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Abstract

Esthesioneuroblastomas (ENBs) present unique diagnostic and therapeutic challenges due to their rare and
complex clinical presentation. In recent years, artificial intelligence (AI) and machine learning (ML) have
emerged as promising tools in various medical specialties, revolutionizing diagnostic accuracy, treatment
planning, and patient outcomes. However, their application in ENBs remains relatively unexplored. This
comprehensive literature review aims to evaluate the current state of Al and ML technologies in ENB
diagnosis, radiological and histopathological imaging, and treatment planning. By synthesizing existing
evidence and identifying gaps in knowledge, this review aims to showcase the potential benefits, limitations,
and future directions of integrating Al and ML into the multidisciplinary management of ENBs.
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Keywords: machine learning models, artificial intelligence in radiology, machine learning healthcare data, artificial
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Introduction And Background

An esthesioneuroblastoma (ENB), also referred to as an olfactory neuroblastoma, is a rare malignancy of the
sinonasal tract [1]. This tumor originates from specialized sensory neuroepithelium olfactory cells, which are
located in the upper nasal cavity, in proximity to the superior portion of the septum, superior nasal concha,
the roof of the nose, and the cribriform plate of the ethmoid sinus (Figure 7) [1,2,3]. ENBs arise from
primitive neuroectodermal cells, which are neural precursor cells (NPCs). These precursor cells grow and
give rise to immature neuroblasts. ENBs develop when these neuroblasts divide and grow in an uncontrolled
manner [3]. ENBs account for 2-6% of all intranasal malignancies [4,5]. To put the rarity of ENB cases into
perspective, there have been less than 700 cases documented in the United States and fewer than 400 unique
cases reported globally. ENB is equally prevalent between male and female patients between the ages of 40
and 60 [4].
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FIGURE 1: Anatomy of the sinonasal cavity and proximal anatomical
structures.

Image Credit: Adapted by Frank Gaillard from the original illustration by Patrick J. Lynch, Creative Commons
Attribution 2.5 License 2006 [3]

Of note, there is a significant lack of depth of information on certain patient groups, populations, and risk
factors associated with ENB [6,7]. A few risk factors have been linked to ENBs; however, they are based on
observation and are not yet conclusive. Like many cancers, ENB development is associated with aging due to
cellular changes that occur throughout an individual's life. Cells experience senescence, where they have
reduced proliferative ability; aging can increase the chance of oxidative DNA damage and reduce the ability
to respond to DNA damage. These cellular processes all play a role in the development of ENBs in the aging
population [5,6]. Additionally, some sources suggest that exposure to wood dust and nickel compounds is
carcinogenic and can lead to ENB development [6,7]. There seems to be no significant understanding of the
hereditary patterns of ENBs or whether there is an interplay between genetic and environmental
components [7].

Currently, there is active research being undertaken including the discovery of possible chromosomal
changes or mutations that may play a role in the etiology of ENBs. Some studies have confirmed
chromosomal gains in 7q11 and 20q, and deletions in 2q, 5q, 6p, 6q, and 18q [6]. Further investigation can
provide significant utility for karyotyping patients suspected to have ENBs and can direct the treatment and
management for them. Alongside chromosomal discoveries, molecular genetic investigations have been
made where two transcription factors have been studied that are associated with ENB. The transcription
factors, SATB2 and GATA3, have been shown to be correlated to sinonasal neuroendocrine neoplasms [8].
Molecular investigation of the genetic components of ENBs can be utilized to identify diagnostic markers
when a patient is suspected of having a potential ENB.

The five-year survival rate for ENB patients after treatment ranges from 50-80%, depending largely on
factors such as the stage of the cancer at the time of diagnosis, the clinical treatment strategy, and the
overall health of the patient [9]. ENBs have the capability of stimulating angiogenesis, the formation of new
blood vessels, to ensure an adequate blood supply for their growth and survival [1,9]. Angiogenesis allows
ENBs to acquire invasive properties, enabling them to grow locally around adjacent structures such as the
sinuses, cribriform plate, and ethmoid bones [1,9].

The likelihood of tumor recurrence after treatment can range between 20-50% [9,10]. The possible reasons
for the recurrence of ENB include incomplete surgical resection, advanced malignant stages leading to
metastasis, and even failure of adjuvant therapies. ENBs can exhibit metastatic properties, with the rate of
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metastasis ranging from 10-30% [10,11]. Common metastatic locations include regional lymph nodes,
followed by distant sites like the lungs, liver, bones, and brain [10,12]. Once an ENB becomes metastatic, the
prognosis and treatment options change drastically because the tumor is no longer localized [4,6]. Thus,
more systemic considerations are required to treat it.

The symptoms that are seen in patients with ENBs are non-specific due to the location of the tumor near
critical structures of the head and neck [1,4,13]. Symptoms can vary depending on the tumor’s size, location,
and the extent of its spread. Some symptoms include nosebleeds, breathing problems, congestion, headache,
eye pain, loss of smell, and neurological problems [1,4]. CT scans and MRI tend to be the most prevalent
imaging techniques to visualize ENBs in the sinonasal cavity. ENBs pose a challenge when analyzing a CT or
MRI due to a lack of unique phenotypic appearance (Figure 2) [14]. These non-specific symptoms render
diagnosing ENBs challenging, as they can easily be mistaken for more common diseases that affect the nasal
cavity [6].

FIGURE 2: CT image of an esthesioneuroblastoma, depicted as a large
enhancing mass centered on the midline of the anterior cranial fossa
and involving both orbits.

