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Abstract
Cardiovascular disease remains a leading global health challenge, necessitating advanced diagnostic
approaches. This review explores the integration of artificial intelligence (AI) in multimodal cardiac
imaging, tracing its evolution from early X-rays to contemporary techniques such as CT, MRI, and nuclear
imaging. AI, particularly machine learning and deep learning, significantly enhances cardiac diagnostics by
estimating biological heart age, predicting disease risk, and optimizing heart failure management through
adaptive algorithms without explicit programming or feature engineering. Key contributions include AI's
transformative role in non-invasive coronary artery disease diagnosis, arrhythmia detection via wearable
devices, and personalized treatment strategies. Despite substantial progress, challenges including data
standardization, algorithm validation, regulatory approval, and ethical considerations must be addressed to
fully harness AI's potential. Collaborative efforts among clinicians, scientists, industry stakeholders, and
regulatory bodies are essential for the safe and effective deployment of AI in cardiac imaging, promising
enhanced diagnostics and personalized patient care.
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Introduction And Background
Cardiovascular disease (CVD) has remained one of the leading causes of overall mortality and morbidity in
the world. Evaluation of CVD entails several steps, including medical history, physical examination,
significant family history, testing with laboratories, and imaging in some instances. With the evolving field
of cardiology and new advances in therapy, provider decision-making has become more challenging.
Nevertheless, introducing and developing new technologies have also provided a counterpart to ease the
evaluation and prediction and aid decision-making [1]. The roots of multimodal imaging, a field that has
significantly advanced cardiovascular diagnostics, can be traced back to 1895 when Roentgen captured the
first radiation image of his wife’s hand [2]. Since then, the field has evolved from X-rays to computerized
tomography (CT) scans, magnetic resonance imaging (MRI), and nuclear studies. These advancements,
developed and refined over the past few decades, have provided a new perspective on diagnosing and
advances in treatment and marked a milestone in the history of medical imaging, deserving our utmost
respect and appreciation. 

Artificial intelligence (AI) was first introduced in the Second World War when Alan Turing designed the
machine that would break the Enigma code at that time and wondered if, in the future, machines would be
able to carry on different complex processes and, being one of them, the ability to rationalize [3]. Developing
intricate machines that carry out increasingly complex processes has made current disciplines more
manageable and specialized. Machine learning (ML) represents a facet of AI that operates without the
necessity for explicit programming. In cardiac imaging studies, ML techniques find broad application,
undertaking various tasks such as estimating biological heart age, predicting heart disease risk, and
forecasting heart failure. Deep learning (DL), a subset of ML, emulates the workings of the human brain,
exhibiting superior efficiency in executing simple and complex tasks compared to alternative systems. DL
models dispense with the need for feature engineering, a requirement often associated with classical ML
models [1,4]. 

Cardiovascular imaging alludes to different methods developed and is now used to study the heart's
anatomy, function, physiology, and structure. X-rays, cardiac CT, cardiac MRI, and echocardiography are
current techniques used to assess the heart, and each is used to evaluate different perspectives. Nuclear
imaging is a developing field, and it is now being used more frequently due to its non-invasive nature and
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ability to offer cardiac functionality and physiology from different standpoints, now also being able to be
interpreted by AI, posing ground for improvement in overall assessment [5]. Given AI's rapid evolution and
its different modalities and branches, we aim to review the various imaging studies in which AI has aided
cardiologists in finding alternate pathways, predicting outcomes, and guiding management in some
instances.

Review
The rapid integration of AI into healthcare, particularly within cardiac imaging, is underpinned by the
exponential growth of healthcare datasets. With the digitization of medical records, imaging studies,
genomic data, and wearable device information, there has been an unprecedented accumulation of vast and
diverse healthcare data. This wealth of data serves as a cornerstone for training AI algorithms to perform
myriad tasks, ranging from medical imaging interpretation to predictive analytics and personalized
medicine. In cardiac imaging, AI, reliant on ML algorithms, has witnessed significant advancements
facilitated by strides in computing power and data storage. These advancements have ushered in a new era
of innovation, with AI poised to transform various cardiac imaging modalities, including nuclear cardiology,
transthoracic echocardiography (TTE), and transesophageal echocardiography (TEE). 

