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Abstract
We recently established the new limb salvage modality of acridine orange (AO) therapy (AOT),
in an attempt to develop minimally invasive limb salvage surgery with minimal damage of
normal tissues and a low risk of local recurrence. The treatment modality consists of
intraoperative photodynamic surgery (iPDS) and photodynamic therapy (iPDT), followed by
postoperative radiodynamic therapy (RDT) using AO for patients with high-grade malignant
musculoskeletal sarcomas. Clinical results have shown that the treatment is associated with a
low risk of local recurrence, the risk being almost the same as that following conventional wide
resection, and yields superior limb function as compared to that obtained after wide resection.

In this review, we present the detailed mechanism of selective accumulation of AO in sarcomas,
which is related to the acidic environment and lysosomal acidity of the tumor cells induced by
cancer-specific glycolysis not involving the define tricarboxylic acid (TCA) cycle (Warburg's
effect). We also describe the clinical uses of AOT and the procedure for intraoperative
photodynamic surgery (iPDS) using local administration of AO. 

Categories: General Surgery, Oncology, Orthopedics
Keywords: acridine orange, photodynamic therapy, photodynamic surgery, musculoskeletal sarcomas,
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Introduction And Background
For all tumor surgeons in every medical area, it would be a dream to accurately visualize the
tumor during surgical resection. It would enable easy and complete removal of the tumor mass
without excessive damage of normal tissues. It would result in good functioning of organs or
tissues. However, no such ideal method has been devised yet, although there are scattered
reports of the use of various kinds of fluorescence dyes towards achieving this purpose [1-5].
The present review paper introduces one such ideal agent that could aid surgeons in realizing
their dream: acridine orange (AO).

AO is not a newly synthesized product. It was first extracted from coal tar in the late 19th
century, as a weak basic dye for dyeing clothes or staining microorganisms. AO has many
unique biological activities, as previously reported, such as antitumor activity, photosensitizing
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activity, pH-detecting activity, fluorescence emission, staining activity in sperm, bacteria,
viruses, parasites, and fungi [6-14]. AO also has the unique feature of metachromasia, emitting
green fluorescence from the monomer form and orange fluorescence from the dimer form
following blue light excitation [7].

Since AO has a simple chemical structure and a very low molecular weight (M.W. 265) (Figure 1),
it has the ability to rapidly flow into the cytoplasm of living cells through the plasma membrane
by passive diffusion and to bind to a variety of RNAs and lysosomes [15].

FIGURE 1: Chemical structure of acridine orange (AO)

AO accumulates especially under acidic conditions, because it is a weak basic dye. Recently, it
was reported that most of cancers have an acidic microenvironment (acidic extracellular fluid:
pH 6.5-7.0) and numerous large lysosomes with strongly acidic vesicular fluid (pH 3.0-5.0) [16].
We demonstrated that high-grade malignant sarcomas have more acidic microenvironments
than benign tumors and normal soft tissues [17]. Therefore, we could easily expect AO to
selectively accumulate in sarcomas and be useful for detecting tumor localization in
photodynamic diagnosis (PDD) during surgery with fluorescence [18]. If it were clinically
applicable, we could detect fluorescing tumor tissue by fluorescence surgical microscopy
(fluorovisualization effect), and precisely resect only tumor tissue. It causes minimal damage to
normal tissues like major nerves, vessels, muscles, bones and joints, etc. [4]. It may be better to
call such treatment photodynamic surgery (PDS). We also demonstrated that AO exerts selective
cytocidal effects against sarcoma cells both in vitro and in vivo after illumination with visible
light or irradiation of low-dose X-rays. It is available clinically for photodynamic therapy (PDT)
[16-21] or radiodynamic therapy (RDT) [22-23].

Based on the data of basic research, we employed reduction surgery supported by AO therapy
(AOT) following local administration of AO for patients with musculoskeletal sarcomas. This
phototherapeutic modality consists of three main procedures: 1) intraoperative PDS (iPDS)
immediately after intraoperative PDD (iPDD), 2) intraoperative PDT (iPDT) after intra-lesional
or extra-capsular marginal tumor resection, and 3) RDT immediately following surgery
(postoperative RDT). We have obtained good local control rates and markedly better limb
functions with this approach as compared to the results of conventional wide resection
surgery which commonly causes serious limb dysfunction [24-31].
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In the present review, we focus on iPDD and iPDS with local administration of AO using a
fluorescence surgical microscope, demonstrating the results of basic research and details of the
procedure of AOT for clinical application.