Image Credit: Frank Gaillard, 2010 [14]; Creative Commons License

Proper treatment and management of ENBs require a multidisciplinary approach [15]. The options of
surgery, radiation therapy, chemotherapy, and active surveillance, may all be considered when creating a
treatment plan for a patient [1,15]. Surgical resection of the tumor is the primary treatment for an ENB,
especially for localized tumors. The goal of surgery is to achieve a negative tumor margin while preserving
the nearby anatomical structures of the head and neck [16]. Depending on the characteristics of the tumor,
various surgical techniques may be employed, including endoscopic resection, open surgery, or a
combination of both [16]. Radiation therapy consists of utilizing an external beam of high-energy
wavelength to localize damage to the tumor [17]. This ensures minimal proximal damage to the anatomy.
This therapy may be used before or after surgery but is typically administered postoperatively to eliminate
any remaining tumor cells that could not be resected [16,17]. Chemotherapy may be combined with surgical
approaches and/or radiation therapy, particularly in more advanced metastatic ENBs. Chemotherapy is
typically administered before surgery to shrink the tumor and facilitate its removal, or after surgery to
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destroy any remaining cancer cells [18]. Additionally, active surveillance can be a useful strategy in
managing ENBs. Depending on the severity of symptoms and the growth rate of the tumor, monitoring these
clinical presentations can assist in making a proper treatment plan for the patient [1,4]. The clinical staging
of ENB treatment varies from patient to patient. The decision to administer therapy before or after surgical
treatment is determined by factors such as clinical staging, tumor size, location, and potential metastasis
[1,4,18]. Unfortunately, the literature provides limited information on the optimal clinical staging for
treating patients with ENB.

Due to the low prevalence of ENBs, their complex anatomical locations, and non-specific symptoms early in
the tumor’s progression, diagnosing ENBs is challenging. Especially in the early stages, an ENB is more likely
to be misdiagnosed or mistaken for other benign nasal or sinus conditions. Advanced-stage tumors,
however, are more readily recognized due to their aggressive nature and associated symptoms [1,6]. Thus, to
treat and manage an ENB effectively before the patient experiences worsening symptoms, more accurate
diagnostic tools must be implemented. To address this need, Artificial Intelligence (AI) and Machine
Learning (ML) are emerging as promising solutions that could revolutionize the early detection and
diagnosis of challenging conditions such as an ENB.

Al and ML are transformative technologies and just the surface has been scratched regarding their abilities
to reshape numerous industries, including healthcare. Al refers to the ability of machines to perform tasks
that typically require human intelligence. This encompasses learning, reasoning, problem-solving,
perception, and language understanding. ML, a subset of Al, involves algorithms and statistical models that
are designed to learn from data and make decisions or predictions, without being explicitly programmed for
each specific task [19]. The process involves collecting and preparing data, choosing and training a model on
this data, and then testing the model's performance. If the model performs well, it can be deployed to
address real-world problems. In the medical field, for instance, it may assist with diagnostics, treatment
planning, and personalized patient care [19,20]. To ensure it remains effective, the model is regularly
updated with additional data sets and continuously monitored.

In the context of integrating Al technologies within the medical field, the term “augmented intelligence” is
particularly appropriate. This term emphasizes the enhancement and augmentation of human clinician
capabilities, rather than their “artificial” replacement [21]. This encapsulates a symbiotic relationship in
which AI supports and enhances the clinical insights of physicians, rather than substituting their expertise.
Therefore, it is important to highlight that Al and ML are designed to augment, not replace, the critical role
of physicians in healthcare (Figure 5). In a conceptual adaptation of Friedman’s Fundamental Theorem of
Biomedical Informatics, it is posited that clinicians who effectively use information technology in healthcare
will outperform not only those who avoid its use but also the outcomes of Al and ML models operating
independently [22]. Al and ML can process vast amounts of data far beyond human capability in medicine,
identifying patterns and providing insights that can significantly improve diagnostic accuracy and treatment
efficacy [19,23]. However, the irreplaceable value of human judgment, empathy, and ethical considerations
in medical practice guarantees that clinicians will remain integral to healthcare delivery [24]. Ultimately, this
highlights the collaboration between Al technologies and clinicians, fostering a more precise and
comprehensive approach to the diagnosis and management of conditions such as an ENB.

&7 V7

FIGURE 3: Friedman's Fundamental Theorem of Biomedical Informatics
depicting the synergistic utilization of Al technologies with healthcare
clinicians.

Image Credit: Author Raj Patel

In healthcare, AT and ML are redefining the way medical professionals diagnose, treat, and manage diseases.
These technologies analyze vast amounts of data quickly and with precision, enhancing clinicians' abilities
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to make more informed decisions [19]. There are several Al models that are currently being used in the
diagnosis of cancer cells in medicine. In healthcare, Al and ML applications include medical imaging
analysis, where Al algorithms excel at analyzing images from X-rays, CT scans, MRI scans, and mammograms
[23,25]. These algorithms and statistical models can aid in detecting abnormalities that may indicate the
presence of cancer, supporting radiologists in making accurate diagnoses. Additionally, pathology image
analysis will use algorithms and statistical models to aid in examining tissue samples from biopsies [23].
These algorithms can detect and differentiate between malignant and non-malignant cells, helping
pathologists classify tumors more effectively [23,26]. Furthermore, through genomic analysis, Al is
instrumental in analyzing genomic data to identify mutations linked to cancer [27]. This ML analysis can
forecast cancer risks, influence treatment decisions, and pinpoint new therapeutic targets [23,27]. Another
Al model that is currently being used includes clinical decision support systems. These Al-powered systems
integrate diverse patient data, medical images, pathology results, genomic data, and clinical records to assist
in diagnostic and treatment decisions. They tailor recommendations to individual patients based on
evidence-based guidelines [23]. Additionally, Al is used in radiomics to extract high-dimensional
quantitative features from medical images. This information can predict tumor behavior, treatment
response, and patient outcomes, providing insights beyond what the naked eye can see [27,28,29].

The integration of Al and ML in ENB cases offers a plethora of potential benefits. ML could potentially
enhance diagnostic accuracy and streamline the treatment planning process by learning from patterns in
vast datasets. Al's ability to rapidly analyze complex datasets not only speeds up the interpretation of
medical images and pathology slides but may also accelerate early cancer detection and timely treatment
initiation, which may significantly improve patient outcomes [28]. Furthermore, AI-driven genomic analysis
allows for more personalized treatment approaches, tailoring the treatment plan specifically to a patient’s
unique genetic profile, thus potentially improving the efficacy of therapies [20,23]. These technologies are
not just tools to aid clinicians but potential game-changers in the fight against cancer, making a previously
unimaginable level of personalized and precise medicine possible.

Review
Methodology

A manual literature search was conducted to find key, relevant papers discussing ENBs, Al, and ML. The
literature search was performed on Pubmed using the following keywords: esthesioneuroblastoma, artificial
intelligence in healthcare, and machine learning in healthcare.

