposite in high/low-risk-free survival
groups and increase in neutrophils.

Regulating mTORC signaling pathway

Increase in expression of OASL in oral
cancer tissue with negative association
with ATM

Increase in expression in OSCC tissues
and cells

PABPC1-induced stabilization of IFI27
mRNA

Alteration in glycolysis decreases CD8 T-
cells

Increase in VEGF-A

Regulating ER-a by interacting with
CRM1/XPO1

Inhibited TRAIL-induced apoptosis

Whnt/B-catenin pathway promotes EMT.

Outcome

Tumour
progression

Tumour
progression
and
metastasis

Tumour
migration and
invasion

Tumour
formation

Prognostic
indicator

Tumour
invasion and
metastasis

Recurrence
and tumour
metastasis

Tumour
progression

Biomarker

Tumour
invasion and
inhibition of
apoptosis

Tumour
progression
and poor
prognosis

Tumour
progression

Angiogenesis
and tumour
proliferation

Tumour
growth and
proliferation

Tumour
formation

Tumour
proliferation

ISG

ISG15

MX1

OASL

IF127
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Acute myeloid
leukemia

Breast cancer

Esophageal
squamous cell
carcinoma

Tongue squamous
cell carcinoma

Breast cancer

Gastric cancer, lung
cancer and breast
cancer

CFPAC-1 cell lines and FIT
metastasis
Gene expression analysis in Tumour
. JAK/STAT pathway . . [44]
cancer tissues invasion
Overexpression of CXCL10 and cross-talk ~ Tumour cell
MDA-MB-231 and MDA- ; o
. mechanism between CXCR3 and EGFR migration and CXCL10 [45]
MB-468 cell lines . .
receptors invasion
Eca109, TE-1, Ec9706, ) ) ) ) Tumour
Higher expression correlation with poor .
Ryscis0andinyss ol rognosis and inhibits apoptosis b RICEIESSION [46]
lines and ESCC FFPE " g, . ey y. and
) reactive oxygen species accumulation )
tissue metastasis
) . . Tumour
Tongue FFPE cancer tissue IFI6 overexpressed in 6 tissue samples roaression IFI6
I
and Cal 27, SCC-9, SCC-25 negatively correlated with ATF3 and angam, [47]
i-
and SCC-4 cell lines inhibited apoptosis in cancer cells .
apoptosis
IFI6 induced mitochondrial redox
. Tumour
BT-549 and MCF-7 deregulation in breast cancer cells, . [48]
L . metastasis
inhibited apoptosis
Higher expression in cancerous tissue of
advanced stages had shorter disease-free  Prognostic
FFPE cancer tissue . 9 . . . ,g RSAD2 [49]
survival than patients with lower indicator

TABLE 1: Roles of ISGs in cancer

ISGs: interferon-stimulated genes; FFPE: formalin fixed paraffin embedded; AKT: protein kinase B; NF-kB: nuclear factor kappa-light chain-enhancer of
activated B-cells; PHMG-P: polyhexamethylene guanidine phosphate; mTORC1: mammalian target of rapamycin complex 1; ATM: ataxia-telangiectasia
mutated; PABPC-1: poly A binding protein cytoplasmic 1; VEGF-A: vascular endothelial growth factor-A; CRM1/XPO1: chromosomal region maintenance
1/Exportin 1; Wnt-B-catenin: Wingless type 1; JAK: Janus kinase; STAT: signal transducer and activator of transcription proteins; CXCR3: chemokine
receptor with 3 ligands; EGFR: epidermal growth factor receptor; ATF3: cyclic AMP-dependent transcription factor 3

expression in cancerous tissues.

The reports claimed that some ISGs including IFI6, IFI27 and RSAD2 showed anti-apoptotic roles by
directly inhibiting the apoptosis pathway such as arresting the cell cycle leading to inhibition of apoptosis

[27,50,51]. For example, IF16 is shown to directly inhibit the TRAIL-induced extrinsic apoptotic pathway [52],

whereas MX1 activates PHMG-P to indirectly block the apoptotic process [31].

ISGs found in cancer cells have been reported to dysregulate specific cytokine signal pathways like JAK/STAT

pathways, causing the activation of STAT protein and the activation of anti-apoptotic protein Bcl-2 (Table
I). The Bcl-2 activation causes inhibition of the intrinsic apoptotic pathway [44].

In the present review, four ISGs are found to directly interfere with the apoptotic pathway: ISG15, IF127, IFI6,
and RSAD2 and focus on the current understanding of them.

