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Abstract
Leukemia is a rare but fatal cancer of the blood. This cancer arises from abnormal bone marrow cells and
requires prompt diagnosis for effective treatment and positive patient prognosis. Traditional diagnostic
methods (e.g., microscopy, flow cytometry, and biopsy) pose challenges in both accuracy and time,
demanding an inquisition on the development and use of deep learning (DL) models, such as convolutional
neural networks (CNN), which could allow for a faster and more exact diagnosis. Using specific, objective
criteria, DL might hold promise as a tool for physicians to diagnose leukemia. The purpose of this review was
to report the relevant available published literature on using DL to diagnose leukemia. Using the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, articles published between
2010 and 2023 were searched using Embase, Ovid MEDLINE, and Web of Science, searching the terms
“leukemia” AND “deep learning” or “artificial neural network” OR “neural network” AND “diagnosis” OR
“detection.” After screening retrieved articles using pre-determined eligibility criteria, 20 articles were
included in the final review and reported chronologically due to the nascent nature of the phenomenon. The
initial studies laid the groundwork for subsequent innovations, illustrating the transition from specialized
methods to more generalized approaches capitalizing on DL technologies for leukemia detection. This
summary of recent DL models revealed a paradigm shift toward integrated architectures, resulting in notable
enhancements in accuracy and efficiency. The continuous refinement of models and techniques, coupled
with an emphasis on simplicity and efficiency, positions DL as a promising tool for leukemia detection. With
the help of these neural networks, leukemia detection could be hastened, allowing for an improved long-
term outlook and prognosis. Further research is warranted using real-life scenarios to confirm the suggested
transformative effects DL models could have on leukemia diagnosis.
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Keywords: convolutional neural networks (cnn), flow cytometry, acute lymphoblastic leukemia (all), diagnosis,
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Introduction And Background
Leukemia
Leukemia, a cancer of the blood cells, results in the abnormal generation of white blood cells (WBC) in the
body’s bone marrow and hinders the development of other blood components such as platelets and red
blood cells. This results in a progressive, possibly fatal medical condition that requires both timely and
accurate diagnosis for effective treatment and patient prognosis [1]. Leukemia is diagnosed by analyzing
peripheral blood, typically under microscopy or flow cytometry. Microscopy of a blood smear allows
physicians to visualize the morphological changes in blood cells associated with leukemia. However, these
morphological changes are often difficult to uncover by the human eye, due to the high density of cells to sift
through. Flow cytometry has a relatively fast turnaround time but requires fresh blood draws and cannot
analyze the histomorphology of the blood samples [2]. Moreover, not all people with leukemia will have
disease presentation in the peripheral blood. To circumvent this, an invasive bone marrow biopsy can be
performed. This process has a longer turnaround time of one to two weeks but is more diagnostic, often
revealing the typical hypercellular bone marrow with a drop in normal hematopoietic cells [2]. The realistic
possibility of human error, the need for human input and fresh blood samples, long turnaround times, and
uncomfortable procedures, raise the question of how these diagnostic processes can be streamlined to
improve diagnostic rates and subsequent prognostic outcomes.

Deep learning models
Deep neural networks (DNNs), often termed deep learning (DL), are a subset of artificial neural networks
inspired by the function of the human brain. DNNs are composed of interconnected artificial neurons
organized into layers. Neurons in one layer are connected to neurons in the layers around it, which form a
network of connections. They have revolutionized various fields, including machine learning and artificial
intelligence, by enabling the development of models for tasks such as image recognition, natural language
processing, and reinforcement learning [3].
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Convolutional neural networks (CNNs) are specialized DNNs for completing tasks like image and video
processing while recurrent neural networks (RNNs) are designed for sequential data, such as natural
language text. DNNs learn from data through a process called training. During training, the network adjusts
its internal parameters to minimize the difference between its predictions and the actual target values in the
training data. Pre-trained DNNs have widespread medical applications since they can be fed large image
datasets to produce new biomedical informatics and associations [4,5]. Yet, building these networks involves
a resource-intensive and lengthy process, dependent on the quality of the input data.

Deep learning and leukemia
With the rapid advancement of DL, there has been a growing interest in leveraging these technologies for
the early detection of medical conditions, which is expected to grow exponentially [6]. DNNs aid physicians
in accurately diagnosing leukemia through feature analysis such as image classification, object detection,
image retrieval, semantic segmentation, and human pose estimation [3,7-9]. Leukemia detection involves
analyzing bone marrow smears and images to identify certain pathological features of leukemic cells while
comparing them to healthy ones. Matek et al. used CNN to identify malignant WBC hematologic
malignancies for one subtype of leukemia [10]. Using a dataset of 18,000 images, the system recognized the
most common physiological cell type - myeloblasts - with an accuracy above 90%. Shafique et al. developed a
CNN to analyze a subset of leukemia based on cell size and nucleus, finding 99% accuracy when comparing
malignant cells with healthy ones [11]. Thanh et al. made a unique five-layer CNN that also found high
accuracy in classifying a special subset of leukemia [12].

Researchers have used DNNs to predict the risk of leukemia development based on genetic factors. Several
research groups have used these networks to predict mutations in nucleophosmin 1 (NPM1; a
pathognomonic mutation for leukemia) [13-15]. Eckardt et al. developed a DL model capable of predicting
NPM1 mutation status from bone marrow cytomorphology, yielding 86% accuracy [16]. Their model also
completed cell segmentation and image classification to differentiate healthy cells from leukemic cells. This
DL model had an accuracy of 91% when discerning a leukemia subtype cell morphology from healthy bone
marrow donor samples [16].

DNNs require a large, labeled database to be trained to identify unique characteristics of the data. Ahmed et
al. used data augmentation to increase the image database artificially to assist in this process [17]. Their
CNN yielded an 88% accuracy for the classification of one leukemia type, and an 81% accuracy to classify
classification of all leukemia subtypes [17]. Another barrier noted with the development of DNNs is the
standardization of color in the images [4,18]. Saraswat et al. found a method that excludes the unwanted
noise from non-standardized colors in staining called a deconvolution-based method, which performed
better than simple color transfer methods [19]. This method allows the DNNs to analyze stain concentration
and absorbance. Other researchers used an image pre-processing technique that adapted image color space
to separate the intensity channel from hue and saturation, allowing stain concentrations and absorbance to
be analyzed [20]. Another study found that when compared to non-standardized images, DNNs that used
images standardized in red, blue, and green colors, had a 98% accuracy [11]. Together, these studies have
found that pre-processing techniques are promising when maximizing the DNN’s ability to differentiate
leukemic cells versus healthy cells.

Image pre-processing, data augmentation, and healthy versus malignant cells accuracy demonstrate the
different ways researchers have used to improve DLs. The high accuracy for predicting the diagnosis of
individual leukemia subtypes could open the door to an unexplored world where just one blood marrow
smear/image could diagnose/differentiate from healthy cells, leukemia, and its subtypes. Also, the current
procedures for leukemia detection have some drawbacks that could be alleviated by DLs, making the process
more efficient, accurate, cost-effective, and reliable.

Review
Methods
Eligibility Criteria

The inclusion for this review encompassed both experimental and nonexperimental studies, full-text
articles, articles in the English language, and articles published between 2010 and 2023. The review focused
on investigating DL technologies to diagnose leukemia using selected studies that used DL and its subsets,
deep neural networks, rather than broader concepts such as artificial intelligence and machine learning.
Abstracts, opinion pieces, presentations, and gray material were excluded.

Information Sources

The search identified a total of 1,229 citations. Initially, 375 duplicates were removed, leaving 854 studies to
be screened. Team members reviewed article titles and abstracts, achieving consensus about which articles
warranted further consideration. Discussions continued among all three reviewers until an agreement was
reached. At this point, 834 articles were excluded for not meeting screening criteria: 470 because of being the
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wrong topic, 152 were the wrong publication type (e.g., abstract only and dissertations), 96 based on being
too old, 74 due to the wrong population, 30 did not align with the scoping review's objective, and 12 due to
having the wrong study design. Consequently, 20 articles were retained for critical analysis. The screening
and selection process is depicted in Figure 1.