Inclusion criteria for key papers on ENBs encompassed case reports, case series, and comprehensive studies.
Only studies that discussed cases or the pathophysiology of ENBs were included to ensure proper
characterization and analysis of the tumor. Papers published within the last five years on ENBs were
considered to ensure the inclusion of recent information.

The inclusion criteria for key papers on Al and ML in clinical settings encompassed comprehensive reviews.
Papers that did not address Al and ML in the healthcare diagnostic or management process were excluded.
This approach allowed for the inclusion of specific Al and ML modalities used in healthcare, providing
detailed information on their utilization in medicine. Due to the recent emergence of Al and ML
technologies in a clinical setting, there was no restriction on the publication date of the journals included.

Al and ML in ENB diagnosis
Radiological Imaging

The integration of Al and ML into radiological imaging has marked a significant advancement in the field of
oncology, particularly in the diagnostic accuracy and characterization of tumors using CT, MRI, and positron
emission tomography-CT (PET-CT) scans [28]. These technological advancements, through their systematic
algorithms and deep learning capabilities, are not only enhancing the precision of radiological imaging but
are also revolutionizing the way tumors are detected, monitored, and managed.

The application of Al and ML in medical imaging, particularly CT and MRI, has dramatically improved the
detection and characterization of tumors. Al algorithms are trained to recognize subtle patterns and
anomalies that may not be evident to the human eye, enabling earlier and more accurate detection of
malignancies [23,28]. In MRI and CT scans, for example, AI-driven tools analyze the presence, shape, size,
symmetry, density, texture, and even genetic makeup of tumors when integrated with other sources like
genomic data [23,27,30]. This detailed characterization helps determine the nature of the tumor, whether it
is benign or malignant, its stage, and potential aggressiveness, which are all essential for choosing the right
treatment strategy [23]. This capability is crucial for the early diagnosis and staging of cancer, which in turn
guides treatment planning and improves prognosis. MRI, known for its superior soft tissue contrast
compared to CT, benefits significantly from Al in terms of image segmentation and tumor boundary
identification [23,30]. Due to ML excelling at processing and analyzing large volumes of imaging data
quickly, ML algorithms can effectively differentiate between various types of tissues and identify tumor
margins, which are critical for surgical planning and radiation therapy [23]. With this in mind, ML

2024 Patel et al. Cureus 16(6): €62683. DOI 10.7759/cureus.62683 50f 11


javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

Cureus

Part of SPRINGER NATURE

algorithms may provide an advantage when it comes to diagnosing ENBs early on. Consequently, the
deployment of Al in medical imaging not only enhances diagnostic accuracy but also significantly
streamlines radiological workflows.

A recent study on paranasal sinus disease detection using automated machine learning (AutoML)
demonstrates AutoML's capacity to optimize diagnostic processes, achieving a precision rate of 92.8% and
an accuracy of 92% in identifying disease presence through MRI scans. This example underlines the
potential of Al to reduce the workload on radiologists by accurately automating the detection and initial
diagnosis stages, which could be particularly transformative in the early detection and management of ENBs
[31]. As mentioned before, a challenge that ENBs pose is the difficulty of diagnosing and identifying
characteristics early in their development. By providing multiple scans of early-state ENBs, ML can generate
algorithms to pick up on minor patterns to provide certainty of an ENB diagnosis. This can mitigate clinical
error where surgeons mistake ENBs for other sinonasal malignancies and proper care can be provided to
patients. Furthermore, Al-enhanced medical imaging analysis can track changes in tumor size and response
to treatment over time, providing valuable data for assessing patient progress. PET-CT scans, which combine
metabolic and anatomical imaging, offer a unique perspective on cancer assessment. Al algorithms enhance
PET-CT imaging by improving the visualization and interpretation of cancer's metabolic activity. This is
particularly important for identifying metastatic or recurrent disease [23,32]. Al helps quantify tumor
activity and assess response to treatment, facilitating personalized therapy adjustments [23,33]. Moreover,
Al’s ability to integrate and analyze data from PET-CT, alongside other imaging modalities like CT and MRI,
allows for multimodal data fusion that provides a comprehensive overview of the tumor's behavior and
environment [23,26,53]. These features that Al provides when analyzing scans can lead to more informed
clinical decisions [23,28,33]. When managing a patient with non-specific symptoms, an ENB may not be
considered a primary differential diagnosis. Implementing Al in the radiological diagnostic process enables
comprehensive analysis of tumor characteristics, patient health information, and other risk factors, thereby
facilitating a confident diagnosis of an ENB.

Histopathological Analysis

The integration of Al and ML into histopathological practices is transforming the precision and efficiency of
cancer diagnostics. Histopathology, the examination of biological tissues to observe the appearance of
diseased cells and tissues in very fine detail, is fundamental in diagnosing and subtyping cancers [26,33]. Al
and ML technologies significantly refine the diagnostic process in histopathology by automating the analysis
of tissue samples [23,26,28]. Traditional histopathological examination involves manually scrutinizing
tissue slides under a microscope, a process that is highly skilled but subject to human error and variability.
Al-driven tools, particularly those employing deep learning algorithms, can analyze digital images of
histopathological slides with high accuracy, reproducibility, and speed [23,26,28]. Like with radiological
imaging, these algorithms are trained on vast datasets of annotated images, enabling them to detect subtle
patterns and anomalies that might be overlooked by human eyes [26,28]. Al algorithms can identify and
quantify features such as cell size, shape, the arrangement of cells, and the density of cell nuclei, which are
critical markers of malignancy [23,26]. ML models are adept at recognizing complex patterns associated with
specific types of cancer [23,28].

For instance, approaches that use a convolutional neural network (CNN) to extract features have
successfully differentiated between benign and malignant tumors, achieving a breast cancer prediction
accuracy of 99.86%, which surpasses the ability of the human eye to detect or differentiate [26]. Sumaiya et
al. showcased how CNNs can be utilized for feature detection in histopathological slide analysis, and how
classification of the pathology can be achieved using a fully connected artificial neural network (ANN) [26].
An ANN is a method in Al that enables computers to process data in a way that mimics the structure and
function of biological neural networks in the human brain. ANNs can develop interconnected nodes, known
as neurons, which link incoming information to previously established data, or its “memory.” When the
human brain encodes new information, it either stores it in memory or connects it to previously learned
information to build a foundation of knowledge. ANNs strive to mimic this process by creating new nodes for
novel information. This establishes a comprehensive neural network of information, enabling significant
clinical applications. For ENBs, CNNs can be utilized to identify specific histopathological features of early-
stage tumors, while ANNs can support classification and diagnosis by linking new histopathological data to
previously stored ENB images and information in its neural network.