In nuclear cardiology, AI-driven techniques such as single-photon emission computed tomography (SPECT)
and positron emission tomography (PET) are revolutionizing the assessment of myocardial perfusion and
predicting cardiovascular outcomes. With improved photon sensitivity and resolution, SPECT is approaching
PET's performance, while PET's ability to detect photon pairs offers high-quality images with lower radiation
exposure [6]. Recent studies have demonstrated the utility of AI in linking perfusion metrics from these
modalities to major adverse cardiovascular events (MACEs) over long-term follow-ups, showcasing its
potential in risk prediction and prognosis assessment [7,8]. Similarly, in TTE, AI enhances image quality and
analysis by identifying subtle patterns within extensive datasets, thereby promoting standardization and
reducing physician variability [9]. Through integration with electronic health records and pathology
reporting systems, AI aids in diagnostics and treatment planning, automating measurements, and improving
myocardial analysis efficiency and accuracy. However, the integration of AI into TEE remains in its nascent
stages, primarily due to the complex and varied nature of TEE data [10]. Despite its pivotal role in managing
peri-operative cardiac conditions and monitoring critical care patients, challenges persist in ensuring
reliable results through AI-driven automation. 

Nevertheless, advancements in convolutional neural networks and robust dataset acquisition promise to
overcome these challenges and advance TEE automation. AutoMAPSE, an AI-driven technology for
automatic quantification of mitral annular plane systolic excursion (MAPSE) through TEE, exemplifies the
potential of AI in enhancing cardiac imaging. By swiftly aggregating and averaging MAPSE measurements
from all available heartbeats, AutoMAPSE surpasses traditional clinical practices, minimizing variability and
enabling the detection of subtle changes in the left ventricular function [11]. 

Furthermore, AI's impact extends beyond imaging modalities like TTE and TEE, including coronary
computed tomography angiography (CCTA), enhancing lesion detection, diagnostic speed, and accuracy.
Through ML fractional flow reserve-CT (ML FFR-CT) and other AI-driven techniques, AI offers non-invasive
and cost-effective alternatives for assessing significant coronary lesions, improving risk stratification, and
decision-making in coronary heart disease (CHD) management [12]. Moreover, AI's ability to analyze
pericardial fat and quantify fat attenuation index facilitates risk prediction and management of adverse
cardiovascular events [13]. AI enhances diagnostic accuracy and consistency by integrating imaging data and
extracting quantitative information, revolutionizing CHD management. Researchers have explored
DL methods to automate the measurement of native T1 and extracellular volume fractions in cardiovascular
magnetic resonance (CMR) imaging, achieving high segmentation accuracy with reduced motion artifacts.
AI-driven contouring for accurate late gadolinium enhancement (LGE) quantification and myocardial
Infarction (MI) detection in non-contrast cine images, along with automated atrial fibrosis segmentation to
assess atrial fibrillation risk using convolutional neural networks (CNNs) and 3D U-net architecture, are
exemplary examples of the revolutionary utility of AI in cardiovascular imaging [14].

