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Abstract
Filamentous fungal keratitis is a particularly serious eye infection that often results in ulceration, corneal
perforation, and blindness. The cornea acts as a natural barrier against harmful agents due to the close
connection of its epithelial cells. In addition, on its surface, there is a large number of substances with anti-
inflammatory and bactericidal properties, such as secretory IgA and mucin glycoproteins, and antimicrobial
peptides (AMPs), such as human β-defensin 2 (HBD-2) and LL-37, which are especially increased in
filamentous fungal keratitis.

The interaction between pathogenic fungi and the host's immune mechanisms is a complex process:
pathogen-associated molecular pattern (PAMP) molecules (chitin, β-glucan, and mannan) found in the
fungal cell wall are recognized by pattern recognition receptors (PRRs) (toll-like receptors {TLRs}, C-type
lectin receptors {CLRs}, nucleotide-binding oligomerization domain-like receptors {NLRs}, and scavenger
receptors {SR}) found in host defense cells, triggering the secretion of various types of cytokines, such as
interleukins (IL), tumor necrosis factors (TNFs), and chemokines, which recruit macrophages and
neutrophils to migrate to the site of infection and activate inflammatory responses.

In addition, the interaction of hyphae and corneal epithelial cells can activate cluster of differentiation (CD)
4+ T cells, CD8+ T cells, and B cells and induce secretion of T-helper (Th)-type cytokines 2 (IL-4 and IL-13)
and IgG.
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Introduction And Background
Infectious keratitis is a serious disease that leads to more than 1.5-2 million new cases of complete vision
loss or unilateral blindness each year [1]. Bacterial keratitis appears to predominate in different countries
and continents, including the United Kingdom, North and South America, the Middle East, and Australia [1].

Fungal keratitis is an urgent, serious infection, more common in tropical developing countries, where it may
account for up to 67% of all cases of infectious keratitis [2]. In these climates, filamentous fungi have been
found to be the predominant causative organisms, with injury being the most common risk factor.

In contrast, in developed countries, particularly in Europe and the USA, limited cases of fungal keratitis are
reported. In these areas, it is considered a rare, often undiagnosed eye infection, most commonly associated
with contact lens wear [3-5].

Filamentous fungal keratitis presents challenges in both diagnosis and treatment, has a worse outcome than
bacterial keratitis, and is globally considered one of the main causes of vision reduction and/or blindness [5].
Therefore, this infection should be considered an urgent need that requires the increased awareness of the
ophthalmologist for a correct clinical diagnosis and immediate treatment. However, very often, even after
early treatment, vision loss is inevitable. In addition, antifungal agents have limited activity and ability to
penetrate deeper layers of the stratum corneum exhibiting reduced efficacy and increased toxicity. The
present study attempts to shed light on the immune mechanisms related to this serious infection,
contributing to its understanding and better treatment.

Review
Epidemiology of infectious keratitis
Zhang et al. recently presented a 20-year review on bacterial keratitis including 21 countries (35 cities).
According to their study, the percentage of positive cultures was 47%, while the main causative factors were
Gram-positive cocci (62%), Gram-negative bacteria (30%), Gram-positive bacilli (5%), and Gram-negative
cocci (5%). The most frequent bacterial species isolated were Staphylococcus spp. (41.4%), Pseudomonas spp.
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(17.0%), Streptococcus spp. (13.1%), Corynebacterium sp. (6.6%), and Moraxella spp. (4.1%) [1].

Acharya et al. also studied 625 keratitis cases of which 393 (62.9%) had positive cultures. Bacteria were
isolated in 238/393 (60.6%) cases and fungi in 143/393 (36.4%). Gram-positive cocci predominated:
Staphylococcus spp. (43.7%) and Streptococcus spp. (16.4%). Among the Gram-negative bacteria,
multiresistant Pseudomonas spp. prevailed (13.4%). In 151/625 cases (24.2%), an ocular trauma was
mentioned as the main risk factor, followed by previous operations (17.8%), the use of corticosteroids
(15.5%), and diabetes mellitus (eight, 3%); 64/151 (42.4%) of the injuries were caused by plant material (48
males versus 16 females). Fungi were isolated in 22 of these injury cases, mainly Fusarium spp. (37.1%),
Aspergillus spp. (30%), and unidentified Phaeohyphomycetes (17.5%); bacteria in 15; both fungi and bacteria
in one; and no microorganism in 26 [6].

In 2020, Brown et al. [3] first estimated the global annual incidence of fungal keratitis to be 1,051,787 cases.
They assumed that if all the undiagnosed cases of microbial keratitis with false-negative cultures, which are
actually of fungal etiology, were added to the above, the global incidence would amount to 1,480,916
cases/year, with the highest values in Asia and Africa and the lowest in Europe. They also estimated that
nearly 10%-25% of the eyes with fungal keratitis would eventually perforate or require extraction, while at
least 60% of patients (800,000 people/year) would remain monocular even if treated. Brown et al. estimated
that 84,143-115,697 eyes are surgically removed worldwide each year and that especially in low- and
middle-income countries, 610,821 eyes are blinded annually due to fungal keratitis [3].