Additionally, following these principles, an ML model can be developed to distinguish between an ENB and
other sinonasal malignancies that present with similar symptoms. Other differential diagnoses to consider
include nasal and paranasal squamous cell carcinoma, sinonasal polyposis, and choanal polyps. The
challenge in diagnosing ENB promptly arises from its similar presentation to other sinonasal malignancies.
However, an ML model may enable histopathological distinction of ENBs from other malignancies, thereby
helping physicians accurately identify ENBs. An earlier diagnosis enables patients to receive timely and
appropriate care. These CNN-based approaches excel in image pattern recognition, aiding the analysis of
histopathological slides and enhancing the interpretation of various medical imaging modalities, including
MRI, CT, and PET-CT scans [23,26,28].

Like all ML models, CNNs begin by preprocessing a dataset of images to reduce dimensions and eliminate
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redundancy, thereby enhancing efficiency without losing critical data, and ultimately normalizing the
dataset [26]. CNNs inherently have the ability to detect and learn important features from the raw pixel data
of images, refining these abilities through the backpropagation of errors during training [26,28]. Unlike
traditional methods where features need to be manually extracted and defined, many ML models, such as
CNNs, can learn these features directly from the data [26,28]. For example, features like the shape and
texture differences between benign and malignant tissues are learned during training.

The network adjusts its filters to recognize patterns such as irregular nuclei or changes in the cytoplasm that
are indicative of malignant cells [34]. The network comprises convolutional layers, which apply filters to
detect important visual patterns such as edges or specific textures. These are followed by pooling layers that
reduce the spatial size of the feature maps [26,34]. This reduction decreases the number of parameters and
computations needed, thus simplifying the network while retaining the critical features necessary for
classification. After several convolutional and pooling layers, the feature maps are flattened and fed into a
fully connected ANN [26]. This part of the CNN acts as a classifier. It uses the learned features to determine
whether the tissue is benign or malignant. The fully connected layers analyze the weighted feature map from
the final pooling layer to compute the output, where the network makes its final decision, classifying the
tissue as benign or malignant based on the learned features and patterns [26]. The system is trained with a
substantial dataset, using the differences between the network's predictions and actual data to adjust and
improve its predictive accuracy continuously [26]. This streamlined, automatic approach allows CNNs to
effectively differentiate and classify cells and tissues based on learned visual patterns without manual
feature extraction [35]. This highlights the efficiency of ML in medical imaging analysis and
histopathological analysis, leveraging its ability to process complex image data, learn significant features
autonomously, and perform accurate classifications, all essential for effective cancer detection.

Furthermore, accurate cancer subtyping is crucial for determining the appropriate treatment protocol,
predicting disease progression, and improving patient outcomes [23,28]. Al and ML excel in classifying
cancers into their respective subtypes based on histological patterns and genetic data integrated from other
sources like genomic analysis [23,33]. Al models that analyze histopathological images can be integrated
with genomic data analysis to enhance the identification of tumor subtypes with specific genetic profiles.
This integrative approach helps in understanding the tumor's behavior and potential response to various
treatments. By correlating certain visual features with clinical outcomes, Al can also help predict the
aggressiveness of the tumor and the likelihood of recurrence, aiding in prognosis determination [23,33].

Al and ML in ENB management

The integration of Al and ML in cancer management has revolutionized the approach to treatment planning,
prognostication, and surveillance. These technologies enable more precise, personalized, and proactive
management of cancer, enhancing outcomes and the quality of care [23,28]. Al and ML significantly enhance
treatment planning through decision support systems and predictive models that optimize surgical
approaches, radiation therapy, and chemotherapy regimens [23]. Al-driven tools analyze vast amounts of
imaging data, leveraging radiomic features to accurately characterize tumors, helping clinicians determine
the most effective treatment strategies tailored to individual patient profiles [20,23,28]. For example,
radiomic features from imaging scans have been shown to predict responses to specific treatments like
gamma knife radiosurgery or radiation therapy, thereby guiding decisions on the most appropriate and
effective interventions. Building on this, AI models further enhance treatment planning by providing
detailed visualizations and precise segmentations of tumors, allowing for more accurate surgical
interventions [23]. These models can delineate tumor boundaries more accurately than traditional methods,
ensuring surgeons remove as much of the tumor as possible, while sparing healthy tissue. Additionally, ML
algorithms, specifically CNNs, can be used to optimize radiation doses and sculpt radiation beams to
conform closely to the tumor shape, minimizing exposure to adjacent normal tissues [23,28]. This precision
reduces side effects and improves treatment efficacy.

Prognostic models developed through Al integrate clinical, radiological, and molecular data to predict
outcomes and guide therapeutic strategies [23,27,29]. By analyzing patterns across these data types, Al-
based radiomics can potentially forecast disease progression, survival rates, and recurrence with greater
accuracy than conventional methods [23,28,29]. Al and ML models use data from past patient outcomes
combined with current patient data to predict survival times and progression-free intervals [29]. These
predictions help patients and physicians make informed and enhanced decisions about treatment planning.
Furthermore, Al enhances the understanding of tumor biology by analyzing genetic, transcriptomic, and
epigenetic data, which plays a crucial role in predicting how tumors will respond to various treatments and
in identifying potential therapeutic resistance mechanisms [23,33]. Al and ML models are central to the
integration of genomics, pathomics, and radiomics data. By integrating imaging data with clinical and
molecular insights, Al provides a comprehensive view of the patient's condition and a deeper understanding
of the complexities of brain tumors at various scales and modalities [23,33]. Analyzing the genetic makeup
of tumors through techniques like next-generation sequencing (NGS), Al helps identify specific genomic
alterations and biomarkers [27]. This information is vital for molecular subtyping, which enables the
creation of personalized treatment plans tailored to the unique genetic profile of each patient’s tumor [20].
This approach results in better-informed prognostic assessments and enhances the efficacy of treatments
[23,33].
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Automated surveillance algorithms are another critical application of Al in cancer management, particularly
for the early detection of recurrence and the monitoring of treatment response [23,33]. These algorithms
continuously analyze patient data, including imaging and molecular markers, to detect signs of disease
progression or recurrence at the earliest possible stage and enable timely interventions. To achieve this, Al
algorithms can detect subtle changes in imaging that may indicate recurrence before they become clinically
apparent, facilitating early and potentially more effective treatment [25]. Additionally, Al systems can assess
how tumors respond to treatment over time by monitoring changes in tumor size and metabolic activity.
This provides real-time insights that can lead to timely adjustments in therapy, which traditionally relies on
subjective and time-consuming methods. This approach not only accelerates the monitoring process but also
improves its accuracy, ensuring that adjustments to treatment plans are made promptly and appropriately
based on objective data [23,33]. Ultimately, the implementation of Al and ML models in the management of
various cancers, including ENBs, can significantly improve patient outcomes.