Review
Basic research
Stainability of AO in Living Cells Vs. Apoptotic or Fixed Cells

AO stains nuclear DNAas green fluorescence (533 nm), and cytoplasmic and nucleolar RNA, as
red fluorescence (656 nm), after blue light excitation (492 nm) of cells fixed with ethanol
followed by treatment with a two-step procedure using special phosphate buffer solutions [32-
33] (Figures 2, 3). On the other hand, AO stains cytoplasmic and nucleolar RNA green and
vesicles red in living cells in culture medium (Figure 4) [15].

FIGURE 2: Excitation and emission (metachromasia) of AO
AO is excited by blue light of 492 nm (max.) and emits green fluorescence (533 nm max.) from
monomer type and red fluorescence (565 nm max.) from dimmer type.

AO is excited by blue light of 492 nm (max.) and emits green fluorescence (533 nm max.) from
the monomer type and red fluorescence (565 nm max.) from the dimer type.
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FIGURE 3: Fluorescence view of mouse osteosarcoma cells
(MOS) stained with AO after ethanol fixation using
fluorescence microscope
From cytoplasm and nucleolus, AO densely binding to RNAs emits red fluorescence, while AO
sparsely binding DNA from nucleus emits green fluorescence. Binding mechanism of AO to
nucleic acid is intercalation to their strands.

From cytoplasm and nucleolus, AO densely binding to RNAs emits red fluorescence, while AO
sparsely binding DNA from nucleus emits green fluorescence. The binding mechanism of AO to
nucleic acid is intercalation to their strands.
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FIGURE 4: Fluorescence view of living mouse osteosarcoma
cells (MOS) exposed to AO after excitation using fluorescence
microscope
AO binding to cytoplasmic and nucleolar RNAs emits green fluorescence, while acidic vesicles
like lysosomes, emits red fluorescence.

AO binding to cytoplasmic and nucleolar RNAs emits green fluorescence, while acidic vesicles
like lysosomes emits red fluorescence. Nuclear DNA of intact living cells is not stained by AO,
whereas that of apoptotic cells is stained (Figures 5, 6).
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FIGURE 5: Scanning fluorescence microscopic view of human
gastric cancer cells (MK28) exposed to AO after blue light
excitation using a confocal laser fluorescence microscope
A: intact living cells, B: early and late apoptotic cells, C: blebs and microparticles of apoptotic
cells (arrows)

FIGURE 6: Sequential changes of AO stainability from intact
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living cells to apoptotic cells (see text)