More recently, in 2021, Hoffman et al. further estimated that 1.2%-14.0% of all cases of microbial keratitis
in Europe and North America were of fungal etiology, with the respective rates being 37.7%-81.5% in tropical
and subtropical sub-Saharan Africa and South Asia. In these countries, high levels of humidity and heavy
rainfall favor the growth of fungi. In addition, these are developing countries, based on an agricultural
economy, with rural workers that are therefore exposed to eye injuries from plant-derived materials, with
subsequent damage to the epithelial barrier and fungal invasion of the cornea [7]. Also, many of these
patients living in remote rural areas neglect going, do not present, or delay in presenting themselves to the
ophthalmologist, due to the long distance, cost of treatment, and loss of daily wages or the lack of an
attendant. This delay leads to a poor outcome as by the time they decide to seek medical help, the
inflammation has often progressed and the fungus has already penetrated the deeper layers of the eye where
topical antifungals are not effective [8,9].

Hoffman et al. also observed that the incidence of fungal keratitis varied with time. This change was more
pronounced in developing countries such as Thailand, where the average incidence was 13.6% between 1982
and 2003, and it rose to 50.8% between 2003 and 2006. The same happened in Nepal where the rate
increased from 23.1% in 1981 to 70% in 2011, as well as in Ghana (Africa), from 56.1% in 1995 to 74.7%
between 1999 and 2001. The possible causes of these changes included climate warming with increased
humidity, the widespread use of topical antibiotics and/or topical corticosteroids as initial empiric
treatment, the more frequent appearance of risk factors such as diabetes mellitus, the increase in the use of
contact lenses, and the improvement of laboratory methods that led more often both in correct diagnosis
and in better surveillance and reporting of cases [7].

The incidence of fungal keratitis varies not only between states but also between different regions of each
country, mainly due to different risk factors, the mode of infection, and the species of fungus. Therefore, the
knowledge of local epidemiology is crucial for choosing the most appropriate treatment. In addition,
surveillance can detect emerging fungal species and local outbreaks in time [8].

Recently, there has been a dramatic increase in filamentous fungal keratitis cases worldwide. As mentioned
above, most cases occur in developing countries with a tropical/subtropical climate and are usually caused
after corneal traumatism [8]. Fusarium spp., Aspergillus spp., and Phaeohyphomycetes predominate as
etiological factors [9]. Moreover, in developed countries, there is an increase in Fusarium keratitis associated
with contact lens wear [7].

In a Panhellenic multicenter, prospective 16-year study, the first in Greece, a total of 35 cases of
filamentous fungal keratitis were identified. The male/female ratio was 1.7:1, and the median age was 48
years. Corneal injury from plant material and soft contact lens wear were the main risk factors (42.8% and
31.4%, respectively). Among the causative agents, Fusarium species were most frequently isolated (n=21,
61.8%). Fusarium solani was mainly associated with trauma while F. verticillioides and F. proliferatum with
soft contact lens wear. Other fungi that were isolated were the following: Purpureocillium lilacinum (14.7%),
Alternaria spp. (11.8%), Aspergillus spp. (8.8%), Phoma foliaceiphila  (one case), Beauveria bassiana (one case),
and Curvularia spicifera (one case) [10].

Eye anatomy
The sensory organ of vision is the eye. The eye consists of the orbital cavity, the lacrimal drainage system,
the eyelids, and the main part of the eye, the eyeball, which is located inside the orbital cavity. The parts that
are of particular importance in the study of ocular infections are the cornea, choroid (choroid, iris, and
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ciliary body), retina, conjunctiva, sclera, vitreous, and aqueous liquid [11].

The eyelids are muscular folds of skin, which protect the eye from various harmful effects of the external
environment, and ensure constant moisture in the cornea. In addition, the free lip presents the eyelashes,
the sebaceous glands of Zeiss, and the sweat glands of Moll. The lacrimal apparatus produces tears (via the
secretory gland) and drains them into the nasal cavity (via the draining gland). Disorders in their secretion
or composition cause damage to the conjunctiva and cornea [12,13].

The conjunctiva is a thin mucous membrane that covers the back surface of the eyelids. It consists of two
layers: the stratified columnar epithelium and the underlying dermis. The conjunctival epithelium of the
sclero-corneal border is of great physiological importance because it is the source of the production of new
corneal epithelial cells in cases of total apoptosis of the corneal epithelium.

The cornea is the main refractive lining of the eye. It is a vascular tissue that occupies the anterior 1/6 of the
eyeball. It is transparent and consists of five layers [14]: the stratified epithelium of the cornea; Bowman's
membrane composed of collagen and ground substance creating a smooth surface for the epithelium and
preventing the penetration of polymorphonuclears and the entry of bacteria, toxins, and chemicals; the
stroma, which occupies 90% of corneal thickness and is formed by laminae of collagen fibrils, cells, and
ground substance; Descemet's membrane, which is the basement membrane of the endothelium and is
formed by very thin collagen fibrils with a uniform distribution; and the endothelium, which is squamous,
with an important role in the metabolism of the cornea and in maintaining its transparency [15,16].