Discussion

Challenges and Considerations

The deployment of Al and ML in healthcare introduces a range of challenges and considerations that need
to be addressed to fully realize the benefits of these technologies. Among these challenges are issues related
to data quality and standardization. One of the primary concerns in deploying Al and ML models in
healthcare is the heterogeneity of data [28,33]. Medical data can come from multiple sources, including
electronic health records, imaging, and genetic data, and often appear in various formats that vary in quality
and granularity. This diversity can lead to inconsistencies that affect how Al models are trained and how
they perform. For instance, image data from different MRI machines or settings may differ, affecting the
consistency of the input data for Al models. Ensuring that these models can handle and interpret diverse
data types is crucial for their accuracy and performance. Related to data heterogeneity, interoperability
issues arise when different healthcare systems and technologies struggle to communicate and share data
efficiently [28]. This lack of interoperability can impede the effective training and deployment of Al models,
as they may not access comprehensive data across systems. Establishing common standards and protocols
can alleviate these issues, enhancing the seamless integration of Al tools across various platforms.

Al and ML models can only be as good as the data they are trained on. If the training datasets are not diverse
or if they contain biased data, the resulting models will likely perpetuate these biases, leading to poor
performance in underrepresented groups [28,32,36]. Addressing this requires strategies such as data
augmentation, oversampling, and undersampling to ensure a balanced representation in the training data
[28]. Furthermore, ongoing efforts to analyze model performance across different population subgroups are
essential to identify and mitigate potential biases [28,32,36]. Additionally, the sharing of validated data
should be incentivized to enhance the accurate and beneficial development of AT and ML models in the
medical field. ENBs present a unique challenge in this context due to their rarity. With limited data
available, training ML models to achieve sufficient accuracy becomes problematic. ML modules require vast
datasets to be accurate and unbiased, and the scarcity of ENB cases means that data might be insufficient for
robust model training. This limitation underscores the need for innovative data-sharing initiatives and
collaborative research efforts to construct larger, more extensive datasets that can support the effective
training of Al models in rare cancers like ENBs. It should be encouraged that health professionals who treat
and manage ENBs should compile a comprehensive pathologic report to better characterize the nature of the
tumor, and this can be provided to machine learning models in order to build a foundational network of data
to make the recognition of ENBs efficient.

While the diversity and quality of data are foundational to the efficacy of Al and ML models in the diagnosis
and management of ENBs, it is essential to acknowledge that even with optimal data, these models have
inherent limitations. No current Al system can perfectly predict or diagnose without errors, as machine
learning algorithms inherently approximate and simplify complex medical realities. They may also behave
unpredictably or produce results that, while statistically valid, may not be clinically relevant or safe in
specific ENB cases. This acknowledgment of the imperfection of Al, even under ideal conditions, is crucial
for managing expectations and ensuring careful oversight in clinical applications. As such, continuous
evaluation of Al-driven outcomes and integration of human oversight remain essential to address these
intrinsic limitations and safeguard patient health.

Besides challenges related to data quality and standardization, the implementation of Al and ML models in
healthcare may also encounter regulatory and ethical considerations to ensure that these technologies are
used safely and effectively. The integration of Al in healthcare raises significant concerns about data privacy
[24,28,33]. Ensuring the security of patient data against unauthorized access is paramount, especially when
dealing with sensitive medical information. Regulations such as the General Data Protection

Regulation (GDPR) in Europe and the Health Insurance Portability and Accountability Act (HIPAA) in the
United States provide frameworks for data protection, but with the global nature of data sharing and Al
development, maintaining privacy across borders becomes more complex [24,28]. The opaque nature of
many Al models, often referred to as the black box problem, complicates the process of obtaining informed
patient consent [24,28,33]. Patients must understand how their data will be used, the risks involved, and the
potential benefits. This is particularly challenging when it is difficult to elucidate how Al models make

2024 Patel et al. Cureus 16(6): €62683. DOI 10.7759/cureus.62683 8 of 11


javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

Cureus

Part of SPRINGER NATURE

decisions. Efforts to increase transparency, such as through Explainable AI (XAI), are vital in making these
processes more transparent and understandable to patients and healthcare providers alike [28]. Ensuring the
transparency of Al algorithms is crucial for building trust and for clinical adoption. It is necessary for
clinicians and patients to be able to understand how decisions are made, particularly in cases where Al is
used to support or make vital diagnostic decisions. This transparency is also linked to accountability; it must
be clear who is responsible when Al and ML models make errors or when they are involved in decisions that
lead to patient harm [28]. Thus, it is essential to establish and apply explicit rules and policies for the use of
Al in healthcare environments, focusing on accountability in decision-making and clarifying the roles of
medical staff and Al and ML models [28]. Equally important is ensuring that these Al and ML models are
affordable so that their beneficial and revolutionary impact on patient care can be realized without
increasing existing disparities in the healthcare system.