Thus, AO stainability differs completely between fixed cells and cultured cells. The different AO
stainability of fixed and cultured cells has confused many for a long time. Since AO is a weak
basic dye, it is ionized by protonation. AO is more soluble in acidic solutions, like HCl, than in
alkaline solutions (AO powder is not soluble in concentrated NaOH solution). AO more easily
accumulates in acidic environments of tissues than in neutral or alkaline environments. In
fixed cells, AO binds more densely by intercalation to the acidic portions of single strands of
RNA than to the double strands of DNA [6-7, 32-35]. Therefore, the dimer type of AO (dense AO)
in the RNA emits red fluorescence, while the monomer type of AO (sparse AO) in the DNA emits
green fluorescence. This phenimenon is the so called "metachromasia". On the other hand, in
intact living cells, AO binds sparsely by intercalation to the acidic portions of transfer, micro,
ribosomal, and messenger RNAs in the cytoplasm, emitting green fluorescence after blue light
excitation. But AO does not bind to the double strands of nuclear DNA. AO shows dense
accumulation in acidic vesicles, of which most are lysosomes, emitting red fluorescence. Intact
living cells have intact bio-membranes, including cytoplasmic, nuclear and lysosomal
membranes. This is the most important reason for the different stainability of AO between fixed
cells, apoptotic cells and intact cells. Ionized AO cannot pass through such biological
membranes because of the lack of special transporters or ion channels, whereas non-ionized AO
can diffuse passively across these membranes [36]. Fixed cells, or apoptotic and dead cells have
lost the membrane barrier system; therefore, AO binds to all acidic portions, independent of the
biological proton distribution. The lysosomes of these cells have also lost their acidic fluid
through the damaged membrane; therefore, AO does not accumulate in the lysosomes of these
cells. In living cells cultured in neutral pH (7.4) medium, non-ionized AO quickly and passively
enters the cytoplasm by diffusion through the cytoplasmic membrane containing numerous
fatty acids and cholesterols for which AO shows strong binding affinity. AO rapidly binds to
transfer RNAs and micro RNAs in the cytoplasm, as well as to the ribosomal RNAs and
messenger RNAs in the nucleolus by intercalation. AO also accumulates in the acidic luminal
fluid of lysosomes based on its affinity for protons. Since AO-binding RNAs emits green
fluorescence, AO sparsely binds to the RNA in monomer form. AO in lysosomes is ionized well
by protonation due to its strong acidity. Ionized AO cannot pass across the lysosomal
membrane into cytoplasm for the same reason as that mentioned above. The concentration of
ionized AO increases and ionized AO forms dimers under the high concentration of protons,
which results in the emission by AO of red fluorescence following blue light excitation [36]. We
have already morphologically confirmed that AO does not accumulate in other organelles, such
as the mitochondria, Golgi apparatus, or endoplasmic reticulum (ER) (Figure 7) [15].
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FIGURE 7: Scanning fluorescence microscopic view of human
gastric cancer cells
Scanning fluorescence microscopic view of human gastric cancer cells (MK28): (A) exposed to
AO, (B) Golgi (BODIPY® FL C5-Ceramide), (C) mitochondria (JC-1), and (D) ER (ER tracker red)

AO does not bind to the nuclear DNAs in intact living cells, whereas it does bind to the nuclear
DNA in apoptotic or dead cells (Figures 5, 6). This is the reason why AO is commonly used to
detect apoptosis [37-38]. It is concluded that the binding targets of AO in intact living cells are
the various RNAs and acidic vesicles, most of which are lysosomes.

Selective Accumulation of AO in Mouse Osteosarcoma Cells In Vitro and In Vivo

The results of our basic studies using mouse osteosarcoma cells (MOS cell line) have revealed
that AO binds densely in dimer form to lysosomes and other acidic vesicles, including
endosomes, phagosomes, secretion granules, etc., emitting orange fluorescence after blue light
excitation. AO also binds only sparsely in the monomer form to the RNAs in the cytoplasm
(transfer RNAs and micro RNAs) and nucleolus (ribosomal RNAs messenger RNAs), emitting
green fluorescence (Figure 4). 

In an in-vivo study conducted using a mouse osteosarcoma model, the tumors emitted strong
green fluorescence at two hours after intraperitoneal (10 mg/kg) or intravenous injection (1
mg/kg) of AO followed by blue light excitation, while normal muscle and adipose tissue cells did
not emit any such fluorescence. Therefore, the tumors could be clearly visualized by
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fluorescence under the fluorescence surgical microscope equipped with a high resolution CCD
camera (fluorovisualization effect) (Figure 8) [18, 20-21].

FIGURE 8: Macroscopic fluorescence view of mouse
osteosarcoma subcutaneously inoculated in the back of nude
mouse after blue light excitation at two hours after AO
injection through the tail vein (see text)
Tumors emit green fluorescence (arrows). Injection site of the tail vein also emits green
fluorescence.

Even small lesions, such as multiple pulmonary metastases from mouse osteosarcoma,
measuring less than 1 mm of diameter can be easily detected by the emitted fluorescence
(Figure 9).
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FIGURE 9: Macroscopic fluorescence view of pulmonary
metastatic lesions of mouse osteosarcoma excised from same
nude mouse as that shown in Fig. 8 (see text)
Multiple metastatic lesions, even small lesions, emit brilliant green fluorescence (arrows).

