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Abstract
Patient care has been revolutionized by the introduction of fluorescent dyes and the
incorporation of fluorescence technology in disciplines ranging from ophthalmology to
neurovascular surgery. These technologies enable clinicians and surgeons to produce accurate
and real-time images of difficult-to-see structures within the human body, providing a crucial
step to not only understanding biological processes but also advancing treatments. Isosulfan
blue, fluorescein, and 5-aminolevulinic acid have proven useful in multiple fields of medicine.
Indocyanine green (ICG) is another key fluorescent dye. Combined with specialized
intraoperative microscopes, it is ideal for vascular studies because it diffuses easily from vessels
into the interstitial space. Ultimately, images of the vascular system within the surgical field
can be observed on a video screen in real time. Today ICG allows neurosurgeons to evaluate the
quality of an aneurysm clipping, the potential for residual flow in a fistula or malformation,
and the patency of a bypass. With introduction of other dyes and improvements in imaging
techniques, we are likely to see an expansion in application of fluorescent technology in
neurosurgery and other fields, which will ultimately lead to better patient care and outcomes. 
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Introduction And Background
The use of dyes has a rich history in medicine, dating back to the antiquities. The introduction
of fluorescent dyes and the incorporation of appropriate filters for the use of fluorescence
technology has revolutionized the care of patients in disciplines as wide ranging as
ophthalmology and neurological surgery. Herein, we review the applications of fluorescence to
vascular neurosurgery and highlight recent uses and upcoming applications in development.

Physics of fluorescence
Fluorescence is the emission of light by a substance that has absorbed electromagnetic
radiation or other forms of light. In tissue, target molecules tagged with fluorescent probes can
generate a high-contrast image of the tissue with the use of a confocal microscope. This
tagging is especially useful because one fluorophore molecule can generate thousands of
photons that are crucial to the sensitivity of microscopes. Additionally, a single fluorophore can
be excited and detected repeatedly unless it is damaged due to quenching or photobleaching.
Quenching is the loss of fluorescence to the surrounding molecular environment, and
photobleaching is the irreversible destruction of a fluorophore due to the generation of reactive
oxygen.

Using a confocal microscope, fluorophores are excited with a laser beam that emits the
corresponding excitation wavelength. Before excitation, the fluorophore is in the molecular
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ground state, but after a photon of light is absorbed by the molecule, electrons move to a higher
energy excited state. Fluorescent light is produced when excited electrons lose energy to the
environment and return to the lowest excited singlet state; the electrons then move back to the
ground state and simultaneously emit fluorescent light at a longer wavelength than the
excitation light.

Every type of fluorophore has an extinction coefficient, which indicates its efficiency in
absorbing excitation light at a specific wavelength. A larger extinction coefficient indicates a
greater chance for light absorption, and the coefficient is proportional to the fluorescence
output of each fluorophore. The number of fluorescent photons that a fluorophore emits per
excitation photon absorbed is called the quantum yield. Because of their unique configurations,
fluorophores also have different excitation and emission spectrums. The emission spectrum of
a fluorophore provides the wavelength of maximum absorption, and the excitation spectrum
provides the wavelength of maximum fluorescence emission. In a pair of excitation and
emission spectrums, there can be an overlap between the higher excitation wavelengths and
lower emission wavelengths. The difference is called Stokes shift, and it is caused by the loss of
excitation energy during the electrons' return to the ground state. This overlap can cause the
brighter excitation light to overwhelm the emission fluorescence under a microscope; however,
the overlap can be eliminated with the proper excitation filter, emission filter, and dichromatic
beamsplitter. In the research setting, confocal fluorescence microscopy produces images
through a process of stimulated emission depletion (STED). Invented by Stefan W. Hell in 1994,
STED provides resolution by selectively deactivating fluorophores to enhance an area.

Fluorescent dyes used in medicine and surgery
The ability to produce images of what is difficult to see within the human body is a crucial step
in the understanding of biological processes. Before the advent of fluorescent dyes, a variety of
non-fluorescent dyes was used in medical applications. The classic application of dyes in
medicine was the gram stain used to identify different types of bacterial species. After the
advent of fluorescent technology, a huge number of dyes with fluorescent capabilities
improved the quality of images that could be clinically used.