The cornea is therefore a natural barrier that prevents pathogens from further invading its stroma.
Furthermore, the expression of antimicrobial peptides (AMPs), such as human β-defensin (HBD) and LL-37
(cathelicidin protein) by the epithelium, also contributes to this [17,18].

Moreover, the constant flow of tears can naturally clean the corneal surface from microorganisms and other
substances. In addition, tears also contain various molecules with antibacterial properties, such as β-
defensins and antimicrobial peptides [19].

The edges of the cornea have a rich distribution of capillaries and lymphatic vessels that serve as entry and
exit gates for immune system cells such as dendritic cells (DCs), mast cells (MCs), macrophages, natural
killer (NK) cells, γδ T cells and innate lymphoid cells (ILCs) [14].

The increased level of AMPs during fungal keratitis results in the immediate killing of microorganisms and
the promotion of other antifungal mechanisms such as increased infiltration by neutrophils [17].

The sclera is the largest part of the fibrous coat of the eyeball and is opaque. In front is the cornea, while at
the posterior pole, there is a hole through which the optic nerve passes. Vessels and nerves also pass through
smaller holes. The sclera consists of three lobes: the outer episclera, the stroma, and the inner layer that
contacts the choroid. The lens of the eye is located behind the iris, on the anterior surface of the vitreous,
and is part of the refracting system of the eye [11].

The anterior chamber of the eye is defined as the space between the posterior surface of the cornea, the
anterior surface of the iris, and peripherally the sclero-corneal zone. In the cavity of the sclero-corneal zone
is the drainage system of the aqueous fluid, which has an important role in the maintenance of the shape of
the bulb, the nutrition of the crystalline lens, and the maintenance of normal intraocular pressure [20].

The uveal coat consists of three parts: the iris, the ciliary body, and the choroid. It is the middle vascular
coat of the eye and is protected externally by the cornea and sclera [21].

The retina is the inner lining of the eyeball and consists of two lobes: the pigment epithelium and the main
retina, which in turn consists of three groups of cells, the optic cells (photosensory receptors), the bipolar
cells, and the ganglion cells (optic pathway) [22].

The vitreous is a gelatinous substance located behind the lens and in contact with the retina. Finally, the
eyeball is located in the bony cavity of the skull [11].

Filamentous fungal keratitis
Predisposing Factors

All conditions that cause damage to the ocular epithelial barrier favor the entry of fungi into the cornea and
the development of inflammation. As mentioned above, trauma by plant material is the most frequent risk
factor. The disease mainly affects young male farmers living in developing countries where, according to
studies, the rate reaches 24%-83% [7]. On the contrary, the use of contact lenses is the main predisposing
factor in developed countries, where the rate reaches 37%-67% [7]. The risk is related to the type of lenses,
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how often they are replaced, and their cleaning method [7]. The 2005-2006 global outbreak of Fusarium
keratitis was caused by a particular contact lens cleaning solution [23].

Ocular diseases, such as dry eye, blepharitis, chronic epithelial changes, or inflammations, attack the corneal
epithelium and allow fungal penetration into the cornea. Systemic diseases characterized by a reduced
immune response such as HIV infection and diabetes mellitus, where in addition, the increased value of
glucose in the blood alters the ocular surface and favors the easy attachment and proliferation of fungi, are
also significant predisposing factors. Systemic or topical corticosteroid use is another risk factor that affects
the immune system and also favors the deeper penetration of the fungus into the cornea leading to a worse
outcome. Moreover, a previous ophthalmological operation, such as cataract, laser, or corneal
transplantation, also predisposes to the development of fungal keratitis [7].

Immune Mechanisms

The outcome of the disease depends on the virulence of the pathogenic fungus and the host's defense
mechanisms. Innate immunity plays an important role in eye protection. The cornea acts as a barrier that
protects the intraocular tissue from potential damage. Epithelial cells, which are closely connected, are the
first line of defense. In addition, on the ocular surface, there are a large number of substances with anti-
inflammatory and bactericidal effects, such as secretory IgA, mucin glycoproteins, and antimicrobial
peptides, such as human β-defensin 2 (HBD-2) and LL-37 (cathelicidin), which have been found to be
particularly elevated in filamentous fungal keratitis [24,25]. Wang et al. recently suggested that these
antimicrobial peptides may not be equally expressed in fungal keratitis since they found HBD-2 mRNAs to be
more elevated in Fusarium keratitis while LL-37 mRNAs in cases of Aspergillus keratitis [17].

Human β-defensin 2 (HBD-2) and LL-37 (cathelicidin) are components of the innate immune system.
According to the disulfide bridging array, there are three subgroups of defensins (α-, β-, and θ-defensins).
Both α- and β-defensins (HBDs) are key components in local immunity. The α-defensins 1-4 are mainly
secreted by neutrophils into tears. HBD-1-3 have been found in the corneal and conjunctival epithelium and
the HBD-2 and HBD-3 in the tear film [26]. HBD-1 has also been found in the lacrimal gland and intraocular
tissues, while HBD-2 and HBD-3 are commonly produced following invasion by pathogens and inflammatory
agents [27,28].