TTE
Since the invention of ultrasound and its extrapolation to be used in medicine, there has been a better
understanding of diseases and decreased invasive interventions. The use of ultrasound and its ability to
delineate the anatomy of multiple organs has aided in diagnosing and further treating patients, given that
nowadays, many procedures are performed through ultrasound. AI algorithms have revolutionized TTE by
enhancing image analysis and interpretation capabilities. These algorithms can accurately identify
anatomical anomalies, measure velocities, and calculate essential cardiac parameters such as ejection
fraction (EF) and global longitudinal strain (GLS). Nevertheless, one of the limitations has always been that
they are operator-dependent, and interpretation is subjective to the eyes of the person performing or
reading the test [15]. With the introduction of AI and its reach, ultrasonography has been revolutionized due
to its ability to analyze and approach the interpretation of cardiac imaging through ultrasound. One of its
most important applications has been the ability to improve imaging, identify anomalies, and measure
different velocities and distances that were performed before by humans [9].
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He et al. conducted a study demonstrating that AI was non-inferior to human sonographers in assessing
different parameters, such as EF, in both time and accuracy [16]. This blinded, randomized trial involved
independent cardiologists who could not distinguish whether AI or a sonographer conducted the initial
evaluation. Going beyond the relatively straightforward EF calculation, AI holds the potential to
significantly simplify the computation of three-dimensional (3D) EF, stroke volume, and valvular area.
Beginning with existing 3D full-volume heart models, these models are then adjusted for speckle tracking of
the individual patient [16]. Salte et al. performed a study to assess LV function using an echocardiogram and
deep learning to improve utility and reduce user variability. AI demonstrated lower test-retest variability
compared to scenarios involving different readers (data set I: minimum detectable change (MDC) = 3.7 vs.
5.5, mean absolute difference = 1.4 vs. 2.1, respectively; data set II: MDC = 3.9 vs. 5.2, mean absolute
difference = 1.6 vs. 1.9, all P < .05). Bias was observed in GLS measurements in 13 out of 24 test-retest
scenarios involving different readers, with the most significant bias being 3.2 strain units. In contrast, AI
measurements showed no bias [17]. 

TEE
While the utilization of AI in TTE is rapidly expanding, its application to TEE remains fully established.
Automated analysis of TEE data is constrained due to the complexity and lack of structure in TEE images
and dynamics, which exhibit significant variability across different views for evaluating cardiac structures.
The adoption of AI in TEE is hindered by the intricate multi-view format of echocardiography and the
unavoidable necessity for human intervention in image acquisition and interpretation [11]. 

In a study conducted by Yu et al., they evaluated a method to estimate left ventricular function by measuring
mitral annular plane systolic excursion through AI. They found that it took less than three heartbeats to
measure the mitral annular plane systolic excursion, had a low bias, and was more precise than manual
measurements if the averaged heartbeats were higher [10]. The application of AI in TEE is still widely to be
studied and implemented due to its different applications in real-time scenarios and critical decisions.
Steffner et al. described the identification by DL through which they exposed DL to other videos and images
to be identified and correctly classified. They found that the DL model could identify the eight most common
TEE views, intraprocedural and intraoperative, with high efficiency and accuracy [18]. 

CT coronaries
CCTA offers comprehensive imaging of coronary artery branches, aiding in the analysis of diseased vessels. It
supports cardiovascular risk assessment and treatment planning, providing predictive insights into cardiac
events. Its noninvasive, convenient, and cost-effective nature makes CCTA an optimal screening tool for
CHD [12]. AI has found application in diverse areas of cardiac CT imaging, seeking to enhance image
resolution, automate image reconstruction processes, extract clinically relevant scores and measurements
from contrast and non-contrast images, and predict patient outcomes. These applications extend beyond
assessing the coronary arteries to encompass other cardiac structures. CCTA is a valuable tool for detecting
coronary artery disease (CAD), but frequent scans can increase radiation exposure risks. Researchers are
exploring strategies to minimize radiation doses while preserving image quality to mitigate this. However,
solely focusing on dose reduction may compromise diagnostic accuracy. AI technology presents a promising
solution, allowing for radiation dose reduction without compromising image fidelity in CCTA scans [12,19]. 