Isosulfan blue is a dye used to visualize the lymphatic system, and it has been useful in
localizing sentinel lymph nodes in breast cancer patients. Cancerous tissue can be removed
through isosulfan blue-guided surgery, but its use has been associated with a significant
number of allergic reactions [1-2]. Indigo carmine is commonly used as a pH indicator, but it is
clinically used as a dye to detect amniotic fluid leaks. During surgery, intravenous indigo
carmine highlights the urinary tract as it is filtered from the blood and colors the urine blue. In
some cases, it can cause a potentially dangerous increase in blood pressure, but it allows the
structures of the urinary system to be visible and observed for any leaks [3].

One of the very first fluorescent dyes to be developed was fluorescein. In 1871, Adolph Von
Baeyer synthesized Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-dihydroxy and he
received the Nobel Prize in chemistry. One of the earliest medicinal uses of fluorescein was in
1882, when Paul Erlich used uranin, the sodium salt of fluorescein, to observe the secretions of
the aqueous humor in the eye. Now, fluorescein has many different applications in
medicine and is commonly used to label and track cells. Today, the sodium salt of fluorescein is
used to diagnose corneal abrasions, corneal ulcers, and herpetic corneal infections. Intravenous
or oral fluorescein is now used in brain surgery, but was initially used in fluorescein
angiography to diagnose macular degeneration, diabetic retinopathy, intraocular tumors, and
intraocular inflammation.

5-aminolevulinic acid (5-ALA) was initially used in photodynamic therapy for the clinical
treatment of cancer patients. In photodynamic therapy, 5-ALA is administered and then
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activated by light. At the time, the new treatment was superior to the others because it was
non-invasive, produced good cosmetic results, was tolerable to patients, was able to treat
multiple lesions quickly, could be used for patients who refused surgery or had pacemakers,
could be applied in more specific locations, and could be applied repeatedly [4]. In 2000,
researchers began to think about the potential of 5-ALA for fluorescence-guided tumor
resection. The successful and complete removal of tumors is crucial to patient survival, so a
more accurate indication of unhealthy tissue was needed. 5-ALA is important because it
induces the accumulation of fluorescent porphyrins in glioblastomas, and all fluorescing tissue
can be identified and removed from the patient [5].

Indocyanine green: Applications in medicine

Indocyanine green (ICG) is commonly used for vascular studies, and is one of few dyes used in
humans. It is ideal for vascular studies because it diffuses easily from vessels into the
interstitial space. After being granted FDA approval in 1959, ICG was initially used in hepatic
function diagnostics and later in cardiology [6]. It became possible to determine renal blood
flow using ICG, and eventually it was used to research and diagnose processes in the choroid of
the eye [7]. Since 1980, imaging technology has improved vastly and many technical difficulties
have been removed. In more recent times, ICG has been used in fluorescent angiography,
ophthalmology, determining cardiac output, testing hepatic function, determining liver blood
flow, navigation for sentinel lymph node biopsy with tumors, diagnosis of rheumatic diseases,
vascular neurosurgery, detecting lesions in the breast, and tracing perfusion.

Today, the use of ICG for angiograms of the eye is fairly common, and is replacing fluorescein
angiography because it has better photon penetration capabilities. ICG can be used to visualize
the blood vessels within the eye and to diagnose various visual disorders. In breast
adenocarcinoma, ICG is taken up by mammary tumors and can be used to detect lesions [8].
Multiple groups have also shown that ICG can be used to identify vascular abnormalities within
the gastrointestinal tract and indicate the severity of burns [9].

Review
Indocyanine green in neurosurgery
In neurosurgery, fluorescein was first used to visualize cerebral blood flow, but it became clear
that ICG was more advantageous for clinical use. The light emission of ICG is superior to
fluorescein and more easily detectable, with few negative reactions from patients. Some of the
earliest applications of ICG  were in 1985 during investigations of factors that affect ICG
clearance [10].  Blood flow can now be tracked in vessels less than 1 mm in diameter without
complications [12]. In rat and human models, it has also been proven that ICG angiography can
improve tumor localization and enable the assessment of post-resection margins with
increased sensitivity [9]. Because of its accuracy, ICG angiography can provide information
regarding the patency and malformation of vessels in real time.

Clinically, ICG is administered to the patient intravenously at a recommended dose of 0.2–0.5
mg/kg. Once it has been injected, ICG is bound by globulins and remains within blood vessels
until it is excreted through the liver. Ultimately, images of the vascular system within the
surgical field can be observed on a video screen in real time. First, the field is illuminated by a
near infrared light source with the proper wavelength for the ICG absorption spectrum. The
ambient and excitation light should be blocked by an optical filter so that only the fluorescent
light is visible. After the dye has been administered, the fluorescence is activated and then
recorded by a video camera. ICG angiography is an integrated technique that requires the use of
a specialized surgical microscope (Carl Zeiss Ltd., Cambridge, MA) that integrates near-
infrared imaging into the surgical microscope to provide high-resolution and high-contrast
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images.