The LL-37 peptide consists of 37 amino acids and is named after the two leucine residues present at the N-
terminus of the mature peptide. It has antibacterial, antifungal, antiparasitic, antiviral, and healing action,
properties against not only the creation of bacterial biofilms, angiogenesis, and the regulation of
apoptosis but also carcinogenesis and metastasis. It is expressed in several epithelial tissues including in
conjunctival and corneal epithelial cells [29]. Hou et al. demonstrated that cathelicidin (LL-37) promoted the
phagocytosis of conidia by neutrophils and improved the outcome of Aspergillus fumigatus keratitis. They
also showed that the CXC chemokine receptor 2 (CXCR2) of LL-37 on neutrophils (LL-37/CXCR2) activated
phospholipase C-γ2 (PLCγ2), further promoting the process of neutrophil phagocytosis and subsequent
autophagy to destroy intracellular conidia [30]. Moreover, Luo et al. showed that LL-37 was able to inhibit
the growth and adhesion of Aspergillus fumigatus hyphae and the subsequent activation of macrophages and
the inflammatory process [31].

Host defense cells, such as macrophages, dendritic cells, and neutrophils, have receptors (pattern
recognition receptors {PRRs}) that recognize specific molecules in the cell wall of the pathogenic fungus
(pathogen-associated molecular pattern {PAMPs}), such as chitin, β-glucan, and mannan. These receptors
(PRRs) include C-type lectin receptors (CLRs), toll-like receptors (TLRs), nucleotide-binding oligomerization
domain-like receptors (NLRs), and scavenger receptors (SRs).

CLRs belong to a superfamily of proteins able to recognize carbohydrates in a Ca2+-dependent manner. The
β-glucan of the fungal cell wall is specifically recognized by dectin-1 (dendritic cell-associated C-type lectin-
1) while α-mannan by dectin-2. The recognition by the dectin-1 is followed by the recruitment of neutrophils
and macrophages through a process dependent on interleukin (IL) 1β, IL-6, CC motif chemokine ligand 2
(CCL2), CXC motif chemokine ligand 1 (CXCL1), and CXCL2 [32]. Moreover, triggering receptors expressed
on myeloid cells-1 (TREM-1) have a synergistic effect with dectin-1 and further enhance inflammation [33].
In addition, the protein caspase recruitment domain-containing protein 9 (CARD9), which is an intracellular
protein expressed in cells of the myeloid lineage, such as neutrophils, macrophages, and dendritic cells, is
responsible for PRRs signaling to activate innate immunity; the production of inflammatory cytokines and
chemokines, such as IL-1β, IL-6, IL-17, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), CXCL1,
keratinocyte chemoattractant (KC), CXCL2, macrophage inflammatory protein-2 (MIP-2), and CXCL5; and
migration and infiltration by myeloid cells [34,35].

IL-1β and IL-6 are mainly produced by macrophages and lymphocytes. In fungal keratitis, IL-17 is produced
by neutrophils, and Th17 cells promote cytokine expression, the initiation of inflammation, and further
neutrophil infiltration, causing both fungal death and tissue damage [36]. IFN-γ is mainly produced by T
cells and natural killer (NK) cells and stimulates neutrophils, monocytes, and macrophages. TNF-α is
mainly produced by macrophages and activates phagocytes. Chemokines CXCL1, CXCL2, and CXCL5 induce
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neutrophil recruitment [37].

Galectin-3 has recently been reported as a lectin that can activate chitin-associated pattern recognition
receptors and regulate neutrophil infiltration and cytokine expression associated with the initiation of
adaptive immunity against fungi [38,39].

The macrophage-inducible C-type lectin (Mincle) is expressed in myeloid cells and neutrophils and mostly
in macrophages, dendritic cells, and B cells. Mincle receptors participate in innate immunity against fungi
by enhancing inflammation [40,41]. Zhao et al. showed that the expression of Mincle was significantly
increased at four, eight, 16, and 24 hours after Aspergillus fumigatus infection, and this expression was
associated with the production of TNF-α, IL-1β, IL-10, and CCL3 in the cornea [41]. Yu et al. showed that in
addition to enhancing inflammation, Mincle regulated the formation of nitric oxide (NO), which could cause
tissue damage in the eye at concentrations above three times the normal [40]. Lin et al. showed that in
keratitis from Aspergillus fumigatus, Mincle receptors were able to inhibit neutrophil and macrophage
apoptosis through caspase-3 inactivation [42].

Another C-type lectin receptor, surfactant protein D (SP-D), interacts with TLR4, following its stimulation
by fungal hyphae. Thus, in cases of keratitis, the SP-D receptor appears to play an immunosuppressive role
through the TLR4 signaling pathway [43].

Toll-like receptors (TLRs) are transmembrane receptors. After the recognition of PAMPs, the TLRs activate
nuclear factor kappa B (NF-κB) either through the myeloid differentiation factor 88 (MyD88)-dependent or
MyD88-independent pathway, triggering the expression of TNF-α, IL-1β, IL-6, IL-8, INF-γ, IL-12, IL-18,
and MIP-2; initiating the immune response; and recruiting immune cells, such as macrophages and
neutrophils to site of infection [44-46]. Among them, TLR2 and TLR4 are found on corneal epithelial cells
and have been shown to play a key role in filamentous fungal keratitis. As previously demonstrated, the
TLR2/4-NF-kB signaling pathway is likely essential for the regulation of cytokine and chemokine expression,
polymorphonuclear recruitment, and the progression of inflammation [47].