We investigated the sequential changes of the AO fluorescence intensity from both mouse
osteosarcomas and muscles after AO injection. The AO flowed rapidly into both the tumor and
muscles; however, the muscles excluded the AO quickly within two hours. On the other hand,
the tumor excluded AO more slowly, the dye remaining in the tumor, even after two hours.
Therefore, AO is retained for longer periods of time in the tumors than in the muscles [18, 21].

Selective Accumulation of AO in Human Musculoskeletal Sarcomas Following Local Administration

The surgically resected and cut tumor specimens without a tumor capsule emit intense green
fluorescence from only the tumor tissue, and not from the surrounding normal tissues, after
exposure to AO solution followed by blue light excitation. We confirmed that most human
malignant bone and soft tissue tumors are sensitive to AO [17]. 

Using fresh and cut sarcoma specimens, we investigated the relationship between tumor acidity
and the AO fluorescence intensity. The average pH of resected tissues measured using a needle-
type pH meter was 6.78 in 35 sarcomas, 7.16 in 27 benign tumors, 7.26 in normal muscles, and
7.43 in normal adipose tissues. The fluorescence intensity of AO increased in a manner
dependent on the acidity of these tissues. The acidic malignant tumors showed strong AO
fluorescence. These results suggest that selective AO binding to musculoskeletal sarcomas is
due to the acidic extracellular fluid and acidic lysosomes of the sarcoma cells [17]. Staining with
AO is therefore useful to visually detect residual tumor tissues during surgery after tumor
curettage under a fluorescence surgical microscope. It makes easy for the surgeons to
additionally and completely excise only tumor tissue while causing minimal damage to normal
tissues, as iPDS [17-18].

Mechanism of Selective AO Accumulation in Sarcomas

Although AO has been shown to stain all living cells, including not only sarcoma cells, but also
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normal cells in an in-vitro study, AO accumulates only in sarcomas and emits green fluorescence
with blue light excitation at two hours after systemic AO administration. We also showed in an
in vivo research that AO accumulated in all cells, but normal cells excluded AO more rapidly
than sarcoma cells. However, we did not have any evidence to suggest that normal cells
(fibroblast cell line) excluded AO more rapidly in vitro, although the AO fluorescence intensity
and cytocidal effect of AO-PDT was weaker in fibroblasts than in sarcoma cells. This
phenomenon suggests the existence of some difference in AO accumulation in normal and
sarcoma cells between in vitro and in vivo conditions. 

Many recent studies have revealed that 1) cancer cells produce numerous protons (H +) by active
glycolysis under hypoxia, or the Warburg effect [39-40]; 2) the protons are stored in lysosomes

and other acidic vesicles by vacuolar-type H+-ATPase (V-ATPase), resulting in the lysosomes
and other acidic vesicles becoming even more acidic in the cancer cells than in normal cells
[41-42]; 3) the extracellular fluid around cancer cells is also more acidic due to the larger

number of protons excluded from the cytosolic space by NHE (Na- H+ exchanger), V-ATPase and
MCT (monocarboxylate transporter) than that of normal cells, or the larger number of protons
produced by carbonic anhydrase 9 [43]. Since AO accumulates in acidic environments, sarcoma
cells with a large number of acidic vesicles, are not able to exclude AO easily, whereas normal
cells with non-acidic environments and weak acidic lysosomes can quickly exclude AO. It has
been clarified that inhibition of V-ATPase activity by bafilomycin causes a decrease in AO
accumulation in the lysosomes [44]. It suggests that AO accumulates in lysosomes in an
acidity-dependent manner. 

On the other hand, the pH partition theory [45] hypothesizes that weak basic agents like AO or
many anticancer drugs, such as doxorubicin, accumulate in acidic fluids of the human body and
are ionized by protonation (Figure 10).

FIGURE 10: AO accumulation mechanism speculated by the pH
partition theory in normal and cancer cells in vivo
Non-ionized AO (yellow) first accumulates in acidic extracellular fluid, with some becoming
ionized (red) by protonation. Ionized AO cannot enter the cytoplasm, while non-ionized AO can
easily enter the cell by diffusion. Non-ionized AO in the cytoplasm can also accumulate in the

2014 Kusuzaki et al. Cureus 6(9): e204. DOI 10.7759/cureus.204 11 of 21

https://assets.cureus.com/uploads/figure/file/1277/lightbox_1432230730-1427925055-figure-10-1407818721.png


lysosomes by diffusion, depending on the acidity and ionization level in the lysosomes; ionized
AO cannot diffuse back into cytoplasm because of the membrane barrier.