FIGURE 1: PRISMA flow diagram
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

Search Strategy

A literature search to locate published studies was conducted in September 2023. A search was performed
using Embase, Ovid MEDLINE, and Web of Science. Eligible articles included those published between 2010
and 2023 and in English, utilizing the search terms “leukemia” AND “deep learning” or “artificial neural
network” OR “neural network” AND “diagnosis” OR “detection,” either in the title, abstract, or keywords. A
detailed search strategy table is summarized in Table 1. The reference list of all included sources of evidence
was screened for additional studies. An information specialist assisted and confirmed the search strategy.
Table 1 reports the search strategy.
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# Query Results

#1 'leukemia'/exp 437,276

#2 leuk*mia:ab,ti,kw OR leuc*mia:ab,ti,kw OR aleuk*mia:ab,ti,kw 400,219

#3 #1 OR #2 522,244

#4 'artificial neural network'/exp OR 'deep learning'/exp 117,784

#5 'deep learning':ab,ti,kw OR 'deep machine learning':ab,ti,kw OR 'neural network':ab,ti,kw 122,403

#6 #4 OR #5 160,613

#7 #3 AND #6 629

#8 detect*:ab,ti,kw OR diagnos*:ab,ti,kw OR classif*:ab,ti,kw 8,121,146

#9 #7 AND #8 439

TABLE 1: Search strategy

Selection of Sources of Evidence

All identified citations were collated and uploaded into a collaborative cloud-based software application
tailored for conducting systemized reviews. Members of the research team discussed the results and
inclusion criteria before the initial screening of the articles generated in the primary search. Two authors
then worked independently to evaluate the abstracts and titles of the publications to determine their
relevance to the review. Twenty articles appeared to be relevant for the final review.

Critical Appraisal of Individual Sources of Evidence

A comprehensive evaluation of the 20 articles was performed using the critical appraisal tools developed by
the Joanna Briggs Institute (JBI), known for its reliability and ongoing improvement efforts. The appropriate
checklist was used for each article to consider research biases, overall coherence, and critical components
contributing to article quality. Two team members independently conducted a detailed and blinded
appraisal of the 20 articles chosen for the final review using the applicable JBI tools. Articles were then
categorized into the high, moderate, or low risk of bias based on their scores (below 50%, between 50% and
70%, and above 70%, respectively). Articles above 70% in the criteria were included while articles under 70%
were considered at higher risk for bias and thus excluded. Subsequently, the team engaged in a deliberative
process to compare their appraisal scores. The relevance and quality of each article were thoroughly
discussed, leading to a final consensus on selecting articles for inclusion in the review whereby all 20 articles
were included in the final review.

Data Charting and Extraction Process

Two reviewers collaborated to create a data-charting form using Excel (Microsoft Corporation, Redmond,
WA) and determined the data to extract. Using an iterative process, the rest of the team independently
charted and engaged in discussions about the results, and continually updated the data-charting form. The
information extracted was based on the article’s purpose, study population, sample, methods, limitations,
and key findings (based on the percentage of success for the authors’ DL model in diagnosing leukemia and
additional pertinent information).

Results
Research on the use of DL technology for leukemia detection is relatively new. The 20 articles included in
this review are reported chronologically to highlight the progression of the technology used for leukemia
detection over the period determined for article inclusion (2010-2023). This helps demonstrate the
uniqueness of each approach to DL for leukemia detection with their percentage accuracy outcomes.

Earlier Works (2010-2018)

Two articles published in 2010-2018 fit the inclusion criteria and were thus included in the review. In 2010,
Adjouadi et al. created an early version of a DL neural network model called Neural Studio, which could
classify and detect leukemia with a 96.67% accuracy based on 220 blood samples (of which only 60 were
abnormal) [21]. At that time, flow cytometry was still being used to create the data necessary for the neural
network, so this was a new approach. Beginning in 2018 with Vogado et al., feature extraction became a
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staple of the more advanced convolutional neural networks (CNNs) that could be trained to do tasks. Pre-
trained CNNs AlexNet, Vgg-f, and CaffeNet from a dataset of 891 images achieved over 99% accuracy in
detecting features and classification using support vector machine (SVM) classifiers [22].

Years 2020-2021

Findings from seven articles published in 2020-2021 were included in this review [23-29]. Four articles
published in 2020 used different models to achieve high detection accuracy [23-26] and grayscale conversion
and a non-specified CNN (96.78% accuracy) [23] by (1) applying noise reduction in grayscale images with
three CNN frameworks (normal group accuracy of 90% and leukemia detection accuracy of 99%) [24], (2)
using a dye-sensitized solar cell (DSSCS) CNN model with novel techniques for noise suppression doing
image segmentation and color normalization (reached 97.00% accuracy) [25], and (3) using color
normalization only (98%) [26].

Three additional articles published in 2021 reported the start of using image augmentation and
segmentation, reporting high accuracy outcomes: 99.57% accuracy with Open Neural Network Exchange
(ONNX) and a You Only Look Once version 2 (YOLOv2) CNN (single-stage real-time object detection model)
for feature extraction alongside an SVM for classification [27]; 98.00% accuracy using k-nearest neighbor
(KNN) for feature extraction while using SVM and random forest for classification [28]; and 98.61% accuracy
using fine-tuned LeukNet (the name of a new computational tool) using transfer learning for classification
achieving [29].

Year 2022

Seven articles published in 2022 were included [30-36]. Anilkumar and colleagues used AlexNet (the name of
a CNN architecture) and LeukNet CNNs to do dual work by feature extracting and classifying the leukemia
images, attaining 94.12% accuracy [30]. Less accurate results were found using ensemble methods for feature
extraction doing data augmentation, image segmentation, and red, green, and blue (RGB) to grayscale
correction; the average of CNNs with SVM, K-nearest neighbor (KNN), and random under-sampling boost
(RUSBoost) attaining 88.09% for leukemia detection [31].

Another article reported using ensemble and multiclass classification for classification and AlexNet, Visual
Geometry Group (VGG), Residual Network-50 (ResNet-50), GoogLeNet (a type of CNN based on the inception
architecture), and Dense Convolutional Network121 (DenseNet121) for feature extraction, achieving 97.04%
accuracy. When conducting augmentation and image segmentation alongside DenseNet121, 97.11%
accuracy was achieved [32]. Muhamad et al. obtained varying accuracy on feature extraction with softmax
(amplifying effects of the exponential on any maxima in the input vector) for classification with 95.3%,
81.5%, and 97.6% on an unnamed CNN, AlexNet, and MobileNet-v2 (CNN architecture that seeks to perform
well on mobile devices), respectively [33].

Other researchers applied a probabilistic neural network (PNN) for 95.705% accuracy without using data
augmentation, image segmentation, or color normalization [34]. However, Sakthiraj also did not use pre-
processing tools for image datasets and achieved a 99.87% accuracy with a hierarchical convolutional neural
network with integrated attention and spatial optimization (HCNN-IAS) [35]. Of note, nearly 100% accuracy
(average 99.7%) was attained with DarkNet-53 (backbone for the YOLOv3 object detection approach) and
ShuffleNet (designed especially for mobile devices with very limited computing power) for feature extraction
and SVM, ensemble methods, KNN, and naïve Bayes (an algorithm that uses Bayes' theorem to classify
objects) for classification only segmenting their images [36].

Year 2023

The year 2023 demonstrated a focus on using only one model for feature extraction and classification; four
articles published in this year were included in this review [37-40]. Houssein and colleagues attained 99.80%
accuracy with DenseNet-161 (a model from densely connected convolutional networks) using augmentation,
segmentation, and RGB (R: red, G: green, B: blue) to HSV (H: hue, S: saturation, V: value) [37], while other
researchers averaged 98.15% accuracy with a CNN model using only image segmentation [38]. Naz and
colleagues achieved 96.9% and 81.9% on separate datasets using AlexNet by augmenting their data and
segmenting their images [39]. Wang et al., after augmenting their data, reached 92.50% accuracy with You
Only Look Once eXtreme small (YOLOX-s) for feature extraction and Meta-Learning Fusion and Learning
Network (MLFL-Net) for classification [40]. A summary of the articles included in this review is reported in
Table 2.