There are also the cytoplasmic receptor nucleotide-binding oligomerization domain-like receptors (NLRs)
such as nucleotide-binding oligomerization domain-containing protein-1 (NOD-1), which is increased in
filamentous fungal keratitis, and NOD-2, which also promotes the production of pro-inflammatory
cytokines, playing an important role in the host immunity. Moreover, there is NOD-like receptor protein 3
(NLRP3), which, in combination with caspase-1, regulates IL-1β expression. Xu et al. demonstrated that
calcitonin gene-related peptide (CGRP) can inhibit NLRP3 pathway activation and reduce excessive
inflammatory processes in Aspergillus fumigatus keratitis [48].

In addition, there are the scavenger receptors (SRs) such as lectin-like oxidized low-density lipoprotein
receptor 1 (LOX-1), a membrane receptor mostly expressed on endothelial cells, macrophages, neutrophils,
vascular smooth muscle cells, and platelets and which during filamentous fungal keratitis activates
inflammation possibly through a mechanism of interaction with TLR4 [49-51]. Scavenger receptors are
involved in lipid metabolism and have been found to bind and internalize microorganisms that have
lipopolysaccharide (Gram-negative bacteria) or lipoteichoic acid (Gram-positive bacteria) [50]. Li et al.
showed that the expression of CXCL1 and TNF-α in human corneal epithelial cells (HCECs) was increased in
A. fumigatus keratitis via LOX-1. Moreover, A. fumigatus rat keratitis activated p38 mitogen-activated protein
kinase (MAPK) and increased the expression of CXCL1, TNF-α, and IL-6 again through LOX-1 [50]. Gao et al.
demonstrated that LOX-1, TLR4 expression, and reactive oxygen species (ROS) production were increased
after A. fumigatus infection. Furthermore, they showed that there may have been an interaction between
LOX-1 and TLR4 that may then affect the generation of ROS [49].

The scavenger receptor expressed by endothelial cell-Ⅰ (SREC-Ⅰ) is expressed by several cells, such as
endothelial cells, epithelial cells, dendritic cells, and macrophages. Zhang et al. showed that SREC-Ⅰ was also
expressed in human and murine corneal epithelial cells and that in A. fumigatus keratitis, SREC-Ⅰ expression
was found to be increased. They also showed that in the case of SREC-Ⅰ inhibition, the production of pro-
inflammatory factors such as LOX-1, CXCL1, TNF-α, and IL-1β was attenuated and that the progression of
keratitis was slowed [51].

Neutrophils play a key role in immunity against fungal infections. They fight fungi by phagocytosing them,
killing them by releasing their granule contents, producing reactive oxygen species (ROS), and forming
neutrophil extracellular traps (NETs) [52]. Phagocytosis is mediated by the local polymerization of actin
surrounding the pathogen with subsequent endocytosis. In addition to neutrophils, other phagocytes such as
dendritic cells, monocytes, macrophages, and also fibroblasts and epithelial and endothelial cells
participate. As previously described, the human corneal epithelial cells were able to phagocytose Aspergillus
flavus conidia, around which an F-actin ring had formed, turning them into phagolysosomes [46].

NETs are fibrous formations of nucleic acids and granular proteins. During the invasion of microorganisms,
neutrophils are able to release NETs outside the cell, trap the pathogens, and kill them through toxic
proteins. Calprotectin, which is also present in NETs, has been found to bind extracellular zinc from
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Aspergillus fumigatus, inhibiting hyphal growth [53,54]. NETs are released in two main ways. During the first
process, the activated peptidylarginine deiminase 4 (PAD4) catalyzes the citrullination of arginine residues
resulting in the decomposition of the nuclear envelope and the decondensation of chromatin, which then,
together with neutrophil cytoplasmic enzymes such as elastase, cathepsin G, myeloperoxidase, lactoferrin,
and gelatinase, form NETs. After the plasma membrane rupture, the NETs are released, while the neutrophils
die (NETosis) [55]. During the second process, the NETs are formed through the release of mitochondrial
DNA without the ultimate death of neutrophils. In this case, live neutrophils can synthesize NETs containing
mitochondrial DNA after the stimulation with granulocyte/macrophage colony-stimulating factor (GM-CSF)
and subsequent toll-like receptor 4 (TLR4) or complement receptor 5a (C5a) activation [56,57].