Non-ionized AO (yellow) first accumulates in acidic extracellular fluid, with some becoming
ionized (red) by protonation. Ionized AO cannot enter the cytoplasm, while non-ionized AO can
easily enter the cell by diffusion. Non-ionized AO in the cytoplasm can also accumulate in the
lysosomes by diffusion, depending on the acidity and ionization level in the lysosomes. Ionized
AO cannot diffuse back into cytoplasm because of the membrane barrier.

Therefore, our hypothesis to explain the AO accumulation mechanism in sarcoma cells is as
follows. Active glycolysis through lactate produces a large number of hydrogen ions (protons)
that are stored in the lysosomes or acidic vesicles by V-ATPase. The extracellular fluid around
the cancer cells is also acidic due to the extrusion of protons by various proton transporters.
Locally or systemically administered AO first accumulates in the acidic extracellular fluid and
passively diffuses into the cytosolic space followed by accumulation in lysosomes based on the
low pH (high acidity). Cytoplasmic AO also binds sparsely to RNAs by intercalation, which is a
different type of binding to that in the lysosomes (Figure 11).

FIGURE 11: AO accumulation in the extracellular space,
cytoplasm, RNAs and lysosomes (see text)

 

AO-PDT and AO-RDT

We also found that AO exerted a strong cytocidal effect on mouse osteosarcoma cells after blue
light illumination (AO-PDT), both in vitro and in vivo. In vitro, the osteosarcoma cells died
quickly within 24 hours after exposure to 1 μg/ml of AO followed by light illumination for 10
minutes with 10,000 luminescence (same as lux units), and all of the cells died within 72 hours.
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This cytocidal effect was even noted in multi-drug resistant osteosarcoma cells. In an in-vivo
study carried out using a mouse osteosarcoma model, tumor growth was significantly inhibited
by AO injection at 10 mg/kg into the peritoneum followed by light illumination of the tumor.
This result suggested the potential usefulness of AO for photodynamic therapy in patients with
musculoskeletal sarcomas [20-22]. 

Furthermore, we found that low-dose X-ray irradiation at 5 Gy after exposure to AO of a mouse
osteosarcoma yielded the same strong cytocidal effect in vitro and in vivo as that of by AO-PDT
[22]. This radiation effect with AO was independently demonstrated by an Iowa University
group in the USA in 2006 [23]. They showed that AO exposure followed by X-ray irradiation at 3
Gy significantly enhanced the cell death of radio-resistant chondrosarcoma cells, but not of the
radio-sensitive cells. Therefore, this effect might be mediated through a different mechanism
from that of AO-PDT. However, AO definitely enhanced the radiation-induced killing of cancer
cells. We have named the treatment method based on this phenomenon radiodynamic therapy
(RDT). X-ray irradiation has the advantage of reaching deeper areas of the human body than a
light beam, even though it is more injurious to normal tissues. AO invades deeper tissues
quickly at the rate of 5 mm per 30 minutes. 

The schema in Figure 12 shows the mechanism of lysosomes by AO-PDT. AO accumulates in the
lysosomes of cancer cells in an acidity-dependent manner. With the photon energy of blue light
illumination, AO is excited by energy transfer. The excited AO activates the oxygen in the
lysosomes, while emitting fluorescence, to become a stable type of AO. Activated oxygen
(singlet oxygen) oxidizes the fatty acids of the lysosomal membranes, resulting in leakage of
various lysosomal enzymes, such as proteases, lipases, and nucleases, into the cytosolic space.
It has been reported that singlet oxygen scavengers, like L-histidine, inhibited the cytocidal
effect of AO-PDT [19, 36].

FIGURE 12: Process of lysosomal destruction by AO-PDT (see
text)
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A large amount of protons also leaks into the cytosolic space, which then becomes acidic. These
enzymes digest important cell components under the acidic cytosolic condition. Such
lysosomal stress activates caspase, which induces cellular apoptosis with cell swelling, bleb
formation, and release of microparticles, including exosomes, eventually followed by cellular
fragmentation (Figures 5, 6).