Applications in Aneurysm Surgery

In an early study in 1985 by Chauvin, et al., 14 patients underwent aneurysm surgery using ICG;
their changes in hepatic plasma flow during sodium nitroprusside-induced hypotension were
studied. There was no correlation between blood pressure and ICG clearance, and it was
demonstrated that ICG clearance is only affected by hepatic plasma flow regardless of
hypotension [10]. 

Sato, et al. used ICG to measure the circulating blood volume in 34 patients with subarachnoid
hemorrhages and 20 patients with neurosurgical disorders as a control group. The mean blood
volume of patients with subarachnoid hemorrhages was lower than the control patients; the
blood volume in females with hemorrhage was decreased more significantly than the males [13].
This showed that actively measuring blood volume during aneurysm surgery using ICG might be
necessary to preserve the normal volume when temporary vascular occlusion is required. 

In 2002, a new method for monitoring cerebral oxygenation and hemodynamics in patients
with subarachnoid hemorrhages was developed. To measure cerebral oxygenation and
perfusion in patients, Keller and colleagues used a technique combining near infrared
spectroscopy and ICG dilution. They analyzed the cases based on the decomposition in pulsatile
and non-pulsatile components of the absorption data before and during the flow of ICG
through the blood vessels under the near infrared spectroscopy-detector [14]. This method was
an easier and more efficient way than standard techniques to detect and treat radiographic
cerebral vasospasm after subarachnoid hemorrhage.

In 2003, Raabe, et al. showed that ICG can be used for the intraoperative assessment of vascular
flow within the brain. This was the first in vivo demonstration of blood flow in cerebral vessels
documented with ICG.  In 12 aneurysm cases, ICG was used intraoperatively without any side-
effects; the time course of ICG angiography was divided into arterial, capillary, and venous
phases. In three cases, the information provided by the live images significantly changed the
surgical procedure [15].

In a study by Raabe and colleagues of 20 patients with intracranial aneurysms, ICG permitted
the real-time assessment of vessel patency and aneurysm occlusion; ICG allowed the surgeon
to see perforating arteries with a diameter of less than 1 mm. In two cases, clip correction was
required, and the intraoperative findings correlated with the postoperative digital subtraction
angiography [16]. The study showed that the use of ICG could improve surgical procedures and
reduce the need for intra- or postoperative angiography.

Applications in Cerebral Arteriovenous Malformations

ICG has been used widely in treating spinal and cerebral AVMs.

Takagi, et al. reported on a child with a cerebral AVM, where ICG videoangiography showed
residual nidus of diffuse-type AVM. It was shown that the use of ICG is a safe and simple way to
assess the circulation within the brain. This demonstrated that ICG videoangiography could be
helpful in the resection of residual cerebral AVMs, and especially in cases of diffuse-type AVMs
[17].

In 2009, Killory and colleagues investigated the application of intraoperative ICG in 10
consecutive AVM surgeries. The use of ICG angiography was useful to the surgeon in nine

2014 Krakauer et al. Cureus 6(9): e199. DOI 10.7759/cureus.199 4 of 10



cases, and in eight patients, it helped to distinguish AVM vessels. In three of the four patients
undergoing a post-resection injection, the ICG indicated that there was no residual
arteriovenous shunting. In one patient, it helped to identify a small AVM nidus that was
otherwise not apparent within a hematoma. They discovered through digital subtraction
angiography that there was residual AVM in two of the 10 patients, which required further
resection [18]. This study showed that ICG angiography can distinguish AVM vessels from
normal vessels, but is less helpful with deep-seated lesions or when AVM vessels are not on the
surface. It also suggested that ICG angiography can be used in addition to digital subtraction
angiography, but cannot replace it.

ICG has also been used for assessment of arteriovenous micro-malformation (micro-AVM) of
the trigeminal root diagnosed during microvascular decompression for trigeminal neuralgia.
Ferroli, et al. discovered that the enlarged petrosal vein was arterialized, and that the
trigeminal root was embedded in a tangle of abnormal arterialized vessels. The surgical team
was able to recognize the micro-AVM because the ICG showed that the flow in the arterialized
petrosal vein was anterograde [19]. This showed that ICG videoangiography is suited for
determining the flow dynamics of blood vessels.