While AI and ML have the potential to significantly enhance efficiency and decision-making in the diagnosis
and management of ENBs, it is essential to preserve the human element in patient care to ensure that
clinical judgments are appropriately integrated with technological insights. Therefore, reliance on Al should
not overshadow the clinical judgment of healthcare professionals. As Al and ML continue to be integrated
into the field of medicine, addressing these data quality, standardization, regulatory, and ethical
considerations is crucial for leveraging their potential responsibly. Ultimately, balancing the innovative
capabilities of Al with protecting patient welfare and privacy will be key to the effective and just use of Al in
healthcare.

Future Directions

As medicine advances to provide better care for patients, technology will become an integral part of that
care. A physician's role is to understand patients at a deeper level and utilize this understanding to inform
their diagnosis, treatment, and management. Similarly, Al aims to enhance the understanding of patients’
pathologies and facilitate the storage of clinical information. Currently, Al and ML models aim to integrate
genomic, transcriptomic, and proteomic data from patients with specific pathologies into a unified database.
This database can then be utilized to identify specific risk factors and trends associated with these
pathologies, helping physicians better understand the current health state of their patients.

In the context of ENBs, genomic data can identify mutations or alterations in genes associated with cancer
risk, progression, and response to treatment. Al algorithms can then analyze this data to predict a patient's
likelihood of developing ENBs, guide treatment selection, and identify potential therapeutic targets.
Transcriptomic data offer information on gene expression levels, indicating which genes are actively being
transcribed into RNA molecules. By analyzing transcriptomic profiles, Al algorithms can identify gene
expression signatures that are associated with different subtypes of ENBs, disease progression, and
treatment response. Integrating transcriptomic data into decision support systems can help tailor treatment
strategies to match the unique molecular characteristics of each patient's tumor. Proteomic data provide
insights into the proteins expressed within cells, tissues, or bodily fluids. Proteomic analysis of ENBs can
identify proteins associated with tumor development, metastasis, and drug resistance. Building on this, AI-
driven analysis of proteomic data goes further by enabling the identification of novel biomarkers,
significantly enhancing the diagnosis of ENBs, monitoring disease progression, and improving the
prediction of treatment outcomes.

Many hospitals across the United States have adopted Al into their healthcare ecosystems, and this growing
trend is expected to continue. For proper clinical implementation, hospital staff should be offered hands-on
training modules on how to utilize various Al models. Additionally, the use of Al models should be
encouraged in the diagnostic process. Several strategies that healthcare systems can utilize to better
implement Al include upholding data integration and interoperability. This entails investing in robust data
infrastructures to integrate various sources of healthcare data, including imaging, genomics, and electronic
health records. Permitting interoperability between different systems enables Al algorithms to analyze
comprehensive patient data, leading to more accurate outcomes. Also, healthcare teams can integrate Al
into radiology departments, where it can play a preliminary role in analyzing medical images. This will assist
radiologists in detecting abnormalities, quantifying disease progression, and predicting treatment
outcomes. Additionally, hospitals should be encouraged to adopt an open-minded approach to employing
Al-enabled clinical decision support systems. Hospitals can utilize these systems to assist healthcare
providers in diagnosis, treatment planning, and patient management. These systems have been shown to
analyze patient data in real time, provide evidence-based recommendations, and alert clinicians to potential
risks or deviations from best practices.

Conclusions

An ENB is a rare sinonasal tumor that originates in the olfactory region of the upper nasal cavity. Diagnosis
of ENBs is challenging due to non-specific early-onset symptoms and often insignificant findings during
physical exams. Unique symptoms and physical findings begin to appear in the later stages of the tumor’s
development; however, by this point, the tumor progresses to a stage that requires immediate treatment.
With the emergence of Al and ML, healthcare systems are encouraged to adopt these innovative
technologies to improve the diagnosis, treatment, and management of patients with rare tumor

2024 Patel et al. Cureus 16(6): €62683. DOI 10.7759/cureus.62683 9 of 11


javascript:void(0)
javascript:void(0)
javascript:void(0)

Cureus

Part of SPRINGER NATURE
malignancies.

Additional Information
Author Contributions

All authors have reviewed the final version to be published and agreed to be accountable for all aspects of the
work.

Concept and design: Raj Patel, Tadas Masys, Refat Baridi
Acquisition, analysis, or interpretation of data: Raj Patel, Tadas Masys
Drafting of the manuscript: Raj Patel, Tadas Masys

Critical review of the manuscript for important intellectual content: Raj Patel, Tadas Masys, Refat
Baridi

Supervision: Raj Patel, Tadas Masys, Refat Baridi

Disclosures

Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the
following: Payment/services info: All authors have declared that no financial support was received from
any organization for the submitted work. Financial relationships: All authors have declared that they have
no financial relationships at present or within the previous three years with any organizations that might
have an interest in the submitted work. Other relationships: All authors have declared that there are no
other relationships or activities that could appear to have influenced the submitted work.

Acknowledgements

Raj Patel and Tadas Masys contributed equally to this work and should be considered co-first authors.