The neutrophils produce nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), which is
responsible for the transformation of molecular O2 into superoxide anion (O 2-) with the simultaneous

extracellular release of ROS and protons. Since neutrophils cannot phagocytose hyphae, their ability to
inhibit their growth mainly depends on the production of reactive oxidants (ROS), iron sequestration, the
limited availability of zinc, and nutrient deprivation [58,59]. Therefore, hyphal survival depends on the
interaction between host oxidants and hyphal antioxidants [60]. Leal et al. showed that hyphae activated
NOX production via cluster of differentiation (CD) 18, thus causing their death [60]. de Jesus Carrion et al.
showed that acidic mammalian chitinase (AMCase), which is mainly expressed in airway macrophages of
asthmatic patients, may also be expressed in neutrophils and that neutrophil-derived AMCase together with
chitin synthases may play an important role in inhibiting the hyphal growth during Aspergillus fumigatus
keratitis [59].

However, the excessive production of inflammatory factors can lead to the opposite effects with the
destruction of the corneal tissue, ulcer, and worse outcome [61]. The production of ROS can be an important
weapon in the fight against microorganisms and the initiation of inflammation, but on the other hand, it
can cause damage to mitochondria and tissues. In addition, IL-1β induces ROS production causing the death
of hyphae, and vice versa, ROS promotes further production of IL-1β, thereby also destroying the tissues
[49]. It has been previously demonstrated that pathogens such as C. albicans and Aspergillus spp. are able to
regulate excessive inflammation by activating the autophagy process that reduces neutrophil
recruitment and destroys intracellular microorganisms [62].

Into the stroma, the corneal cells stimulated by fungal hyphae can activate CD4+ T cells, CD8+ T cells, and B
cells; promote the production of T-helper (Th) type 2 cytokines (IL-4 and IL-13) and IgG; and increase the
proliferation of peripheral blood mononuclear cells (PBMCs) [63,64]. Both the growth of hyphae and the
infiltration of neutrophils into the stroma contribute to the loss of corneal transparency and reduced vision.
The secretion of proteases, such as matrix metalloproteinase-8 (MMP8)/collagenase by neutrophil granules,
causes the destruction of the collagen of the corneal stromal matrix and tissue damage. At this stage of
infection, neutrophils have been found to be the predominant source of IL-1β, which is often found elevated
during Fusarium and Aspergillus keratitis [65].

Corneal hypoxia probably plays an important role in the development of fungal keratitis by gradually
affecting almost all its cell layers. Lightfoot et al. demonstrated that the first signs of stromal hypoxia in
mice with fungal keratitis by Aspergillus fumigatus appeared 48 hours after infection due to leukocyte
infiltration and subsequent endothelial dysfunction. They also observed that during the progression of the
infection, as the corneal edema progressed, the degree of hypoxia increased, and the endothelium decreased.
Later, in the following stages, the accumulation of fungal metabolites together with leukocyte
ROS/cytokines caused further loss of endothelial integrity and subsequent entry of fluid from the anterior
chamber [66].

Additionally, other cellular products also regulate the immune process, such as vasoactive intestinal peptide
(VIP), a neuropeptide produced by immune cells with properties regulating the expression of pro- or anti-
inflammatory factors and destroying the membrane of microorganisms; maresin 1 (MaR1), a product of
docosahexaenoic acid (DHA) expressed on macrophages, able to regulate inflammation by reducing
neutrophil recruitment and pathogen burden; and indoleamine 2,3-dioxygenase (IDO) expressed on
macrophages, polymorphonuclears, dendritic cells, and epithelial cells, which balances the production of
pro-inflammatory cytokines [25].

Huang et al. demonstrated the important role of N6-methyladenosine (m6A)-mediated modification of
methyltransferase-like 3 (METTL3) in the development of Fusarium keratitis. In their study, they showed
that the downregulation of METTL3 slowed the progression of inflammation through the
phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) signaling pathway and reduced the production
of TNF-α, IL-1β, and IL-6, thereby protecting corneal stromal cells [67].

Shi et al. [68] showed that during adaptive immunity in cases of Aspergillus fumigatus keratitis in mice, CD3ε
activated T-lymphocytes, thus regulating the secretion of IL-10, a cytokine with anti-inflammatory
properties. They also revealed that LOX-1 and dectin-1 did not play a role in the regulation of CD3ε
expression, which was in contrast to an earlier study by Che et al., in which LOX-1 and dectin-1 regulated IL-
10 production in murine Aspergillus fumigatus keratitis [69]. Their study concluded that the correct
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treatment of fungal keratitis was based on maintaining a balance between innate and adaptive immunity
[68].

Another study showed that corneal Wnt5a expression was increased in A. fumigatus keratitis in patients and
mice. Moreover, it was found that dectin-1 and LOX-1 expression, which was dependent on extracellular
signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) pathways, contributed to this Wnt5a
production. This study demonstrated that Wnt5a contributed significantly to the response against fungal
pathogens by promoting inflammatory processes such as neutrophil recruitment and cytokine production
[70].

Thymic stromal lymphopoietin (TSLP), a cytokine of innate and adaptive immunity that promotes the
activation of dendritic cells and contributes to the proliferation and differentiation of T and B lymphocytes,
has recently been studied. Moreover, TSLP has been shown to be an important immune factor of corneal
epithelium and stroma infected with Aspergillus fumigatus. It has also been shown that TSLP could also
interact with innate immunity expressed by TLRs in human corneal cells infected with Aspergillus
fumigatus [64]. TSLP mainly promotes the expression of TLR2, TLR4, and antimicrobial peptides [71].