Hänggi and colleagues studied 15 patients undergoing surgical resection of intracranial AVMs;
intraoperative ICG videoangiography was used to analyze the malformations. In two cases,
the ICG videoangiography provided information that changed the surgical strategy. In all but
one case, the postoperative angiogram corresponded to the last ICG examination performed
after the resection, and there were no side-effects related to ICG injection [20]. This showed
that the use of ICG was safe and that it reveals information that can change a surgical plan.

In a study of three cases of cerebral arteriovenous malformations, the feeding arteries, the
draining veins, and nidus in all patients were easily identified using ICG [21]. This
demonstrated that with the help of color map and intensity diagram function, the feeders,
drainers, and nidus of a cerebral AVM can be identified easily through ICG videoangiography.
In a similar study, Faber, et al. combined ICG videoangiography and FLOW 800 software to
assess the time-dependent intraoperative blood flow during surgical removal of cerebral AVMs.
In two patients, this technology gave color-encoded visualization of blood flow distribution
with high temporal and spatial resolution [22]. The cases demonstrated that real-time analysis
of vessel architecture increases the efficacy and safety of AVM removal.

Zaidi and colleagues studied 130 patients undergoing surgical resection of cerebral AVMs; 56
patients had ICG videoangiography used at some point during the operation, and the other 74
did not. ICG videoangiography was more often used in AVMs that were lobar and located near
the cortical surface; it was less useful when the AVMs were located in the posterior fossa. The
results showed that ICG videoangiography did not affect clinical outcomes or reduce the
incidence of residual disease, but was helpful during some operations. The surgeons concluded
that it should be used to make a surgical plan for superficially located AVMs, but it cannot be an
isolated imaging modality to confirm residual disease [23].

Recently, Fukuda, et al. observed the flow dynamics during surgery for AVMs in seven patients
with FLOW 800 using ICG videoangiography. They recorded changes in flow dynamics in the
superficial AVM components, the adjacent cortical artery, and the cortical vein surrounding the
AVMs [24]. The experiment showed that at various stages of resection, FLOW 800 analysis with
ICG videoangiography could indicate the hemodynamic status of the AVMs and surrounding
brain.

Applications in Spinal Vascular Malformations
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ICG videoangiography has also been used intraoperatively to treat spinal vascular
malformations. ICG videoangiography gave direction to the vascular anatomy as demonstrated
by the preoperative angiogram.

Walsh, et al. showed in one case that the ICG videoangiography led to the complete obliteration
of a large AVM, but in another case, a diffuse intramedullary component could not be identified.
In the second case, a spinal angiogram revealed a significant residual diffuse nidus within the
cervical cord and thus revealed a limitation of ICG videoangiography [25]. Despite this, ICG
provided useful information about arteriovenous flow and helped to ensure the complete
removal of a spinal AVM.

Hettige and Walsh reported on one patient with a spinal dural arteriovenous fistula in whom
ICG was injected intravenously. Dynamic filling of the abnormal vasculature was observed. A
clip was applied to the fistulous connection, and ICG video angiography showed the
interruption of the fistula and the preservation of the associated spinal artery [26]. The
experiment demonstrated that ICG could shorten surgical time and provide reassurance of
completeness. In a similar case, a patient underwent T7-9 bilateral laminectomies for
microsurgical clip occlusion. ICG was used twice: before clip placement to identify the
arterialized veins of the fistula, and after clip placement to confirm obliteration of the fistulous
connection and restoration of normal blood flow [27]. ICG videoangiography is helpful because
it can be used to map the anatomy in real time during surgery and confirm that the fistula has
been obliterated.

Hanel and collaborators studied six patients undergoing surgery for spinal dural arteriovenous
fistulae. ICG videoangiography identified the fistulous point(s), feeding arteries, and draining
veins in all cases [28]. ICG videoangiography can serve as an independent form of angiography
or as a complement to intra- or postoperative digital subtraction angiography.

Raabe, et al. analyzed the use of ICG videoangiography during surgeries for two patients, one
with a spinal dural fistula, and one with an intracranial fistula. The image quality and
resolution were excellent, and allowed intraoperative real-time assessment of the cerebral or
spinal circulation [15].

In Schuette, et al.'s study of 25 patients, 13 with intracranial fistulae and 12 with spinal
fistulae, ICG videoangiography was used during surgery. ICG allowed visualization of the fistula
with precision, there were no complications, and the imaging confirmed fistula obliteration
[29]. In another study that included one patient suffering from an intracranial fistula, ICG
videoangiography was also helpful during the course of surgery [30].