Authors Purpose
Study
samples

Methods Limitations Key findings

Utilizing Beckman-Coulter flow
cytometry data files containing 24 The AML classifier
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Adjouadi
et al.
(2010)
[21]

To prove that it is
possible to look
at other
cytometry
parameters to
classify blood
samples into two
categories
(normal and
abnormal) by
using artificial
neural networks
(ANNs).

220 blood
samples were
considered
with 60
abnormal
samples and
160 normal
samples.

parameters, such as direct current
impedance (DC), opacity (OP), and
RisSoft (transformed light scanner),
statistical feature extraction was
employed to reduce the dataset's
complexity. By computing mean, peak,
standard deviation, skewness, and
kurtosis from parameter histograms, a
more manageable 5x93 matrix was
derived for each blood sample. A
binary classifier was then developed
using ANNs to categorize blood
samples as normal or abnormal acute
lymphoblastic leukemia (ALL)/acute
myeloid leukemia (AML) based on
these extracted features. Receiver
operating characteristics (ROC) were
used to analyze its results and
categorical data. Three classifiers were
established with incremental data sizes
(50, 100, and 130 samples),
showcasing an ascending trend in
sensitivity (from 80% to 96.67%) and a
descending trend in the false positive
rate (from 10% to 1%) as the sample
size increased.

Small dataset

demonstrated high
performance, correctly
classifying 96 out of 100
normal samples and
misclassifying only one AML
sample as normal. The true
positive (TP) fraction for AML
samples was 90%, with a low
false positive (FP) fraction of
2%, indicating the robustness
of the classification approach
for both ALL and AML cases.
The results highlighted the
effectiveness of the ANN-
based classification system in
accurately categorizing
leukemia blood samples. It
has been shown that
increasing the size of the
population does not always
guarantee better results when
dealing with data
contaminated by high-class
overlap.

Vogado et
al. (2018)
[22]

To test the ability
of a proposed
convolutional
neural network
(CNN) leukemia
diagnosis
system that does
not require the
segmentation
process
(commonly used
in state-of-the-art
techniques). The
methodology
uses pre-trained
CNN models to
extract features
directly from the
images without
any previous
preprocessing. 

Three hybrid
datasets, one
with blood
smears
containing
only one
leukocyte per
image, one
with many
leukocytes per
image, and the
last one with
both types of
images. Total
images = 891.

The method proposed in this work
aims to diagnose leukemia using blood
smear images with a CNN using the
following flow chart: feature extraction
(CNN), feature selection (gain ratio),
classifier (support vector machine), and
image classification (pathological or
non-pathological.

Small sample
size 

A new methodology for the
diagnosis of leukemia in
blood images using CNNs
was reported. Based on the
results obtained by the
proposed approach, it was
possible to validate the
robustness of pre-trained
CNNs for extracting features
concerning classical state-of-
the-art methods. Through the
selection of attributes, we
observed that more
characteristics are required to
classify the images with many
leukocytes, while fewer
features are required for
images with only one
leukocyte. The main
advantage of the proposed
methodology that allows it to
perform better than other
state-of-the-art methods is
that it does not need a
segmentation process.

Abou El-
Seoud et

Proposed a
convolutional
neural network
(CNN) that
detects white
blood cells from
microscopic
images and then
classifies these
blood cells into

Leukemic
patients’ blood

The CNN model consisted of five
layers: four layers for extracting
features from input images and one
output layer for classification. The
dimensions of the input image were
50x50x1. The convolutional filter size is
3x3, and the max-pooling filter size is

The dataset
excluded
abnormal white
blood cells,
which would
further help the
CNN
discriminate

The dataset contained
images of white blood cells
(neutrophils, eosinophils,
monocytes, and
lymphocytes). The study
focused on experimenting
with various hyperparameters
of the CNN such as training
and testing set quantities,
input size, data labels, kernel
size, pooling size, epochs,
activation types, and the
order of activations in the
network. The experiments
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al. (2020)
[23]

one of the four
classes: Class A:
monocytes,
Class B:
lymphocytes,
Class C:
neutrophils,
Class D:
eosinophils. 

smears 3x3 with a stride of 1. The study
emphasized the operations within the
convolutional layers, including
convolutional operation, activation
(ReLu), and max pooling, to extract
features from the input images.

from leukemia
and other
diseases by
only including
leukemic and
normal cell
types.

were conducted using Google
Colaboratory as the
notebook, Anaconda as the
Python distributor, the Keras
library, and TensorFlow as
the backend engine. After
multiple experiments, the
proposed CNN model
achieved an impressive
accuracy rate of 96.78% in
recognizing and classifying
different types of white blood
cells.

Huang et
al. (2020)
[24]

Sought to design
an intelligence-
assisted
diagnosis
method based
on combining
CNN and
transfer learning
to replace the
manual
interpretation of
bone marrow cell
morphology.

This study
analyzed
microscopy
images of
bone marrow
smears from
104 subjects,
including
healthy
individuals and
patients with
AML, ALL, and
chronic
myeloid
leukemia
(CML).

The researchers achieved this by
constructing bone marrow cell
microscopy image datasets for AML,
ALL, CML, and healthy subjects and
used three different CNN frameworks
(GoogleNet, ResNet, and DenseNet) to
construct classification models and
carry out a comparative analysis.
Simplified image preprocessing
combined with transfer learning was
used to improve the classification
accuracy of the model and achieve the
classification of myelograms from AML,
ALL, CML, and healthy subjects.

Did not include
types of
leukemia with
low incidence
in China, such
as chronic
lymphocytic
leukemia.

The results are fast,
objective, and reliable and
can avoid errors,
misdiagnosis, and
misjudgment due to human
factors. Results showed that
this method can identify
subtle morphological changes
that cannot be identified by
the naked eye and avoid
errors due to manual
interpretation, which
increases diagnostic
accuracy. This avoids
objective influencing factors
caused by manual smear
reading. Therefore, this
method can be used to
achieve standardization of
bone marrow smear
diagnosis.

Joshi et
al. (2021)
[25]

Proposed an
approach to
classify
peripheral blood
cells using a
hybrid
disruption-based
salp swarm and
cat swarm
(DSSCS)-based
convoluted
neural network
method. The
hybrid approach
addresses the
problem of
hyperparameters
converging to
suboptimal
solutions in
traditional CNNs.

This study
uses a dataset
consisting of
15,920 images
of peripheral
blood cells,
which were
acquired from
the core
Laboratory of
the Barcelona,
Spain clinic.

Images of peripheral blood cell smears
were processed and classified into
eight classes (neutrophils, basophils,
eosinophils, monocytes, immature
granulocytes, lymphocytes, platelets,
and erythroblasts). The novel DSSCS
algorithm is a combination of a
modified salp swarm algorithm (SSA)
and the cat swarm optimization (CSO)
algorithm. The modification consists of
the addition of a disruption operator to
the SSA algorithm to enhance the
exploration capability and
diversification of the population. Once
the classifications are made, the
results are compared to support vector
machine (SVM), neural network (NN),
SVM + NN, and CNN classification
methods. The performance metrics
include sensitivity, specificity, and
accuracy.

This study is
limited to the
dataset of
15,920 images
provided by the
clinic
laboratory. A
larger dataset
could provide
more robust
results and
generalizability.
A more
comprehensive
comparison
with a wider
range of
existing
methods would
strengthen the
evaluation of
the proposed
model.