Brodoefel et al. found that body size significantly influenced CCTA image quality. Larger-bodied patients
necessitated higher tube voltage and current to achieve comparable image quality to smaller-bodied
patients. However, elevating these parameters inevitably raises radiation exposure for patients. AI
diminishes radiation exposure by analyzing CT images from standard-dose phases to filter noise from low-
dose phases while preserving image details [20]. Coronary artery calcium (CAC) represents a sign of coronary
atherosclerosis characterized by a complex and controllable process. Calculated through CCTA, the coronary
artery calcium score (CACS) predicts cardiac events in asymptomatic individuals. Those with a CACS
exceeding 100 will likely benefit from lipid-lowering therapy, potentially reducing atherosclerotic
cardiovascular disease events [21]. Determining the CACS traditionally involves a semi-automatic process,
necessitating the outlining of contours or manual identification of calcium-containing objects. This method
is often time-consuming, requiring significant intervention by physicians. However, AI algorithms can
efficiently locate and segment vascular calcifications, automating the calculation of the calcification score.
Subsequently, diagnostic physicians review the CACS, significantly expediting the diagnostic process [12].
AI can swiftly analyze CT images and compute the CACS, addressing the existing scarcity of medical
expertise in this domain.

Atherosclerotic plaque accumulation in coronary arteries leads to stenosis, causing myocardial ischemia and
infarction. Plaque volume indicates CHD severity and prognosis. Plaques are classified into calcified,
noncalcified, and mixed types, each requiring tailored treatment [22]. Visual assessment of plaque and
stenosis from CCTA images is vital but laborious and prone to error, especially for noncalcified and mixed
plaques [19]. AI can analyze textures and structures using specific features in its model, automatically
automating plaque analysis and stenosis rate assessment. This reduces the workload for imaging staff.
Additionally, AI's integration of imaging data allows for the quick and automatic extraction of vulnerable
plaques, aiding accurate decision-making based on specific anatomical features [12,19]. 
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Kolosvalay et al. integrated radiomic parameters into eight ML algorithms. They trained the ML model using
75% of the dataset. In comparison, the remaining 25% underwent visual and histogram evaluations,
comparing the results with the ML model's performance using the area under the curve (AUC) metric. Their
study revealed that the ML model surpassed visual assessment in identifying advanced atherosclerotic
lesions [23]. Tesche and Rosendael conducted a comparative analysis of ML risk scores against traditional CT
risk scores, including the Agatston calcium score and segment involvement score (SIS), using AUC. Their
findings indicated that the ML model improved risk stratification accuracy based on plaque-derived
information [24]. The ML model exhibited significantly higher AUC values than conventional CT risk scores,
demonstrating strong agreement between unstable plaque measurements and clinical parameters, including
the Framingham Risk Score. ML effectively extracted comprehensive plaque information from CCTA scans,
allowing for more precise risk assessments. AI offers swift quantification of emerging imaging biomarkers.
The assessment of pericardial fat, indicating cardiometabolic risk, is feasible through standard cardiac CT
scans. Studies have shown DL's capability to automate epicardial fat measurement accurately, correlating
well with manual methods.

Moreover, changes in perivascular adipose tissue, reflective of coronary artery inflammation, can enhance
cardiac risk evaluation compared to conventional risk factors [13]. Recent advancements have seen the
application of radiometric techniques in evaluating the left ventricle (LV) myocardium to pinpoint areas of
ischemia or infarction. In a study by Mannil et al., radionics analysis on low-dose non-contrast CT scans
distinguished acute or chronic myocardial infarction from standard cases in 87 patients. Their ML model
achieved sensitivity up to 86% and specificity up to 85%, surpassing human readers. Moreover, radio mic
features are invaluable in automating CT myocardial perfusion imaging assessment [25]. Additionally, direct
myocardial analysis aids in assessing the severity of coronary artery stenosis in CCTA [26]. 