Clinical application of AOT
Procedure of AOT for Patients with Musculoskeletal Sarcomas (Figure 13A-13E).

FIGURE 13: Procedure of AO therapy for clinical application
(see text)
A) Sarcoma in the muscle close to major vessels and nerves; B) Tumor resection with marginal /
intralesional margin; C) Local administration of AO solution D) Additional tumor resection under
a fluorescence microscope; (Photodynamic Surgery: AO-PDS) E) Photodynamic Therapy (AO-
PDT); F) Radiodynamic Therapy (AO-RDT)

1) Macroscopic curettage of tumor (Figure 13A, 13B)

If a sarcoma is localized in the muscle or bone close to major nerves, vessels, muscles, or bones
and joints, intralesional tumor excision or marginal resection (extra-capsular resection) of the
tumor with partial curettage is performed. These procedures are performed to minimize the
damage to intact muscles and bones or to the major nerves and vessels in close contact with the
tumor, in order to obtain good limb function after surgery.

2) Intraoperative Photodynamic Surgery (iPDS) with Local Administration of AO (Figure 13C)

Microscopic curettage with an ultrasonic surgical knife (Olympus Co. Ltd., Tokyo, Japan) is
additionally performed using a fluorescence surgical microscope. After local administration
(soaking) of 1 μg/ml of AO solution (SIGMA-ALDRICH CO, St. Louis, MO, USA) for five minutes,
washing out of the excess AO solution with saline, and excitation with blue light is followed for
fluorovisualization of the tumor. The surgical microscope manufactured by Carl Zeiss Co., Ltd,
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Oberkochen, Germany is specially equipped with an interference filter (466.5 nm) for selection
of the blue beam from a xenon lamp and an absorption filter (>520 nm) for observation of the
green fluorescence of AO (Figure 14A). The iPDS was repeated until complete disappearance of
the green fluorescence from the remnant tumor tissue (Figure 14B, 14C).

FIGURE 14: Fluorescence surgical microscope (A) and scenes
of PDS during surgery (B and C)

 

In this procedure, we apply AO locally by soaking to expose residual tumor fragment after
macroscopic tumor excision. If the same procedure was applied to the encapsulated tumor
before excision, AO does not effectively accumulate in the tumor tissue, including in the
interstitial stroma or cells, because the tumor capsule serves as a barrier between the non-
acidic normal and acidic cancer extracellular fluid (Figure 15).
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FIGURE 15: Difference in AO accumulation following local
administration between encapsulated and fragmented (non-
encapsulated) tumor tissues (see text)

Therefore, for local administration of AO, macroscopic tumor curettage to remove capsular
barrier is a prerequisite. However, if AO is administered systemically, such as by intravenous
injection two hours before the surgery, AO effectively and homogeneously accumulates even in
the encapsulated tumor because it diffuses into the acidic stroma and tumor cells via the
capillaries (Figure 16).
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FIGURE 16: AO accumulation in encapsulated tumor tissue by
systemic administration (see text)

Although we have never tried intravenous administration of AO in humans, no serious adverse
effects were observed following administration of AO at the dose of 1 μg/ml to mice and dogs in
an experimental study. In the near future, we propose to investigate the safety of intravenous
administration of AO to humans by carrying out a clinical study with the approval of the IRB,
since systemic administration of AO is much better in PDD to detect multiple lesions, such as
metastasis or dissemination than local administration.

3) Intraoperative Photodynamic Therapy (iPDT) (Figure 13E)

After iPDS, intraoperative AO-iPDT is sequentially applied to the tumor curettage area for 10
minutes using a surgical microscope under illumination with unfiltered light (more than 5000
lx) from a xenon lamp.

4) Postoperative Radiodynamic Therapy (RDT) (Figure 13F)

After closure of the surgical wound without washing out the AO solution, AO-RDT is applied to
the resected area immediately by X-ray irradiation of 5 Gy in a single session in the
radiotherapy room for AO-RDT [24, 29-31].