The proposed DSSCS-CNN
model outperformed other
existing techniques such as
SVM, SVM + NN, and CNN. It
achieved this by resolving the
hyperparameter problem
associated with the CNN
architecture, leading to
improved classification
accuracy. The global
classification accuracy was
97% delivered through the
training on visual geometry
group (VGG)-16 models,
indicating its effectiveness in
classifying peripheral blood
cells. The accuracy of the
proposed DSSCS-CNN
model was 99%, highlighting
the efficacy of the novel
approach.

Kalaiselvi
et al.

This study aimed
to improve the
leukemia
characteristic
accuracy by
scanning color
and textural

The method
used nearly
10,000
microscopic
blood images;

Before classification can begin, the
dataset is loaded and verified to be a
200x200 red-green-blue (RGB) image.
This CNN has six layers with each
layer containing a convolution,
activation, dropout, and max-pooling
layer. A training dataset will be used to

No reports of
where or when
the data were

The training accuracy
consistently improves as the
number of epochs increases.
The accuracy achieved by the
proposed architecture is
98.8%. The proposed CNN
architecture achieves a
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(2020)
[26]

features from the
blood image
using image
processing and
to aid in the
grouping of
leukemia
subtypes.

however, it did
not specify
where the
images were
sourced from.

fine tune the CNN for 100 runs and an
initial accuracy metric will be plotted.
Then another 100 training iterations will
be done to achieve sufficient accuracy.
Then a test data set will be classified
into four categories: ALL, CML,
ALL/AML, and chronic lymphocytic
leukemia (CLL).

collected,
leading to a
chance of
bias. 

validation accuracy of
approximately 97%. The
results demonstrate the
efficacy of CNN in accurately
identifying the types of
leukemia in a dataset with a
limited number of classes.

Amin et
al. (2021)
[27]

To conduct an
automated
approach based
on deep learning
that was
proposed to
segment and
classify white
blood cells
(WBCs) more
accurately.

6250 images,
each
encompassing
1250 blood
smear images
for five distinct
WBC types.

The first step involved utilizing the
WBC - Open Neural Network
Exchange (ONNX) - You Only Look
Once version 2 (YOLOv2) model for
precise localization. Features were
extracted from activation-5 LeakyReLU
of the ONNX model and integrated into
the YOLOv2 architecture, which
comprised 26 layers in the ONNX
model and nine YOLOv2 layers. To
enhance classification accuracy, a
Bhattacharyya rank-based feature
selection approach was applied,
selecting the top 500 features from a
pool of 1000. These optimized features
were then fed into multi-kernel SVM
classifiers, including cubic SVM,
quadratic SVM, O-SVM, and Gaussian
SVM, for precise classification. The
research utilized three benchmark
datasets: acute lymphocytic leukemia
image database 1 (ALL-IDB1), acute
lymphocytic leukemia image database
2 (ALL-IDB2), and Leukemia Image
Segmentation Challenge (LISC)
dataset.

Not enough
comprehensive
work on
leukemia
image
augmentation
and
classification.

The localization technique
was validated using mean
precision (mAP) and
intersection over union (IoU)
metrics. The results
demonstrated precise
localization across six types
of WBCs, with the highest
IoU score of 0.97 achieved
for blast cells. The
localization method also
provided good scores for
eosinophils, basophils, and
lymphocytes. The second
experiment used various
metrics, including IoU, mean
accuracy, weighted accuracy,
and harmonic mean of
precision and recall (F1-
scores), were employed. The
proposed segmentation
method exhibited exceptional
accuracy, with pixel-by-pixel
comparisons against ground
annotated images, resulting
in IoU and F1 scores of 0.97
and 1.0, respectively. In the
third experiment, using a
multi-kernel SVM, the
classification outcomes,
measured in terms of
accuracy, precision, recall,
and F1 scores, were
outstanding. The SVM with
the optimized kernel achieved
an overall accuracy of 98.4%.

Loddo et
al. (2021)
[28]

To use CNN
classification to
automate the
analysis of digital
microscopic
images to
identify different
sub-types of
WBCs and
detect the
presence of
leukemia. This
study explores

The two
datasets used
are the acute
lymphoblastic
leukemia
image
database
(ALL-IDB)
from the
Tettamanti

Before training occurs, the images are
preprocessed to crop individual WBCs
in a bounding box (BB). This generates
"tight" data, whereas uncropped
images are large data. The initial step
for training is the creation of hand-
crafted image descriptors, consisting of
moments, texture, color, and wavelet
features. For the machine learning
classifiers, the common K-nearest
neighbor (KNN), SVM, and random
forest (RF) were employed. Many CNN
architectures were explored and
considered using previous studies. The
AlexNet, VGG-16, VGG-19, ResNet,
and inception architecture were

This study
uses the
commonly
used ALL-IDB
dataset,
limiting the
scope of
generalizability

The overarching takeaway
from the results is the
handcrafted descriptors
produced the best results
when trained with the tight
version of the dataset.
However, the features
derived from the CNNs show
a trend favoring the large
datasets. For example, the
average accuracy for the
CNN trained on a large
dataset for WBC is 97.9%
versus the range of 88.9% for
the best machine learning
classifier RF. For the ALL-
IBD dataset, the best
machine learning performer
was the KNN model with an
average accuracy percentage
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the efficacy of
training on
cropped images
and using hand-
crafted
descriptors.

Research
Centre and the
Raabin-WBC
dataset.

emphasized in this study. For the
training step, 70% of images from the
dataset were used for training and the
other 30% for testing. For the validation
step, this split was tweaked to 80/20
respectively. To test the robustness of
the classification method, the model
used to train on one dataset was
tested with the images from another
dataset.

of the findings. of 65.2%, similar to 67.6% for
the CNN. A similar story can
be told for the models trained
on tight datasets. CNNs
trained on the tight data
produced impressive results
when tested on tight images,
with performance exceeding
90%. There was a general
decline in accuracy across
the board when models
trained on large datasets
were tested with tight images,
and vice versa. 

Vogado et
al. (2021)
[29]

To evaluate a
CNN
generalization
ability to
diagnose
leukemia from
images of
different
resolution,
contrast, color,
and texture
characteristics
using a cross-
dataset
validation
technique.

LeukNet, a
model of
convolutional
neural network
for the
diagnosis of
leukemia was
evaluated on
3536 images
of blood
smears
belonging to
different
sources,
including
hospitals and
other
institutions.
Each dataset
includes
images
acquired
under different
conditions,
dimensions,
and
characteristics
of color,
contrast, and
texture.

The experimental protocol used a
leave-one-dataset-out cross-validation
where the test is carried out in one
dataset and the remaining datasets are
used in the training process. This
procedure is performed until all
datasets are tested individually. This
ensures that the CNN is not trained
with any image of the datasets to be
tested

Small sample
size

From the comparisons
performed against previous
studies, some conclusions
may be drawn as to the
computational leukemia
diagnosis from images. First,
fine-tuning may be more
efficient than off-the-shelf
feature extraction. Second,
CNNs with more
representations through
feature maps perform better
in cross-dataset experiments.
Furthermore, the choice of
the fine-tuning technique is
essential for the correct
definition of CNN parameters.
As for blood sample images
belonging to a different
domain than those used to
pre-train the layers, adjusting
all the layers is preferable.