MRI
AI is revolutionizing the field of medical imaging, particularly in CMR, with sophisticated methods for
image acquisition, reconstruction, and analysis. These advancements profoundly impact clinical decision-
making processes, as recent years have seen a variety of methods emerge to optimize CMR data capture,
reconstruction, post-processing, and analysis. Alongside these developments, significant efforts have been
made to craft AI-driven biomarkers for various cardiac ailments, promising improvements in diagnostic
accuracy and treatment approaches. The digitalization of MRI signals and the rich diversity of contrast and
parametric information within the images render this field ideally suited for many AI techniques. A recent
study found a 573% increase in UK scans over a decade [27]. This demands more resources, including expert
time and scan costs. Advanced CMR techniques like high-resolution imaging and MR-derived biomarkers
require a cost-effective and time-efficient integration into clinical practice. AI holds great promise in this
context, given its ability to expedite MRI scanning, streamline image post-processing and reporting,
introduce innovative biomarkers, and integrate them into decision-making and predictive models.
Improving the pace of image acquisition can offer added benefits for patients experiencing claustrophobia,
anxiety, or difficulties following breath-holding instructions during scans. By accelerating scanning and
post-processing and enabling automated analysis, AI can facilitate broader access to sustainable, faster, and
more cost-effective CMR solutions, leading to enhanced patient care, especially in underserved areas [28].
Utilizing neural networks, researchers have applied innovative techniques to reconstruct data from rapidly
acquired under-sampled MRI images spanning different sequences. A super-resolution CMR angiography
framework, built upon deep learning principles, has successfully reconstructed low-resolution data obtained
within a 50-second scanning window, with dimensions measuring 1.2 x 4.8 x 4.8mm³ [29]. 

Steeden et al. employed a subset of the convolutional neural network, specifically the 3D residual U-net, for
super-resolution reconstruction on low-resolution 3D datasets of the whole heart in balanced steady-state
free precession (bSSFP). This approach yielded diagnostic confidence and accuracy similar to high-
resolution whole heart bSSFP scans in patients diagnosed with CHD [30]. Zhang et al. introduced an
innovative AI-based virtual native enhancement (VNE) imaging technique. This approach utilizes CNNs to
refine signal acquisition from native T1 mapping and cine imaging sequences, transforming them into
images akin to LGE. VNE offers contrast-free and efficient tissue characterization, exhibiting robust
agreement in quantifying tissue burden and delivering superior image quality compared to conventional
LGE images [31]. In a recent study, researchers employed a deep fully CNN to devise an automated
segmentation approach for quantifying tissue characteristics in native T1 mapping among hypertrophic
cardiomyopathy patients. This innovation demonstrated robustness against inter-observer variability and
reduced analysis time to less than a second [32]. 

CNN is also employed for automated phase velocity estimation and segmentation of four-dimensional flow
datasets. Additionally, they aid in estimating global and segmental myocardial strain from displacement
encoding with stimulated echoes (DENSE) images. Accurate CMR imaging requires precise acquisition, as
recommended by SCMR guidelines. Due to limited dedicated technicians, studies explore automating and
expediting CMR acquisition. Lu et al. introduced a learning-based algorithm to automate and accelerate this
process. They manually segmented a LV 3D model, co-registered it to the patient's heart using a tree-based
classifier, and adjusted it to match the patient's anatomy [33]. The manual segmentation of cardiac volumes,
involving tracing endocardial and epicardial contours, is crucial for evaluating biventricular function [34].
However, this process is time-consuming and becomes more challenging with variations in heart shape or
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datasets with low contrast-to-noise ratio. Various AI models have emerged to automate this segmentation,
aiming to simplify, expedite, and enhance accuracy in this essential task. During the 20th International
Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), the "Automatic
Cardiac Diagnosis Challenge" (ACDC) was held to determine the optimal AI model for automatic cardiac
segmentation. Bernard et al. examined various deep-learning algorithms for segmentation and classification
tasks [35]. Their results showcased a correlation score of 0.97 for the top-performing algorithm,
demonstrating strong performance in left ventricle segmentation but falling short in evaluating the right
ventricle and myocardium. LGE imaging and T1 and T2 mapping techniques enable the visualization and
quantification of whether focal or diffuse myocardial disease. Native T1 mapping techniques are adept at
detecting increased extracellular compartments observed in conditions such as amyloidosis, acute
inflammation, or myocardial fibrosis, as well as identifying iron infiltration or Fabry's disease [36]. Elevated
T2 mapping values provide highly accurate indications of myocardial edema. 