Applications in Cerebral Artery Bypass Surgery

To increase cerebral blood flow, patients may need an extracranial-to-intracranial (EC-IC)
bypass. The procedure is a potential treatment for ischemic stroke, but is only used in a very
select group of patients.

Woitzik, et al. evaluated whether ICG videoangiography is suitable for intraoperative
confirmation of EC-IC bypass patency. In their study, 11 patients had hemodynamic cerebral
ischemia, 18 had Moyamoya disease, and 11 had complex intracranial aneurysms. ICG was
injected systemically via an intravenous bolus injection in all of the patients. Superficial
temporal artery-middle cerebral artery (STA-MCA) bypass surgery was performed 35 times in
30 patients (five patients with Moyamoya underwent bilateral procedures), superficial temporal
artery-posterior cerebral artery bypass surgery was performed in two patients, and saphenous
vein (SV) high-flow bypass surgery in eight patients. ICG videoangiography was used to identify
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four non-functioning STA-MCA bypasses, and in two cases of SV high-flow bypasses, it
revealed stenosis at the proximal anastomotic site. All of the ICG videoangiography findings
could be validated postoperatively through digital subtraction or computed tomography
angiography [31]. Because it provided visualization of cerebral arteries, the bypass graft, and
brain perfusion, the authors concluded that the use of ICG might reduce the incidence of early
bypass graft failure.

In a study published by Peña-Tapia, et al., 30 patients with hemodynamic cerebrovascular
insufficiency due to steno-occlusive arterial disease underwent EC-IC bypass surgery. ICG
angiography was used intraoperatively to determine the number, diameter, and length of the
exposed cortical arteries [32].

Esposito and colleagues tested the feasibility of ICG videoangiography for identifying cortical
recipient vessels to perform selective-targeted EC-IC bypass surgery in seven consecutive
patients treated for complex middle cerebral artery aneurysms. In all of the cases, the
technique enabled reliable identification of the cortical recipient artery and eliminated the risk
of erroneous revascularization of non-involved territories [33].

In another trial, ICG was used to evaluate bypass blood flow in 13 Moyamoya disease and 21
non-Moyamoya ischemic stroke patients during STA-MCA anastomosis. The ICG perfusion area
in Moyamoya patients was significantly larger than that in non-Moyamoya patients, and the
cortical oxygen saturation in the Moyamoya patients was significantly lower than that in the
other patients. The study showed that ICG angiography with injection of ICG into the bypass
artery could allow quantitative assessment of bypass blood flow [34].

ICG videoangiography was also used by Horie, et al. to assess postoperative cerebral
hyperperfusion in a prospective study of 47 patients who underwent STA-MCA single bypass
surgery. In this investigation, 36 patients had Moyamoya disease (22 adult cases and 14
pediatric cases) and 11 patients had atherosclerosis. Adult Moyamoya disease with
postoperative cerebral hyperperfusion was associated with a longer ICG peak time, but there
was no correlation between the ICG peak time and preoperative cerebral blood flow or vascular
reserve [35]. The study demonstrated that ICG videoangiography provides different
characteristics of bypass flow among adult and pediatric Moyamoya disease patients and those
with atherosclerosis. Uchino and colleagues performed a similar study of 10 patients. ICG was
evaluated for its capability to predict of postoperative hyperperfusion during surgery for
Moyamoya. The experiment also confirmed that ICG videoangiography is useful in evaluating
changes in cortical perfusion after bypass procedures for Moyamoya and can predict early-
onset hyperperfusion in Moyamoya patients after direct bypass [36].

In another study, Januszewski, et al. analyzed the use of ICG videoangiography in 33 bypass
patients because intraoperative graft patency had not always correlated with graft flow
previously. In all of their cases, the type of flow observed through the graft was confirmed on
postoperative imaging findings, and it was determined that ICG videoangiography is reliable to
evaluate flow in cases of EC-IC or intracranial-intracranial (IC-IC) bypass for ischemic stroke
[37].

Conclusions
Fluorescent technology has revolutionized the practice of medicine in general and
neurosurgery in particular. Today, ICG allows surgeons to evaluate quality of aneurysm
clipping, the potential for residual flow in a fistula or malformation, and the patency of a
bypass. With introduction of other dyes and improvements in imaging techniques, we are likely
to see an expansion in application of fluorescent technology in neurosurgery.
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