Anilkumar
et al.
(2022)
[30]

To classify ALL
into B-cell ALL
and T-cell ALL
according to the
WHO scheme,
using deep
learning (DL)
techniques
applied to a
publicly available
dataset, without
relying on
traditional image
segmentation or
hand-crafted
feature

56 peripheral
blood smear
images,
containing
both B-cell and
T-cell ALL
samples, 168
individual
lymphoblast
images
representing
B-cell ALL,
and another
168
lymphoblast
images

The method for the classification of
ALL blood smear images into B-cell
ALL and T-cell ALL was conducted
using two deep CNNs: AlexNet, a pre-
trained deep CNN, and LeukNet, a
custom-designed CNN. Image
segmentation and hand-crafted feature
extraction were avoided. The images
were cropped to fit the input data size
of the CNNs (227 × 227 for AlexNet
and 224 × 224 for LeukNet). Data
augmentation techniques such as
flipping, rotation, translation, and
scaling were applied to avoid overfitting
due to the limited number of images.
Transfer learning was employed for
AlexNet, where the last three layers
were adjusted to match the number of

Small dataset 

For AlexNet, a classification
accuracy of 94.12% was
achieved with adaptive
moment estimation (ADAM),
with a validation accuracy of
93.94% and a training time of
8 minutes and 27 seconds.
Similar results were obtained
with RMSprop. LeukNet, with
a smaller depth, achieved a
classification accuracy of
94.12% using all three
algorithms, with the fastest
training time of 2 minutes and
26 seconds using stochastic
gradient descent with
momentum (SGDM).
Sensitivity and specificity
were comparable between
AlexNet and LeukNet with
ADAM and root mean square
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extraction
methods,
thereby avoiding
intensive
computational
processes.

representing
T-cell ALL
from these
original
images.

classes. The LeukNet architecture
comprised 17 layers, including
convolution, Rectified Linear Unit
(ReLU) activation, cross-channel
normalization, max pooling, fully
connected, dropout, and softmax
layers, with a depth of 5. 

propagation (RMSprop), while
LeukNet outperformed
AlexNet with SGDM in
detecting T-cell ALL. The
study highlighted the
simplicity of their
classification framework,
emphasizing the absence of
complex image segmentation
and feature extraction
methods.

Baig et al.
(2022)
[31]

To introduce a
computer-aided
method utilizing
deep learning
techniques to
detect blood
cancer through
microscopic
images.

4150 images
of blood
smears.

The methodology followed in this study
starts first by having pre-processing
applied to enhance image clarity,
followed by image segmentation to
extract the area of interest. Hybrid CNN
models, namely, CNN-1 and CNN-2,
are employed for feature extraction
from training images. These features
are fused using canonical correlation
analysis (CCA) to create discriminative
vectors. The study emphasizes the
importance of pre-processing, including
RGB to greyscale conversion, image
adjustment, adaptive histogram
equalization, and noise removal. Data
augmentation techniques are used to
address limited data availability and
potential overfitting issues. The
classification stage involves various
classifiers such as bagging ensemble,
linear programming boost (LPBoost),
total boost ensemble, KNN, fine K-
nearest neighbors (FK-NN),
RUSBoost, coarse KNN, and SVM,
aimed at predicting cancer types based
on selected features. Transfer learning
is applied to reduce the complexity of
training CNN models.

None noted

Two parallel CNN models,
CNN-1 and CNN-2, were
trained for feature extraction,
achieving individual class
accuracies of 77.27% ALL,
98.91% AML, and 92.22%
multiple myeloma (MM) for
both models. A Canonical
correlation analysis (CCA)
fusion technique was
employed to concatenate the
extracted features, which
were then classified using
various traditional machine
learning algorithms, including
bagging ensemble, total
boost, FK-NN, RUSBoost,
coarse KNN, SVM, LPBoost,
and active contours. The
Bagging ensemble model
with CCA fusion exhibited the
highest accuracy at 97.04%,
outperforming other
classifiers.

Claro et
al. (2022)
[32]

To assess how
employing data
augmentation
and
combinations of
CNNs impacts
the identification
of various types
of leukemia in
blood slide

3,536 images,
1,434 images
belong to the
healthy blood
slide (HBS)
class (40.55%
of the total),
881 belong to
the ALL class
(24.92%), 978
belong to the
AML class
(27.66%) and

Techniques of data augmentation were
applied to increase the generalization
capacity of the classification models.
The study used 18 public datasets,
ensuring that the datasets had ground-
truth information and were previously
used (as reported in published
literature). Data augmentation
techniques, such as rotation,
translation, flipping, scaling, and shear
transformations, were applied to tackle
the limited availability of training data
and class imbalances. Various pre-
trained CNN architectures, including
AlexNet, VGG-16 and 19 (VGG16 and
VGG19), ResNet (ResNet50),
GoogLeNet (InceptionV3 and
Xception), and DenseNet121, were
evaluated. Two configurations were

Not enough
comprehensive
work on
leukemia
image
augmentation
and
classification.

Using K-fold cross-validation
(a technique for evaluating
predictive models), the impact
of data augmentation (DA) on
binary classifications was
assessed: leukemia vs.
healthy slides, ALL vs.
healthy slides, and AML vs.
healthy slides. In the first
scenario, ResNet50-DA
excelled, benefiting
significantly from DA. In the
ALL vs. healthy slides
scenario, DenseNet121-DA
exhibited superior accuracy,
recall, F1-score, and kappa
index, while ResNet50
excelled in precision. AML vs.
healthy slides favored
ResNet50-DA for accuracy,
precision, F1-score, and
kappa index, with
DenseNet121 showcasing
high recall. Multiclass
classifications, particularly
ALL vs. AML vs. healthy

2024 Rubinos Rodriguez et al. Cureus 16(5): e61379. DOI 10.7759/cureus.61379 10 of 20

javascript:void(0)
javascript:void(0)


images. 243 belong to
the ‘‘other
types” class
(6.87%).

explored: a multilevel configuration,
where feature maps from different
CNNs were concatenated and fed into
a fully connected layer, and an
ensemble technique, where predictions
from multiple CNNs were combined
using majority voting. To assess the
classification results, metrics such as
accuracy, precision, recall, F1-score,
and the kappa index were computed.

slides, displayed a slightly
reduced performance overall,
but DenseNet121-DA still
achieved a notable accuracy
of 97.11%. In a more complex
multiclass scenario, including
other leukemia types,
DenseNet121 outperformed
others with values above
94%, excelling in accuracy,
precision, recall, and F1-
score, with rotation as the
most effective DA technique.
Ensemble models, particularly
DenseNet121-DA, emerged
as the most effective
approach.

Muhamad
et al.
(2022)
[33]

To use different
CNN
classification
models to detect
and differentiate
white blood cells
into basophils,
eosinophils,
lymphocytes,
monocytes, and
neutrophils.

The patient
data was
sourced from
the Hiwa
Cancer
Hospital in
Sulaymaniyah-
Iraq. A total of
1728 images
were used.

Transfer learning was used by
employing pre-trained neural networks,
such as CNN, CNN MobileNetv2, and
CNN Alex Net, to process their
collected images. The collected images
were analyzed using the feature
extractor of previous models to
finetune the classification. This method
was used to reduce the amount of data
processing required to generate an
effective model, and therefore simplify
the training procedure. An 80/20 split
of images was set for training and
testing, respectively.

Using
previously
trained models
can lead to bias
in results
depending on
which datasets
were used to
train them. The
patient data set
from one
specific
hospital limits
the
generalizability
of the findings.

The fine-tuned models
yielded an accuracy of 95.2%
for the CNN model, 97.2% for
the MobileNet2 model, and
81.5% for the AlexNet model.
However, the researchers
note that despite different
designs with different
numbers of layers,
parameters, or branches, the
overall performance of the
models doesn't differ much.

Prabhakar
et al.
(2022)
[34]

To improve the
use of
microarray
techniques using
probabilistic
neural networks
to classify
leukemia,
specifically ALL
and AML.

The dataset
referenced by
Golub. The
dataset
contained
7129 genes, of
which 47
samples of
ALL and 25
samples of
AML were
found.

Two-level feature selection employing
statistical tests was first used for best
gene selection. Minimum redundancy
maximum relevance (MRMR), signal-
to-noise ratio (SNR), multivariate error
weight uncorrelated shrunken centroid
(EWUSC), and multivariate correlation-
based feature selection (CFS) were
chosen as the initial feature selection
techniques. This output was then
optimized through 5 different
optimization techniques (African
Buffalo optimization (ABO), Artificial
Bee Colony Optimization (ABCO),
Cockroach Swarm Optimization (CSO),
Imperialist Competitive Optimization
(ICO), and Social Spider Optimization
(SSO). Lastly, all these optimized
values were fed for example, MRMR
with SSO to varying classifiers
including Naive Bayes Classifiers
(NBC), SVM, RF, and a PNN for the
classification of AML and ALL.
Specificity, sensitivity, and accuracy
performance indexes were included in
the study.