AI holds substantial promise in precisely evaluating these parameters, which is critical for diagnostic and
prognostic purposes. In their investigation, Moccia et al. assessed a segmentation model employing a full
CNN for LGE. They reported a Dice similarity coefficient of 71.3%, along with sensitivity, specificity, and
accuracy rates of 88.1%, 97.9%, and 96.8%, respectively. AI can enhance risk stratification and prognosis
prediction for patients with cardiomyopathies or undergoing invasive treatments [37]. Dawes et al.
investigated using an ML survival model based on 3D cardiac motion to predict outcomes in patients with
pulmonary hypertension, irrespective of conventional risk factors [38]. 

Stress test
Exercise stress testing is a foundational non-invasive diagnostic tool; however, its accuracy can vary based
on age, gender, and clinical characteristics, prompting the exploration of more reliable methods. Recent
advancements in ML, including DL and natural language processing, exhibit the potential to enhance the
interpretation of stress-testing data. DL has shown utility in examining resting electrocardiograms (ECGs)
and detecting arrhythmias like atrial fibrillation and ventricular tachycardia. Moreover, these algorithms
have identified patterns suggestive of various cardiac conditions, including valvular diseases, cardiac
amyloidosis, and hypertrophic cardiomyopathy. DL can also be applied to analyzing stress ECG and
echocardiography [39]. Several investigations have showcased impressive performance metrics in ML-
assisted stress echocardiography interpretation. 

Upton et al. devised an automated pipeline utilizing CNNs to extract features from stress echocardiography
exams. These features were employed to train an ensemble ML classifier for identifying severe CAD,
achieving a specificity of 92.7% and sensitivity of 84.4% during cross-validation. Integrating AI
classifications into clinical practice bolstered CAD detection by 10%, enhancing inter-reader agreement,
confidence, and sensitivity [40]. O’Driscoll et al. subsequently validated the model's high accuracy with an
AUC of 0.93, while also delving into AI's potential for computing left ventricular ejection fraction (LVEF) and
global longitudinal strain (GLS), thus refining stress echo interpretation [41]. The capability of the Treadmill
Exercise Test (TET) to detect Obstructive Coronary Artery Disease (OCAD) is hindered by its limited
sensitivity and specificity rates [42]. One primary limitation of TET is its unreasonably high rate of false
positives [43]. A recent study introduced an ML system to enhance TET efficacy for CAD assessment. This
study presented five models demonstrating diagnostic performance compared to conventional TET, focusing
on ST-segment depression as a primary ECG finding. Ninety-three features were collected and narrowed
down to 30 using feature selection methods. The most successful model, when compared to traditional TET,
showed a 13% improvement in performance and a 20% increase in specificity with the addition of clinical
features [44]. 

SPECT remains the primary method for assessing myocardial perfusion in CAD. The latest hardware features
solid-state cadmium zinc telluride (CZT) detectors, which directly capture gamma rays from injected
radiotracers. New collimator designs enhance photon sensitivity, while downsized scanners facilitate
deployment. Optimized protocols and software emulate PET performance, offering reduced acquisition
times, radiation exposure, improved resolution, and potential for quantification [45]. PET myocardial
perfusion imaging has used a repurposed ResNet50 architecture, transfer learning, and data augmentation.
This approach demonstrated how quantitative PET myocardial perfusion polar maps could predict MACEs at
a two-year follow-up in a cohort of 1185 patients. Notably, the DL model, which excluded clinical or
functional variables unlike other studies, exhibited superior discriminatory capacity, surpassing non-DL
methods that integrated clinical variables, ventricular function, and absolute perfusion quantification (AUC
= 0.90 vs. AUC = 0.85, p < 0.05) [46]. 