References

1. Fiani B, Quadri SA, Cathel A, et al.: Esthesioneuroblastoma: a comprehensive review of diagnosis,
management, and current treatment options. World Neurosurg. 2019, 126:194-211.
2. Bradley PJ, Jones NS, Robertson I: Diagnosis and management of esthesioneuroblastoma. Curr Opin
Otolaryngol Head Neck Surg. 2003, 11:112-8. 10.1097/00020840-200304000-00009
3. Olfactory nerve (illustration). (2010). Accessed: May 24, 2024: https://radiopaedia.org/cases/olfactory-
nerve-illustration.
4. Chadha S, Pannu KK: Esthesioneuroblastoma a case report. Indian J Otolaryngol Head Neck Surg. 2011,
63:44-6.10.1007/s12070-011-0186-x
5. Jethanamest D, Morris LG, Sikora AG, Kutler DI: Esthesioneuroblastoma: a population-based analysis of
survival and prognostic factors. Arch Otolaryngol Head Neck Surg. 2007, 133:276-80.
10.1001/archotol.133.3.276
6. Kaur RP, Izumchenko E, Blakaj DM, et al.: The genomics and epigenetics of olfactory neuroblastoma: a
systematic review. Laryngoscope Investig Otolaryngol. 2021, 6:721-8. 10.1002/1i02.597
7.  Klepin HD, McMullen KP, Lesser GJ: Esthesioneuroblastoma. Curr Treat Options Oncol. 2005, 6:509-18.
10.1007/s11864-005-0029-7
8. Uccella S, Facco C, Chiaravalli AM, et al.: Transcription factor expression in sinonasal neuroendocrine
neoplasms and olfactory neuroblastoma (ONB): Hyams' grades 1-3 ONBs expand the spectrum of SATB2 and
GATA3-positive neoplasms. Endocr Pathol. 2022, 33:264-73.
9. Faragalla H, Weinreb I: Olfactory neuroblastoma: a review and update . Adv Anat Pathol. 2009, 16:322-31.
10.1097/PAP.0b013e3181b544cf
10.  Goshtasbi K, Abiri A, Abouzari M, et al.: Hyams grading as a predictor of metastasis and overall survival in
esthesioneuroblastoma: a meta-analysis. Int Forum Allergy Rhinol. 2019, 9:1054-62.
11.  Banuchi VE, Dooley L, Lee NY, et al.: Patterns of regional and distant metastasis in esthesioneuroblastoma.
Laryngoscope. 2016, 126:1556-61. 10.1002/lary.25862
12.  Turri-Zanoni M, Maragliano R, Battaglia P, et al.: The clinicopathological spectrum of olfactory
neuroblastoma and sinonasal neuroendocrine neoplasms: Refinements in diagnostic criteria and impact of
multimodal treatments on survival. Oral Oncol. 2017, 74:21-9. 10.1016/j.oraloncology.2017.09.010
13.  Fitz-Hugh GS, Allen MS Jr, Rucker TN, Sprinkle PM: Olfactory neuroblastoma (esthesioneuroepithelioma).
Arch Otolaryngol. 1965, 81:161-8. 10.1001/archotol.1965.00750050168011
14.  Olfactory neuroblastoma (esthesioneuroblastoma). (2010). Accessed: May 24, 2024:
https://radiopaedia.org/cases/olfactory-neuroblastoma-esthesioneuroblastoma-1.
15.  Cantrell RW, Ghorayeb BY, Fitz-Hugh GS: Esthesioneuroblastoma: diagnosis and treatment. Ann Otol
Rhinol Laryngol. 1977, 86:760-5. 10.1177/000348947708600608
16. Biller HF, Lawson W, Sachdev VP, Som P: Esthesioneuroblastoma: surgical treatment without radiation.
Laryngoscope. 1990, 100:1199-201. 10.1288/00005537-199011000-00013
17. Martinez Silla G, Gonzalez Ortin M, Medina Banegas A, Spreekelsen Gasso C, Lopez Meseguer E, Osete
Albaladejo JM: Surgery and radiotherapy in esthesioneuroblastoma of the nose, apropos of 2 cases [Article

2024 Patel et al. Cureus 16(6): €62683. DOI 10.7759/cureus.62683 10 of 11


https://pubmed.ncbi.nlm.nih.gov/30862589/
https://dx.doi.org/10.1097/00020840-200304000-00009
https://dx.doi.org/10.1097/00020840-200304000-00009
https://radiopaedia.org/cases/olfactory-nerve-illustration
https://radiopaedia.org/cases/olfactory-nerve-illustration
https://dx.doi.org/10.1007/s12070-011-0186-x
https://dx.doi.org/10.1007/s12070-011-0186-x
https://dx.doi.org/10.1001/archotol.133.3.276
https://dx.doi.org/10.1001/archotol.133.3.276
https://dx.doi.org/10.1002/lio2.597
https://dx.doi.org/10.1002/lio2.597
https://dx.doi.org/10.1007/s11864-005-0029-7
https://dx.doi.org/10.1007/s11864-005-0029-7
https://pubmed.ncbi.nlm.nih.gov/35522392/
https://dx.doi.org/10.1097/PAP.0b013e3181b544cf
https://dx.doi.org/10.1097/PAP.0b013e3181b544cf
https://pubmed.ncbi.nlm.nih.gov/31251848/
https://dx.doi.org/10.1002/lary.25862
https://dx.doi.org/10.1002/lary.25862
https://dx.doi.org/10.1016/j.oraloncology.2017.09.010
https://dx.doi.org/10.1016/j.oraloncology.2017.09.010
https://dx.doi.org/10.1001/archotol.1965.00750050168011
https://dx.doi.org/10.1001/archotol.1965.00750050168011
https://radiopaedia.org/cases/olfactory-neuroblastoma-esthesioneuroblastoma-1
https://radiopaedia.org/cases/olfactory-neuroblastoma-esthesioneuroblastoma-1
https://dx.doi.org/10.1177/000348947708600608
https://dx.doi.org/10.1177/000348947708600608
https://dx.doi.org/10.1288/00005537-199011000-00013
https://dx.doi.org/10.1288/00005537-199011000-00013
https://pubmed.ncbi.nlm.nih.gov/2390295/

Cureus

Part of SPRINGER NATURE

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

in Spanish]. Acta Otorrinolaringol Esp. 1990, 41:115-7.

Newbill ET, Johns ME, Cantrell RW: Esthesioneuroblastoma: diagnosis and management. South Med J. 1985,
78:275-82.

Alowais SA, Alghamdi SS, Alsuhebany N, et al.: Revolutionizing healthcare: the role of artificial intelligence
in clinical practice. BMC Med Educ. 2023, 23:689. 10.1186/s12909-023-04698-7

Johnson KB, Wei WQ, Weeraratne D, et al.: Precision medicine, Al, and the future of personalized health
care. Clin Transl Sci. 2021, 14:86-93. 10.1111/cts.12884

Bazoukis G, Hall ], Loscalzo ], Antman EM, Fuster V, Armoundas AA: The inclusion of augmented
intelligence in medicine: a framework for successful implementation. Cell Rep Med. 2022, 3:100485.
10.1016/j.xcrm.2021.100485

Mani S: Note on Friedman's 'fundamental theorem of biomedical informatics' . ] Am Med Inform Assoc.
2010, 17:614. 10.1136/jamia.2010.003715

Khalighi S, Reddy K, Midya A, Pandav KB, Madabhushi A, Abedalthagafi M: Artificial intelligence in neuro-
oncology: advances and challenges in brain tumor diagnosis, prognosis, and precision treatment. NPJ Precis
Oncol. 2024, 8:80. 10.1038/541698-024-00575-0