Han et al. showed that the cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS)-stimulator of
interferon genes (STING) signaling pathway activated in human corneal epithelial cells (HCECs) and mouse
corneas after Aspergillus fumigatus infection played an important role in promoting inflammation, mainly
through the production of cytokines such as TNF-α, IL-1β, IL-6, and IFN-β, and in disease progression [72].

Despite the progress in research on the immune mechanisms of filamentous fungal keratitis, many fields are
still unexplored. It is a multifactorial disease with many challenges that additionally requires both in vitro
and in vivo studies for correct conclusions in order to understand and properly treat it.

Fungal species involved in filamentous fungal keratitis
Fusarium is the most common cause of keratitis worldwide [73]. They are widely distributed in the soil,
subsoil, and plants, while they have additionally been detected in the air and the aquatic environment of the
sea [74].

In humans, they cause a wide range of infections, superficial (onychomycosis and keratitis) in
immunocompetent and deep in immunocompromised [74]. Deep infections are most commonly caused in
patients with neutropenia and/or T-cell immunodeficiency, hematological malignancies, and more recently
COVID-19 [75].

Fusarium keratitis is considered an emergency. Without proper treatment, the inflammation progresses
inexorably to perforation, endophthalmitis, and eventually loss of the eye. It is estimated that 42%-52.5% of
all cases of fungal keratitis are caused by Fusarium species with the majority occurring in tropical countries,
involving young male farmers, following injury. In temperate countries, cases of Fusarium keratitis are more
common in females and are associated with contact lens wear. Fusarium keratitis outcome depends on strain
characteristics and host immune response [73]. The temperature inside the cornea (32.6±0.700°C) is ideal for
the growth of this fungus [74]. Sometimes, it invades the anterior chamber where it forms a mass in the pupil
area, preventing the normal drainage of the aqueous humor and resulting in increased intraocular pressure
[76,77].

However, biofilm formation is the main virulence factor, also contributing to the resistance of the strains to
antifungals [73]. The ability of Fusarium to form biofilms has been studied in vitro in contact lens models,
and in vivo in diseased corneas. Proteins involved in biofilm formation can promote angiogenesis, adhesion,
infiltration, and immunomodulation [73]. Fusarium also secretes enzymes such as carboxypeptidases,
aminopeptidases, and mycotoxins that make it highly toxic and capable of causing corneal ulcers. It
promotes the activation of macrophages, the infiltration of polymorphonuclear cells, and the increase in the
levels of cytokines such as IL-1β, IL-8, IL-17, and TNF-α. The immune response is mediated by receptors
such as toll-like 2 and 4 and vitamin D receptors. In addition, it causes changes in the protein profile of the
host's tears [73].

Aspergillus is the second most common cause of keratitis worldwide, and most cases also occur in tropical
and subtropical countries. Aspergillus fumigatus, A. flavus, A. niger, and A. terreus are most commonly
involved [8,9]. A major risk factor is the trauma by plant material, through which the conidia penetrate the
corneal epithelium and invade the stroma. There, the conidia form hyphae, which can migrate through the
stroma to the anterior chamber and posterior eye. The hyphae activate local macrophages to produce
chemokines that mediate neutrophil recruitment from the capillaries, resulting in corneal opacification,
decreased vision, and, in severe cases, vision loss [59].

Aspergillus conidia are coated with a layer of hydrophobic proteins, the RodA hydrophobins, which cover the
cell wall molecules responsible for initiating the immune response [78]. In the absence of RodA
(RodA mutants), these molecules, mainly β-1,3-glucan and α-mannan, remain exposed in the cell wall of
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the conidia and can be recognized by the receptors of host defense cells, mainly dectin-1 and dectin-2, which
then are activated, causing neutrophils to migrate into the cornea to fight the fungus. On the contrary, when
RodA proteins are present, they coat the β-1,3-D-glucan and α-mannan of the conidia surface, blocking
their recognition by the dectin-1 and dectin-2 lectins, thereby preventing macrophage cytokine production
and infiltration by neutrophils and enhancing the fungal survival in the cornea [78,79].

Melanin in Aspergillus species has also been found to inhibit Ca2+/calmodulin-induced light chain 3 (LC3)-
associated phagocytosis (LAP), which is an alternative autophagy pathway [80]. In addition, melanin
contributes to the stability and integrity of the cell wall and to the enhancement of virulence in Aspergillus
fumigatus and Aspergillus flavus by protecting them from the host defense. Rudhra et al. demonstrated in an
in vivo virulence study that conidia of A. flavus strains covered by a melanin layer were more virulent than
uncoated ones [81].

Keratitis caused by filamentous fungi, such as Fusarium and Aspergillus, if not treated properly and promptly,
gradually worsens into endophthalmitis. In these cases, the hyphae spread throughout the layer and create a
feathered appearance in the shape of the infiltrate and satellite lesions. These cases, in a large percentage,
after a period of failed treatments, result in a corneal transplant [82].