Future of AI in multimodal imaging
The advancement of AI methodologies for accurately predicting outcomes in cardiovascular disease [47],
diagnosing CAD non-invasively [48], detecting malignant arrhythmias using wearable devices [49], and
formulating a diagnosis, treatment strategies, and outcome prognostication for heart failure patients
underscores AI's potential in shaping the future of cardiology [50]. The integration of AI advancements, the
Internet of Things (IoT), and the promotion of precision medicine depicts a landscape where cardiology's
trajectory heavily relies on these innovative digital technologies [50,51]. However, despite significant
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progress, ethical dilemmas surrounding the practical implementation of AI technologies in real-world
medical settings still need to be addressed [48,52]. In conclusion, the intersection of cardiology and AI
presents a realm brimming with possibilities for transforming patient care, ranging from improved
diagnostics to personalized treatment approaches [53]. Nevertheless, addressing the ethical implications of
AI integration in clinical practice is crucial as we embark on this transformative journey toward a digitally
empowered future in cardiology [52,54]. 

Role for improvement
Despite significant advancements, several challenges must be addressed in integrating AI into multimodal
cardiac imaging. Data standardization, algorithm validation, regulatory approval, and ethical considerations
must be addressed to ensure AI technologies' safe and effective deployment in clinical practice.
Collaborative efforts between clinicians, scientists, industry stakeholders, and regulatory bodies are
essential to overcome challenges and unlock the full potential of AI in cardiac imaging. 

Limitations
The burgeoning role of AI in cardiac imaging heralds a new era of precision medicine, marked by enhanced
diagnostic capabilities, personalized treatment strategies, and improved patient outcomes. As AI continues
to evolve and integrate into clinical practice, its transformative impact on cardiac imaging is poised to
redefine the landscape of cardiovascular healthcare. Models trained using data augmentation and transfer
learning generalize well to different clinical centers, enhancing segmentation performance across diverse
datasets. Explainable artificial intelligence (XAI) has emerged alongside AI advancements, focusing on tools
and processes enabling humans to understand AI model workings and outcomes [55]. While classic ML
models like linear regression and decision trees are more interpretable, deep learning models often
outperform them, posing challenges in outcome interpretation and trust-building for clinical use [56].
Achieving a balance between model performance and interpretability is crucial for real-world deployment.
XAI research addresses trustworthiness, transferability, fairness, and accessibility to ensure trustworthy AI
systems [57]. Continued advancements in XAI will play a pivotal role in ensuring the adoption and
effectiveness of AI technologies in healthcare. The possibilities seem endless with AI; however, efforts need
to be targeted toward regulatory and quality control measures when dealing with primarily AI-generated
data. For example, a checklist called the Proposed Requirements for Cardiovascular Imaging-Related
Machine Learning Evaluation (PRIME) was introduced in 2020. This checklist covers seven key areas crucial
for developing and reporting machine learning models, not just in cardiovascular imaging but potentially in
other medical fields. It aims to ensure consistent and detailed reporting of ML studies while guarding
against errors and biases arising from misunderstandings in this rapidly advancing field [58]. 

Conclusions
In conclusion, despite emerging literature on ML-based AI in nuclear cardiac imaging suggesting that it
could significantly improve cardiac risk prediction, it has certain limitations that warrant consideration.
These include algorithm biases, data privacy concerns, interpretability issues, and the need for human
oversight. Additionally, AI algorithms may only sometimes generalize well across diverse patient
populations or clinical settings, necessitating ongoing validation and refinement. 

Integrating AI into clinical practice requires substantial changes, including heavy software integration,
cultural shifts among healthcare professionals, and rigorous validation through prospective studies. ML
models, which learn directly from data without predefined rules, present challenges such as opacity and
potential biases, which could affect their reliability. Ensuring safe clinical use involves using representative
data, maintaining strict quality control, and enhancing model interpretability. It is crucial to ensure that
human oversight is maintained, adapting multimodal imaging to meet the specific needs of individual
patients while considering their distinct biological, pathological, ethical, social, and personal traits.
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