Mentions the
"curse of
dimensionality"
- that the
number of
variables at the
genetic level
far exceeds the
number of
samples.

A probabilistic neural network
(PNN) classifier with 200
genes at multivariate
correlation-based feature
selection (CFS) attained the
highest accuracy of 95.705%.
The Performance Index (PI)
parameter for four classifiers
averaged in five different
optimization methods listed in
the methods. NBC classifier
with 200 genes selection for
the ABO algorithm peaked
with the highest PI of 74.33%.
The study breaks down the
average performance of each
classifier with a respective
initial feature selection
technique.

The IoMT-based hierarchical
CNN with integrated attention
and spatial optimization
(HCNN-IASO) model
achieved an exceptional
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Sakthiraj
(2022)
[35]

To introduce an
integrated
framework that
combines
advanced data
augmentation,
deep learning
architectures,
and optimization
techniques to
significantly
improve the
accuracy,
reliability, and
efficiency of
leukemia
classification and
detection, while
integrating
alongside
something they
call the Internet
of Medical
Things (IoMT).

American
Society of
Hematology
(ASH) image
databank

The IoMT framework integrates
internet of things-enabled medical
sensors and electronic health records
(EHR), allowing patients to acquire and
transmit their medical data, including
leukemia-related information, to a
hybrid CNN-IAS (Interactive
Autodidactic School Optimization)
model for diagnosis. The proposed
hybrid model is detailed, starting with
data augmentation techniques to
enhance the leukemia dataset,
followed by effective classification of
leukemia subsets such as healthy,
CML, CLL, AML, and ALL. The IoMT
framework enables home-based
treatment, facilitating real-time disease
monitoring and diagnosis, thereby
minimizing costs. The hybrid CNN-IAS
(a lightweight convolutional neural
network) algorithm performs feature
extraction, fusion, and classification.
The proposed model's performance is
evaluated using precision, recall,
accuracy, and F1 score metrics,
achieving remarkable accuracy rates
for different leukemia subtypes.

Relied solely
on a single
database,
without
specifying the
quality or
quantity of the
data it
contained.

accuracy of 99.87%, as
evidenced by a
comprehensive performance
analysis, including metrics
such as precision, recall,
accuracy, and F1 (a measure
of predictive performance)
score. Comparisons with
state-of-the-art techniques
highlighted the superiority of
the proposed HCNN-IASO
model. The study also
emphasized the importance
of subtype detection for
precise therapy and risk
reduction, showcasing the
potential of the IoMT-based
approach in advancing the
field of leukemia diagnosis.
Furthermore, HCNN
extracted features from the
leukemia dataset that were
data augmented, and it
proved paramount to add an
attention layer to fuse these
features. Another layer
“SoftMax” functioned as a
classifier, categorizing the
leukemia dataset into various
subtypes. To further optimize
the classification accuracy,
IASO techniques were used.

Saleem et
al. (2022)
[36]

The objective of
this study is to
introduce a
modified deep
learning
methodology
designed to
achieve precise
segmentation of
leukocytes and
their
classification.

ALL-IDB1 and
two databases
with 107 and
260 images,
respectively;
LISC dataset
consisting of
hematological
images
collected from
400 samples
divided into
lymphocytes,
monocytes,
neutrophils,
eosinophils,
and basophils.
Note: The
ALL-IDB1 can
be used both
for testing the
segmentation
capability of
algorithms, as
well as the
classification
systems and
image
preprocessing
methods. The
images are
taken with

The methods begin in experiment 1,
where classification is performed using
a fusion of deep models. The classified
images are then passed to experiment
2, where required regions are
segmented using two different
approaches: a statistical segmentation
method based on color-based
morphological thresholding and a deep
semantic neural network. To augment
the datasets, a generative adversarial
network model was used, increasing
the dataset sizes significantly. Feature
extraction was carried out using pre-
trained deep CNN models, DarkNet-53,
and ShuffleNet. The feature selection
process involves using principal
component analysis to reduce
dimensionality. Selected features from
DarkNet-53 and ShuffleNet are then
fused to create a final feature vector.
For leukemia classification and white
blood cell type recognition, various
machine learning algorithms such as
SVM, KNN, ensemble methods,
decision trees, and naïve Bayes are
employed. Two segmentation
techniques are used: a statistical
morphological approach based on
color conversion and morphological

Excess
segmentation
could ultimately
lead to the
omission of key
data and
decrease the
accuracy.

In experiment 1, the authors
used two datasets, LISC and
ALL-IDB, and implemented a
classification task using
various classifiers. The
classification results reached
100.0% accuracy for ALL-IDB
and 99.70% for LISC
datasets. The ensemble
subspace KNN classifier
achieved the highest
accuracy accounting for
100% on the ALL-IDB
database. The researchers
also compared their approach
to existing algorithms and
showed superior results. In
experiment 2, the authors
applied segmentation
techniques to the classified
LISC dataset. They used both
statistical morphological-
based segmentation and
semantic segmentation using
deep learning models like
Darknet-53 and ShufeNet.
The segmentation results
were impressive, with an
average accuracy of over
90% for most cell types. The
proposed DeepLab V3+ and
ResNet-18-based semantic
segmentation achieved a
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different
magnifications
of the
microscope
ranging from
300 to 500.

operations, and a deep semantic
segmentation model utilizing Deeplab
V3+ and ResNet-18 networks.

global accuracy of 98.6% and
outperformed existing
methods. The statistical
morphological-based
segmentation achieves an
average accuracy of 85.95%
(except for lymphocytes).

Houssein
et al.
(2023)
[37]

The purpose of
this study is to
present an
improved,
lightweight, and
effective
computer-aided
diagnosis (CAD)
system that can
automatically
classify four
types of
leukocytes
(neutrophils,
eosinophils,
lymphocytes,
and monocytes),
which is a
significant
contribution to
the field of
medical image
analysis. The
author
investigated the
potential of
DenseNet-161
pre-trained CNN
for the
suggested CAD
system, which is
a modern
approach to
developing the
system.

The Blood Cell
Count and
Detection
(BCCD)
database was
split into two
sets:
approximately
80% of the
data (9,966
images) for
the training set
and 20%
(2,487
images) for
the validation
set. The
training set
was
composed of
2,497, 2,483,
2,487, and
2,499 images,
while the
validation set
contains 623,
620, 620, and
624 images of
eosinophil,
lymphocyte,
monocyte, and
neutrophil.

Images of blood cells in a microscopic
smear were collected from GitHub, a
public source that uses the MIT
license. An end-to-end CAD system for
leukocytes has been created and
implemented as part of this study. The
introduced system comprises image
preprocessing and enhancement,
image segmentation, feature extraction
and selection, and WBC classification.
By combining the DenseNet-161 and
the cyclical learning rate (CLR), the
authors contributed an approach that
speeds up hyperparameter
optimization. They also offered the
one-cycle technique to rapidly optimize
all hyperparameters of DL models to
boost training performance.

Accuracy,
precision, and
recall were
presented as
indicators of
the suggested
model’s
efficacy. The
authors
claimed to have
solved the
multiclass
classification
problem with a
raw data
accuracy
(ACC) of
99.8%.

Using a combination of the
recently developed pre-
trained CNN, DenseNet, and
the one-fit cycle policy, this
study describes a training
technique for the
classification of white blood
cells for leukemia detection.
The proposed method is
more accurate compared to
the state of the art.

Kadmin et
al. (2023)
[38]

This study
proposed the
use of a CNN
classifier to
detect acute
myeloid
leukemia from a
single blood
smear.