Farhud DD, Zokaei S: Ethical issues of artificial intelligence in medicine and healthcare . Iran ] Public
Health. 2021, 50:i-v. 10.18502/ijph.v50i11.7600

Hosny A, Parmar C, Quackenbush ], Schwartz LH, Aerts HJ: Artificial intelligence in radiology. Nat Rev
Cancer. 2018, 18:500-10. 10.1038/s41568-018-0016-5

Dabeer S, Khan MM, Islam SS: Cancer diagnosis in histopathological image: CNN based approach. Inform
Med Unlocked. 2019, 16:100231. 10.1016/j.imu.2019.100231

Dlamini Z, Francies FZ, Hull R, Marima R: Artificial intelligence (AI) and big data in cancer and precision
oncology. Comput Struct Biotechnol J. 2020, 18:2300-11. 10.1016/j.csbj.2020.08.019

Najjar R: Redefining radiology: a review of artificial intelligence integration in medical imaging . Diagnostics
(Basel). 2023, 13:2760. 10.3390/diagnostics 13172760

CuiY, Li Z, Xiang M, Han D, Yin Y, Ma C: Machine learning models predict overall survival and progression
free survival of non-surgical esophageal cancer patients with chemoradiotherapy based on CT image
radiomics signatures. Radiat Oncol. 2022, 17:212. 10.1186/s13014-022-02186-0

Paudyal R, Shah AD, Akin O, et al.: Artificial intelligence in CT and MR imaging for oncological
applications. Cancers (Basel). 2023, 15:2573. 10.3390/cancers15092573

Cheong RC, Jawad S, Adams A, et al.: Enhancing paranasal sinus disease detection with AutoML: efficient AI
development and evaluation via magnetic resonance imaging. Eur Arch Otorhinolaryngol. 2024, 281:2153-8.
10.1007/s00405-023-08424-9

Griffeth LK: Use of PET/CT scanning in cancer patients: technical and practical considerations . Proc (Bayl
Univ Med Cent). 2005, 18:321-30. 10.1080/08998280.2005.11928089

Bi WL, Hosny A, Schabath MB, et al.: Artificial intelligence in cancer imaging: clinical challenges and
applications. CA Cancer | Clin. 2019, 69:127-57. 10.3322/caac.21552

Kode H, Barkana BD: Deep learning- and expert knowledge-based feature extraction and performance
evaluation in breast histopathology images. Cancers (Basel). 2023, 15:3075. 10.3390/cancers15123075
Gertych A, Swiderska-Chadaj Z, Ma Z, et al.: Convolutional neural networks can accurately distinguish four
histologic growth patterns of lung adenocarcinoma in digital slides. Sci Rep. 2019, 9:1483. 10.1038/s41598-
018-37638-9

Tejani AS, Ng YS, Xi Y, Rayan JC: Understanding and mitigating bias in imaging artificial intelligence .
Radiographics. 2024, 44:€230067. 10.1148/rg.230067

2024 Patel et al. Cureus 16(6): €62683. DOI 10.7759/cureus.62683

11 0of 11


https://pubmed.ncbi.nlm.nih.gov/3975739/
https://dx.doi.org/10.1186/s12909-023-04698-z
https://dx.doi.org/10.1186/s12909-023-04698-z
https://dx.doi.org/10.1111/cts.12884
https://dx.doi.org/10.1111/cts.12884
https://dx.doi.org/10.1016/j.xcrm.2021.100485
https://dx.doi.org/10.1016/j.xcrm.2021.100485
https://dx.doi.org/10.1136/jamia.2010.003715
https://dx.doi.org/10.1136/jamia.2010.003715
https://dx.doi.org/10.1038/s41698-024-00575-0
https://dx.doi.org/10.1038/s41698-024-00575-0
https://dx.doi.org/10.18502/ijph.v50i11.7600
https://dx.doi.org/10.18502/ijph.v50i11.7600
https://dx.doi.org/10.1038/s41568-018-0016-5
https://dx.doi.org/10.1038/s41568-018-0016-5
https://dx.doi.org/10.1016/j.imu.2019.100231
https://dx.doi.org/10.1016/j.imu.2019.100231
https://dx.doi.org/10.1016/j.csbj.2020.08.019
https://dx.doi.org/10.1016/j.csbj.2020.08.019
https://dx.doi.org/10.3390/diagnostics13172760
https://dx.doi.org/10.3390/diagnostics13172760
https://dx.doi.org/10.1186/s13014-022-02186-0
https://dx.doi.org/10.1186/s13014-022-02186-0
https://dx.doi.org/10.3390/cancers15092573
https://dx.doi.org/10.3390/cancers15092573
https://dx.doi.org/10.1007/s00405-023-08424-9
https://dx.doi.org/10.1007/s00405-023-08424-9
https://dx.doi.org/10.1080/08998280.2005.11928089
https://dx.doi.org/10.1080/08998280.2005.11928089
https://dx.doi.org/10.3322/caac.21552
https://dx.doi.org/10.3322/caac.21552
https://dx.doi.org/10.3390/cancers15123075
https://dx.doi.org/10.3390/cancers15123075
https://dx.doi.org/10.1038/s41598-018-37638-9
https://dx.doi.org/10.1038/s41598-018-37638-9
https://dx.doi.org/10.1148/rg.230067
https://dx.doi.org/10.1148/rg.230067

	Exploring the Impact of Artificial Intelligence and Machine Learning in the Diagnosis and Management of Esthesioneuroblastomas: A Comprehensive Review
	Abstract
	Introduction And Background
	FIGURE 1: Anatomy of the sinonasal cavity and proximal anatomical structures.
	FIGURE 2: CT image of an esthesioneuroblastoma, depicted as a large enhancing mass centered on the midline of the anterior cranial fossa and involving both orbits.
	FIGURE 3: Friedman's Fundamental Theorem of Biomedical Informatics depicting the synergistic utilization of AI technologies with healthcare clinicians.

	Review
	Methodology
	AI and ML in ENB diagnosis
	AI and ML in ENB management
	Discussion

	Conclusions
	Additional Information
	Author Contributions
	Disclosures
	Acknowledgements

	References