ISG15 is a member of the ubiquitin-like protein family and is involved in many cellular processes, including
immune regulation, autophagy, and cancer progression. It has been shown to exhibit complex dual roles of
promoting and suppressing tumour growth and metastasis in different tumour systems by promoting cancer
growth and inhibiting cancer cell apoptosis [53]. Studies on breast cancer found that proteins undergoing
post-translational modification by ISGylation sustain Akt signalling, which inhibits the caspase-mediated
apoptotic pathways and blocks cancer cell destruction [28]. In prostate cancer, overexpression of ISG15 is
regulated by hypoxia-inducible factors (HIF) under hypoxic conditions promoting the release of the anti-
apoptotic protein Bcl2, which inhibits apoptosis [30]. In colorectal cancer studies, ISG15 altered NF-kB
signalling by conjugating to key signalling proteins such as IkBa (inhibitor of KB alpha) and p65 (a subunit of
NF-kB), thereby causing inhibition of apoptosis [29].

IF127, also known as ISG12 or p27, belongs to the IFN-inducible genes. IFI27 downregulation and
upregulation in oral squamous cell carcinoma (OSCC) cell lines are linked to an increase and decrease in the
percentage of apoptotic cancer cells, respectively, indicating that an upregulation increases cancer cell
survival [37]. Only the OSCC study has connected IFI27 to promoting tumorigenesis by interfering with
apoptosis. The metabolic regulation mediated by IFI27 causes glycolysis deregulation in CD8 T-cells,
decreases its number, and aids cancer cells to progress [39]. IFI27 has been reported to be involved in the
growth of blood vessels by upregulating vascular endothelial growth factor-A (VEGF-A) in cancer cells [40].
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IFI6, also known as IFN alpha inducible protein 6 and G1P3, belongs to the FAM14 family genes and is found
to inhibit apoptosis in various cancer systems. In human multiple myeloma cell lines, IF16 temporarily
antagonises the TRAIL-induced apoptosis by preserving the mitochondrial integrity, such as Bcl-2 family
proteins, thereby preventing the release of pro-apoptotic factors and inhibiting the TRAIL-induced caspase
cleavage via death-inducing signalling complexes (DISC) [46]. Overexpression of IFI6 in breast cancer cells
inhibits apoptosis by inhibiting the tumour-suppressing IFN-1 characteristics, activating immune-
endocrine-elicited redox signalling [48]. This later interferes with mtROS-mediated apoptosis by blunting
the mitochondrial permeability and preventing the toxicity of high mtROS from inducing apoptotic
pathways [46]. Suppressing IFI6 in oesophageal squamous cell carcinoma cell lines elevates calcium uptake
by mitochondria, accumulates reactive oxygen species, and induces apoptosis. Conversely, when IFI6 is
ectopically expressed, the mitochondrial membrane potential is deregulated, inhibiting caspase-mediated
apoptosis [46]. In breast cancer, upregulation of IFI6 in endosomes and mitochondria and the binding IF16
with RAB+ endosomes dysregulate the mitochondrial resistance to apoptosis and thus ensued anti-apoptosis
in cancer cells [48].

Radical S-adenosyl methionine domain containing 2 (RSAD2) is an antiviral protein from the S-adenosyl-L-
methionine (SAM) superfamily of viperin enzymes. Only one report claimed it promotes tumorigenesis by
interfering with the apoptosis process. An immunohistochemistry study found that RSAD2 was highly
expressed in cancerous compared to non-cancerous areas of tissue samples of gastric, lung, and breast
cancer. Advanced clinical stage patients with higher RSAD2 expression, compared to those with low
expression, were also found to have a shorter disease-free survival period [48].

Protumorigenic ISGs

ISGs have been previously linked to a defensive role in viral infection and early cancer development studies
[54]. Emerging evidence suggests that they also demonstrate tumour-promoting characteristics, one of
which is inhibiting apoptosis of cancer cells, allowing them to continue to proliferate and progress.

The behaviour of the four ISGs above demonstrate characteristics that are consistent with the term
protumorigenic, which was first referred to by Nguyen et al. (2023) as proteins or genes in cancer tissues that
undergo epigenetic modification, with or without mutations, and have developed the capability to promote
tumour progression and metastasis; in this context, by ensuring the survival of cancer cells through
inhibition of programmed cell death [55,56]. Authors in cancer studies referred to the tumour-promoting
effects of IFN-1 as protumorigenic interferon alpha receptor 1 (IFNAR1) [10,51]. Thus, it is only sensible to
refer to the four ISGs as protumorigenic ISGs based on their roles in promoting tumorigenesis and to

discriminate them from those having a defensive role.