The ALL-
ADB1
database is
provided by
the American
Society of
Hematology. It
contains 100
photos, with
45 showing
blast cells and
the remaining
55 showing
non-blast
cells. There
are an
estimated
35,000 distinct
blood
components in
these images.
The
lymphocytes

Images of a single-cell blood smear
dataset are characterized into four
classes. The classes are benign, early,
pre, and pro. These images are fed
into a CNN consisting of filtering layers
to extract features from the segmented
image samples. The combination of
convolutional, pooling, and fully
connected layers creates a deep
convoluted neural network. Weight
parameters are fed into each layer to
perform the output compilation.
Segmented cells' features include
shape, color, and texture properties.
The images are processed through a
CNN which evaluates specific cell
features to classify them into four
categories. Each category metric is
based on accuracy, precision, recall,

This study
uses a
relatively small
dataset of only
100 images.
Also,
performance
metrics are not
compared to
established
methods of
processing
images with
machine
learning.

The accuracy percentages for
the benign, early, pre, and
pro categories are 96%, 97%,
99%, and 99%, respectively.
The system provided can
perform various automated
processing tasks including
color correlation,
segmentation of nucleated
cells, and efficient validation
and categorization. The
results indicate that this
characteristic effectively
distinguishes between
cancerous and normal cells
with reliability.
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in this dataset
have been
classified by
oncology
specialists.

and an F1 score.

Naz et al.
(2023)
[39]

The purpose of
this study was to
develop an
automated,
robust, and
efficient
classification and
detection system
for leukocytes in
microscopic
blood images.

The Local
Initiatives
Support
Corporation
(LISC)
database has
400
microscopic
blood images
turned into
3,600 samples
and is sourced
from the
Australian
National
Database. The
Dhruv set was
said to be
increased to
10,000
samples from
the Dhruv set.
The origin of
the Dhruv set
is not stated.

The images are preprocessed and
augmented so that the cells are
isolated, generating many cell samples
per image. Then a wavelet
transformation is applied to the
augmented data to extract low- and
high-frequency information. CNN
training is based on this frequency
information. The leukocytes are
classified into five main types:
eosinophils, basophils, neutrophils,
monocytes, and lymphocytes. The
proposed method is compared to the
existing models of Jianweib, Seyed,
and hierarchical SVM.

The article did
not mention
where the
Dhruv dataset
was collected
from, leading to
a bias
potential.

The proposed model yielded
an accuracy of 96.9% for the
LISC dataset and 81.9% for
Dhruv's dataset.

Wang et
al. (2023)
[40]

Explore the
efficacy of an
artificial
intelligence-
assisted
diagnosis
support system
of morphological
examination
based on bone
marrow smears
including cell
detection,
classification,
and prediction of
leukemia types.

A large-scale
dataset of
11,788 fully
annotated
micrographs
from 728
smears and
131,300
expert-
annotated
single-cell
images.

Bone marrow smears were processed
by the Wright Stain and digitized with
the microscope (Olympus BX50,
Tokyo, Japan) and the camera (JEDA
SmartV 650D). First, the entire smear
was captured by experts under a 10x
objective lens in the view of the
microscope to select the region of
interest. Second, 10 to 20 micrographs
for each smear were captured under a
10x eyepiece and a 100x oil immersion
objective. The numerical aperture of
the oil immersion objective was 1.3
and the dimensions of the micrographs
were 1920 × 2560. Finally, with the
labeling software developed, experts
localized cells in the micrographs and
determined the ground truth category
label for every single cell. For a single
smear, they obtained the final
diagnostic opinion and 200 to 300 valid
cells with bounding boxes by routine
practice.

Only used one
dataset

For diagnosing types of acute
leukemia, some types
achieved 100% accuracy,
including acute lymphoblastic
leukemia/lymphoma and
acute monoblastic/monocytic
leukemia. Meanwhile, some
patients with acute
myelomonocytic leukemia
were predicted to have acute
myeloid leukemia with
maturation. This is due to
lower monoblasts
classification performance,
where many monoblasts
were classified into
myeloblasts, like expert
human hematopathologists.
The overall total accuracy
was 92.5%, reflecting the
potential for assisted
diagnosis.

TABLE 2: Summary of the articles included in the review (N = 20)

Table 3 reports the deep learning techniques and tools and accuracy attained in detecting leukemia used in
each study included in this review.

Year Author
Image
dataset Segmentation

Color
normalization

Neural network -
feature extraction Neural network - cell classification Accuracy
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augmentation

2010
Adjouadi
et al. [21]

No No No Not applicable
Neural Studio - artificial neural
network

96.67%

2018
Vogado et
al. [22]

No No No

AlexNet, Visual
Geometry Group fast
(Vgg-f), and
CaffeNet

Support vector machine classifier >99%

2020
Abou El-
Seoud et
al. [23] 

No No
Yes,
grayscale
version

Not applicable Not specified

96.78%
differentiating
between 5
white blood
cell types

 
Huang et
al. [24]

No No
Yes, "noise
reduction"

Three different convolutional neural network (CNN)
frameworks (GoogleNet, ResNet, and DenseNet), fine-tuning
seen (2018 connection)

Normal group:
90%;
leukemia
average: 97%

 
Joshi et
al. [25]

No Yes
Yes, plus
"noise
suppressant"

The disruption-based
salp swarm and cat
swarm convolutional
neural network
(DSSCSCNN)
method

The DSSCSCNN method 97%

 
Kalaiselv
et al. [26]

No no Yes Not applicable Not applicable 98%

2021
Amin et
al. [27]

Yes Yes
Yes "noise
removal"

Open Neural
Network Exchange
(ONNX) a You Only
Look Once version 2
(YOLOv2 model)

Support vector machine (SVM)
classifier

99.57%

 
Loddo et
al. [28]

Yes Yes no
The common K-
nearest neighbor
(KNN)

Support vector machine (SVM), and
random forest (RF)

98%

 
Vogado et
al. [29]

Yes Yes No
LeukNet (Fine tuning
VCG-16)

Transfer learning 98.61%

2022
Anilkumar
et al. [30]

Yes No Yes

AlexNet, a pre-
trained deep CNN,
and LeukNet, a
custom-designed
convolutional neural
network (CNN)

AlexNet, a pre-trained deep CNN, and
LeukNet, a custom-designed CNN

94.12%

 
Baig et al.
[31]

Yes Yes

Yes, red-
green-blue
(RGB) to
grayscale

Convolutional neural
network (CNN) 1 and
2 (CNN-1, CNN-2)

Support vector machine (SVM),
bagging ensemble, total boosts,
RUSBoost, and fine KNN

Bagging
ensemble:
97.04%;
leukemia
average:
88.09%

 
Claro et
al. [32]

Yes Yes No

AlexNet, Visual
Geometry Group
(VGG), ResNet-50,
GoogLeNet,
DenseNet121

Ensemble and multiclass classification

DenseNet121:
97.11%;
multiclass:
94%

 
Muhamad
et al. [33]

Yes Yes No

Convolutional neural
network (CNN),
AlexNet, and
MobileNet-v2

SoftMax

CNN: 95.3%;
AlexNet:
81.5%;
MobileNet-v2:
97.6%

Minimum redundancy maximum
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Prabhakar
et al. [34]

No No No
Probabilistic neural
network (PNN)

relevance (MRMR), signal-to-noise
ratio (SNR), error weight uncorrelated
shrunken centroid (EWUSC), and
correlation-based feature selection
(CFS)

PNN:
95.705%

 
Sakthiraj
et al. [35]

No No No

Hybrid convolutional
neural network with
invasive alien
species (HCNN-IAS)

HCNN-IAS 99.87%

 
Saleem et
al. [36]

No Yes

Yes, red-
green-blue
(RGB) in hue
saturation
value (HSV)

DarkNet-53 and
ShuffleNet

Support vector machine (SVM), K-
nearest neighbors (KNN), ensemble
methods, decision trees, and naïve
Bayes

KNN,
ensemble:
99.7%;
DarkNet-53
and
ShuffleNet:
90% for all
subtypes

2023
Houssein
et al. [37]

Yes Yes

Yes, red-
green-blue
(RGB) in hue
saturation
value (HSV)

DenseNet-161
model with single-
cycle policy

DenseNet-161 model 99.80%

 
Kadmin et
al. [38]

No Yes No CNN model CNN model
Average:
98.15%

 
Naz et al.
[39]

Yes Yes No AlexNet AlexNet

96.9% and
81.9% on
separate
datasets

 
Wang et
al. [40]

Yes No No YOLOX-s model MLFL-Net 92.50%

TABLE 3: Deep learning techniques and accuracy attainment for leukemia detection

Discussion
This review explored the development of CNN, a type of deep learning architecture commonly used in
computer vision, image analysis, and other spatial data processing tasks, in leukemia detection from 2010 to
2023. Selected papers are depicted chronologically and their various methods with accuracy outcomes and
current limitations are reported.