Phaeohyphomycetes, mainly Curvularia species (formerly genus Bipolaris), are the third most common cause
of keratitis worldwide. Other species involved are Exserohilum spp., Alternaria spp., Ulocladium spp.,
Lasiodiplodia spp., and Colletotrichum spp. [7]. The immune mechanisms and the predisposing factors are
similar to other filamentous fungi. However, in keratitis by Phaeohyphomycetes, the cornea exhibits
characteristic pigmented plaques that prevent the penetration of topical antifungals, often resulting in
superficial keratectomy [83].

Alternaria species are found everywhere in the soil, on plants, and in food. They can cause opportunistic
infections in humans, including skin, subcutaneous, and ocular infections; rhinitis; and onychomycosis [84].
Traumatism, previous eye surgery, and preexisting corneal diseases are most commonly associated with
Alternaria keratitis. However, Alternaria keratitis cases associated with soft contact lens wear have also been
reported [85-87].

Phoma species are considered phytopathogenic and are widely distributed in the environment, especially in
aquatic systems and soil. In a previous study, 32 Phoma infections were reported. The majority was caused by
traumatism (22/32, 69%), and 5/32 (16%) were ocular infections [88]. The treatment usually requires the
surgical excision of the infected tissues and the administration of antifungal treatment locally and/or
systemically.

Curvularia spp. (former genus Bipolaris) have a worldwide distribution. They are mostly phytopathogenic,
but they are able to cause infections in both immunocompetent and immunocompromised patients, such as
sinusitis, keratitis, endophthalmitis, onychomycosis, dialysis-related peritonitis, and pulmonary and skin
infections, mainly in tropical and subtropical areas [89]. Curvularia spicifera and C. hawaiiensis are the most
frequent causes of keratitis [90].

Purpureocillium lilacinum (formerly Paecilomyces lilacinus) belongs to ascomycetes from the
Ophiocordycipitaceae family. They are found in soil, decaying material, insects, and sea jellyfish [91]. The
risk factors of keratitis include chronic ocular disease, a previous eye surgery, corneal trauma, or contact
lens wear [92]. Cases with other predisposing factors such as immunosuppression, the use of systemic
immunosuppressants, and topical corticosteroids have also been described [93]. Furthermore, serious ocular
infections in immunocompetent individuals have recently been reported [94]. Infections associated with
sterile sodium bicarbonate solution, skin lotions, and solutions used to sterilize artificial lenses have also
been recorded [95,96].

Beauveria bassiana is an entomopathogenic fungus. This species rarely infects humans [97]. Only four cases
of opportunistic infections in the immunocompromised and 15 cases of keratitis in contact lens wearers or
after ocular trauma have been documented [98-100]. It grows adequately at temperatures of 35°C-37°C, and
perhaps, this explains why the infections are limited to superficial body tissues such as the cornea [98].

Acremonium is an environmental saprophyte that has been isolated from soil and plant debris, which causes
opportunistic superficial infections in humans, respiratory tract infections, onychomycosis, and ocular
fungal infections. The main risk factor for ocular infections is injury with contaminated plant material,
followed by the previous use of steroids or broad-spectrum antibiotics, poor eye condition, strabismus, and
contact lens wear [101]. Acremonium has also been implicated in causing keratitis after the laser-assisted in
situ keratomileusis (LASIK) procedure and has been detected in the operating room environment. The host's
immune system probably also plays a key role. Psoriasis, Hansen's disease, lagophthalmos, diabetes,
tuberculosis, and also Sjögren's syndrome under systemic immunosuppression have been associated
with Acremonium keratitis [101,102].

Penicillium fungal keratitis usually affects during winter and monsoon and more often young
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male farmers with a history of trauma or under some type of immunosuppression. Furthermore, Penicillium
marneffei keratitis has been found to be associated with AIDS [103].

Scedosporium spp. are causes of life-threatening infections in immunocompromised patients. They are also
responsible for causing eumycetoma, a chronic deep fungal infection of the skin and subcutaneous tissues.
They also affect many organs in the body, including the bones and joints, the central nervous system, the
upper and lower respiratory system, and the eyes. Several predisposing factors have been mentioned such as
cystic fibrosis, hematopoietic stem cell and solid organ transplantation, and COVID-19 [104]. Injury mainly
by plant matter, uncontrolled diabetes, and small-incision cataract surgery have also been reported as risk
factors for Scedosporium keratitis [105].

Conclusions
The immune response in filamentous fungal keratitis is initiated by the recognition of fungal PAMPs and the
subsequent activation of corneal PRRs and involves the vasodilatation and secretion of active immune cells,
such as macrophages, polymorphonuclear leukocytes and lymphocytes, and immunoreactive substances.
However, the overexpression of inflammatory cytokines and chemokines could lead to adverse effects even
in corneal ulceration or perforation. Therefore, filamentous fungal keratitis is a particularly serious
infection that can lead to reduced vision and even blindness not only because of the invasiveness and
difficulty of treating these microorganisms but also because of the excessive inflammatory host response. It
is possible that antifungal therapy in combination with topical immunosuppressants may be the most
effective strategy to improve the clinical outcome of the disease. However, more research is needed for safer
conclusions.
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