There is currently little discussion on how the roles of ISGs changed to become protumorigenic but because
ISGs are induced by interferons, the modification is likely instigated by protumorigenic interferons which are
responsible for modulating the extrinsic and intrinsic apoptosis responses and the production and mode of
action/nature of ISG [57].

According to Musella et al. (2022), protumorigenic interferons are the product of epigenetic reprogramming
by dormant cancer cells [10]. Epigenetic reprogramming alters the phenotypic characteristics of cytokines
through DNA methylation and chromatin remodelling but does not change the DNA sequence [58]. During
the elimination phase of tumourigenesis, cancer-specific antigens prompt the production of interferons to
trigger the transcription of ISGS to eliminate cancer cells, one of which is via apoptosis [59]. During the
equilibrium phase, some unstable dormant cancer cells in the TME survive the immunosurveillance and
aided by upregulated epigenetic factor lysine (K)-demethylase 1B (KDM1B), the cytokines/interferons
undergo epigenetic remodelling to yield protumorigenic IFN-1. The result of the process is a new
epigenetically reprogrammed cancer cell with enhanced aggressiveness and with capability of producing
protumorigenic ISGs [10].

TME also contributes to epigenetic reprogramming as the extracellular matrix is rich in stromal and immune
cells that produce cytokines and chemokines and foster a chronic inflammatory state that promotes
tumorigenesis [57]. Research has demonstrated that ISGs released by cancer cells into the TME inhibit the
anti-tumour function of cytotoxic T-lymphocytes (CTLs) through the activation of metabolic enzymes such
as IDO1, the activation of the inhibitory receptor, programmed cell death protein 1 (PD-1) by its major
ligand, programmed cell death ligand 1 (PD-L1), and extrinsic suppression by Forkhead box P3 (FoxP3+) and
regulatory T cells (Tregs) [60,61]. Suppression of immunosurveillance by IFN-1 in TME converts mature anti-
tumour neutrophils and macrophages to immature tumour-associated neutrophils N2 (TAN N2), and
macrophages M2 (TAM M2) phenotypes following an imbalance in the STAT activation pathways [62]. The
TAN (N2) and TAM (M2) cause an immunosuppressive microenvironment by releasing chemokines to
prevent CTL proliferation and inhibiting the capability for recognising cancer antigens through blocking of
its T-cell receptors [63,64]. Similarly, studies on plasma cells in TME demonstrated plasma cells' polarisation
to tumour-associated plasma cells. These tumour-associated plasma cells produce IgG that inhibits
macrophages and lymphocytes anti-tumour function involved in the cross-talk between the cancer cells
helping cancer cells to immune escape [65,66].
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Based on the findings from Musella et al. and studies on the polarisation of immune cells in TME, it is
understood that during immunosurveillance, the interferons in TME trigger upregulation of KDM1B in
dormant cancer cells, which, in turn, remodels the former through immunoediting, changing its phenotype
characteristics to protumorigenic. This protumorigenic interferon then triggers the JAK/STAT pathway to
produce protumorigenic ISGs that inhibit caspase-mediated apoptosis and render cancer cells with
stemness-like properties. It can be speculated that the protumorigenic IFN also leaves the cell a paracrine
effect and binds to IFNAR and induces similar protumorigenic ISGs in the nearby dormant cancer cells. It
also infiltrates other immune cells in TME by inhibiting cytotoxic T-cells directly and/or triggering the
immature neutrophils (N2), polarised plasma cells (P2), and immature macrophages (M2) to repress the

cytotoxic T-cells’ function of eliminating the cancer cells (Figure 2).

FIGURE 2: Hypothetical view of protumorigenic ISG production and role

in TME

ISG: interferon-stimulated gene; TME: tumour microenvironment; N: neutrophil; M: macrophage; L: lymphocyte; P:
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plasma cell; CC: cancer cell; DCC: dormant cancer cell; N2: immature neutrophil-tumour associated; M2:

immature macrophage-tumour associated; P2: polarised plasma cell-tumour associated; CK: chemokines

The figure was created with BioRender.com.

Conclusions

Studies indicate that there is a distinction between protumorigenic ISGs and defensive ISGs and that the
former, found in TME, are either epigenetically reprogrammed or genetically mutated to aid in cancer cell
proliferation and progression by, among others, inhibiting apoptosis and suppressing immune surveillance.

Protumorigenic ISGs have been found in many cancer cells but have not been studied in the

microenvironment together. Among the protumorigenic ISGs involved in apoptosis, two, the protumorigenic

IF16 and RSAD2, in OSCC TME, are less studied. Further, it is pertinent to discriminate between

protumorigenic and defensive ISG variants in TME at tissue and molecular levels to better understand their

involvement in the apoptosis process and apply them in immunotherapy.
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