Implication of Early DL Models for Leukemia Detection

Early works, like Adjouadi and colleagues in 2010, laid a foundation even if they lacked the resources of
their successors, achieving a notable 96.67% accuracy in leukemia cell classification using Neural Studio (an
early neural network model) [22]. During this period, however, the methods heavily relied on flow cytometry
for data (bone marrow blood samples) acquisition, a technique not seen in more recent studies due to the
ability to train networks for feature extraction [21]. This can be seen in 2018 when researchers utilized
several pre-trained CNN models (AlexNet, Vgg-f, and CaffeNet) for feature extraction and an SVM cell
classifier [29], achieving an accuracy score of 99%, which set the new standard [21,22].

These early findings demonstrated that the trained models were nearly perfect in feature extraction but had
to rely on SVM to do cell classification [22]. These works provide a historical context for the evolution of
neural network-based methods in leukemia cell classification. It also highlights the early stages of using
CNN and how these early methods were a foundation for later advancements. Moreover, by noting the
accuracy rates of these early works and comparing them to subsequent ones, the accuracy of leukemia cell
classification has improved over time (i.e., 96.67% accuracy in 2010 and 99% accuracy in 2018). The shift
from earlier methods like Neural Studio in 2010 used flow cytometry data from bone marrow blood samples,
while later methods, like those from 2018, used pre-trained CNNs and SVMs, indicating technological
advancements and different approaches in extracting and classifying features. This methodological shift is
important as it demonstrates how technology has moved from specialized techniques to more generalized
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approaches that leverage advances in DL. Providing these evolutionary insights into how the use of CNNs
and related technologies has advanced can help guide future research directions and clinical applications.

Implication of More Recent DL Models

From 2020 to 2022, innovations like grayscale conversion, noise reduction, DSSCS CNN model, and color
normalization yielded excellent results in the accuracy of CNN, with percentages ranging from 81.5% to
99.57% [23-27]. The DSSCS CNN model was distinct from the others as it handled feature extraction and cell
classification, a departure from previous approaches that used separate techniques like SVM, bagging, and
multiclass ensembles [29]. This model represents a more integrated approach, likely leading to more efficient
processing and potentially better accuracy. The accuracy ranges from 81.5% to 99.57%, showing the
significant strides made during this time. It demonstrates that these innovations contributed to more
reliable and accurate classification. Furthermore, during this time, the introduction of image augmentation
and segmentation, signaling a growing emphasis on improving their own CNN models through training with
larger artificial datasets and advanced feature extraction methods, was explored. Image augmentation has
proven especially helpful by allowing datasets to be augmented from only a few images, increasing the
dataset pool without needing more bone marrow samples, which is useful where large patient datasets are
difficult to find. This could contribute to more efficient and cost-effective research and development of
neural network models [28-36].

Implication of the Paradigm Shift With Current DL Models

In 2023, an important shift occurred from using several CNNs for specific tasks to applying a single model for
feature extraction and cell classification, with DenseNet-161 and AlexNet achieving 99.80% and
96.90%/81.90%, accuracy, respectively [37-40]. However, the highly variable accuracy rates demonstrate the
need for more research and replication of these studies.

This shift represents a transition toward simplicity and efficiency in model architecture, reducing the
complexity of the pipeline. The use of DenseNet-161 shows that DL models with densely connected layers
can be highly effective for feature extraction and classification. Its architecture enhances the model's ability
to learn complex features without excessively increasing model size. This approach can be efficient, improve
model performance, and make it more feasible to implement in clinical settings.

The Potential of DL Technology for Leukemia Detection

The strides made in DL for leukemia detection in the 13 years of published evidence covered in this review
(2010-2023) demonstrate the potential of this technology to assist in the more efficient detection of
leukemia. Integrating image augmentation, segmentation, and more advanced CNN architectures shows
promise. The range of innovative methodologies suggests an ongoing need to refine and enhance
performance. The various unique approaches suggest an ongoing effort to streamline processes and
optimize performance. However, these models have not been validated in real-world clinical settings, where
patient outcomes rely heavily on the diagnostic accuracy of the models.

Despite promising accuracy rates, challenges such as dataset variability, model interpretability, and
generalization to diverse patient populations persist. This limits the validity of comparisons between
studies since the different datasets and tools affect the accuracy scores. Excess segmentation and
augmentation can lead to artifacts and omission of key data, thereby decreasing the validity of its reported
accuracy [36]. Also, images contain immense amounts of genetic variables that artificial enhancement
cannot replicate through augmentation. While it is good for training the CNN models to detect several
variables, the genetic variables that need to be examined vastly outnumber the number of valid samples
currently found, something the researchers called the “curse of dimensionality” [34]. Future research should
prioritize addressing these challenges before it can be used in a real patient setting. Datasets need to be
improved and conducting validation studies in clinical settings will prove their actual beneficial factor.
Therefore, collaborative efforts among researchers on a global scale are essential to tackle these limitations.

Limitations
While the methods used in conducting the scoping review used rigorous and transparent methods
throughout the process, some limitations exist. This review may not have been able to identify all the
articles in the published literature despite attempts to be as thorough as possible. The search phrase used
included several different words and phrases used in the literature to describe deep learning and leukemia
detection, but other terms may also exist. Moreover, the search included three major medically focused
databases, but searching other online databases may have produced additional articles. Also, we selected
articles that were only in English, so including articles published in other languages might have yielded
more studies. The findings from this review should be approached with a critical awareness of these
limitations and recognize their potential impact on the comprehensiveness, generalizability, and relevance
of the synthesized evidence. The limitations of each article in the final review are reported in Table 2.
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Implications for future research
Based on the results of this review, future research in leukemia detection using deep learning models could
focus on enhancing the accuracy, efficiency, and applicability of the models discussed. Exploring new
models to augment existing datasets should consider differences in patient demographics, disease subtypes,
and data acquisition techniques (e.g., gene expression profiles and diverse imaging modalities). Future
research could focus on developing ways to improve the robustness of models, addressing variations in data
quality, acquisition protocols, and patient populations to mitigate risks of overfitting. This would serve to
improve generalization performance. A salient gap in DL research involving leukemia detection appears to
be in the clinical validation of DL models for leukemia detection. While DL has shown promising results in
research settings, their performance in real-world clinical environments may vary.

Conclusions
This review presents a comprehensive overview of the evolution of CNNs in leukemia detection from 2010 to
2023, highlighting significant advancements and emerging trends in the field. The initial studies laid the
groundwork for subsequent innovations, illustrating the transition from specialized methods to more
generalized approaches capitalizing on DL technologies for leukemia detection. This summary of recent DL
models revealed a paradigm shift toward integrated architectures, resulting in notable enhancements in
accuracy and efficiency. Regardless, impediments (e.g., real-world clinical setting validation, variability in
datasets, and model interpretability) remain substantial barriers to widespread adoption. While DL
technology holds promise for transforming leukemia detection, existing limitations must be overcome via
rigorous research and validation practices. Future initiatives should enhance model accuracy, efficiency, and
clinical applicability to fully leverage DL technology in improving leukemia diagnosis and patient outcomes.
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