Patients

The 67 patients with high-grade malignant musculoskeletal sarcomas received AOT under
approval from the IRB of our hospitals. The treatment was undertaken with the consent of the
patients and/or their close families obtained after a full explanation was provide about the
method/purpose of the clinical study. The 51 soft tissue sarcoma patients included patients
with high-grade malignant sarcomas, such as synovial sarcoma, rhabdomyosarcoma, MHFs,
leiomyosarcoma, etc., and the 15 bone sarcoma patients also included patients with high-grade
malignant sarcomas, such as osteosarcoma and Ewing's sarcoma.

Clinical Outcome

Analysis of the clinical outcomes in our study showed that the five year survival rate (SR) was
67.8% and the five year local recurrence-free rate (LRFR) was 71.2% in the 57 patients with soft-
tissue sarcoma. According to the AJCC classification, the SR was 100% for Stage II cases, 86.7%
for Stage III cases and 0% for Stage IV cases, and the LRFR was 92.3% for Stage II cases, 64.3%
for Stage III cases, and 60.2% for Stage IV cases. In regard to the results classified according to
the tumor size, the LRFR was 78% for tumors than 10 cm in diameter, while it was only 46.2%
for larger tumors (Figure 2). On the other hand, the SR was 85.7% and the LRFR was 93.8% in
the 15 cases with high-grade malignant bone sarcoma (Figure 3). Thus, while the local control
rate after AO-PDT may not be superior to that after conventional wide resection surgery, the
residual limb function is far superior as compared to that after wide resection. Most of the
patients enrolled in our study showed excellent limb function for running fast, jumping,
swimming, and throwing a ball [31].

We believe that all of our patients enrolled in this study would spend the rest of their lives as
nearly normal or at least not handicapped people. Maintenance of good limb function is very
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important for sarcoma survivors, especially children, in order to ensure a long life with a high
quality of life after surgery.

Toxicity and carcinogeniety of AO
It is generally assumed that because AO is mutagenic in bacteria [46-47], it would be
carcinogenic in humans. However, that is not true. Several studies have been carried out to
investigate the carcinogenicity of AO [48-49]; however, none has provided any evidence to
suggest the carcinogenicity of AO. Therefore, the International Agency of Research on Cancer
(IARC) of the WHO and other official reports do not classify AO as a carcinogen [50]. There are
some reports in the literature, in addition to ours, on the application of AO to human clinical
studies. Two Japanese papers have reported using local/oral administration of AO for the
diagnosis of cervical cancer or gastric cancer [51, another in Japanese]. Recently, a study
reported by an Italian group applied our method of AO-RDT to a patient with synovial sarcoma
[52]. In 2009, a group from USA also applied AO to some patients with ovarian disease in a
clinical study of confocal laser laparoscopic biopsy under FDA approval [53]. The FDA in the
USA has provided approval for the application of AO to particular clinical studies after
investigation of the acute and chronic toxicity and carcinogenicity of AO using mice [54]. Our
study using mice revealed that the LD50 of AO following intravenous administration was 28-30

mg/kg [18]. The toxicity of 0.1 μg/ml AO administered by intravenous injection was investigated
in dogs and no significant adverse effects were recognized [55]. None of the above clinical or
experimental reports have shown evidence of any serious complications caused by AO
administration. Since the concentration of AO solution used by us in our present clinical study
was very low, and the substance was administered only locally, we believe that the risk of
carcinogenesis induced by AO in our patients was significantly lower than that associated with
most other known anticancer agents.

Conclusions
In conclusion, based on the results of basic research and clinical data, we strongly believe that
AOT, consisting of AO-iPDS, AO-iPDT, and AO-RDT, may be a promising new limb salvage
modality for excellent preservation of limb function with a low risk of local tumor recurrence in
musculoskeletal sarcoma patients. This therapeutic modality may also be applicable to many
other solid cancers, although studies on a larger number of patients with longer durations of
follow-up are required to verify this notion.

In the AOT procedure, iPDS is useful to detect the residual tumor tissue after intra-lesional
tumor excision and makes it easy to precisely carry out additional excision of residual tumor
tissue under fluorovisualization using a fluorescence surgical microscope.
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