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Abstract
Space exploration exposes astronauts to the unique environment of microgravity, which poses significant
health challenges. Identifying biomarkers that can predict an individual’s resilience to the stressors of
microgravity holds great promise for optimizing astronaut selection and developing personalized
countermeasures. This narrative review examines the principal health risks associated with microgravity and
explores potential biomarkers indicative of resilience. The biomarkers being evaluated represent a broad
spectrum of physiological domains, including musculoskeletal, neurological, immunological,
gastrointestinal, cardiovascular, and cutaneous systems. Earth-based microgravity analogs, such as dry
immersion and head-down tilt bed rest, may provide valuable platforms to validate candidate biomarkers.
However, biomarker sensitivity and specificity must be further evaluated to ensure efficacy and reliability.
Establishing a panel of biomarkers predictive of resilience to microgravity-induced health risks would
significantly enhance astronaut health and mission success, especially for long-duration exploration
missions. Insights gained may also translate to health conditions on Earth characterized by reduced physical
activity and mechanical loading.
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Introduction And Background
During spaceflight missions, astronauts are exposed to the unique environment of microgravity, which can
have profound effects on their health and performance [1]. Microgravity, a condition characterized by the
virtual absence of gravitational forces, induces a range of physiological adaptations that can pose significant
health risks to crew members [2]. As space agencies plan for longer-duration missions beyond low-Earth
orbit, understanding and mitigating the effects of microgravity on astronaut health becomes increasingly
critical [3]. While microgravity induces substantial changes in various physiological systems [1, 2],
substantial inter-individual variability exists in the extent to which astronauts experience adverse effects
from microgravity exposure [4]. Although currently speculative, this suggests that in the future, biomarkers
could potentially be used to forecast an individual astronaut's resilience to the challenges presented by
microgravity environments [5]. In the context of spaceflight, the identification and monitoring of resilience
biomarkers could offer significant benefits [6]. These biomarkers would facilitate the development of
personalized countermeasures, tailored to each individual astronaut's unique physiological needs and
responses. Moreover, resilience biomarkers could serve as leading indicators of an astronaut's health status
during missions.

The concept of developing biomarkers to predict performance in microgravity environments has major
translational implications. However, to our knowledge, no comprehensive review has been conducted on
potential biomarkers of resilience to the specific challenges posed by microgravity. This manuscript aims to
address this gap by summarizing the major health risks associated with microgravity exposure and proposing
candidate biomarkers that may predict resilience to these risks based on terrestrial studies. We specifically
focused on biomarkers that can be measured prior to spaceflight to assess baseline status, with the future
goal of building a predictive model of an astronaut’s resilience to the physiological adaptations induced by
microgravity. The biomarkers being evaluated represent a broad spectrum of physiological domains,
including musculoskeletal, neurological, immunological, gastrointestinal, cardiovascular, and cutaneous
systems (Figure 1).
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FIGURE 1: Main effects of microgravity on different physiological
domains
Image credit: Piercarlo Minoretti

Review
Search strategy
To identify relevant references for this review, a comprehensive search was conducted in the PubMed
database for peer-reviewed articles published in English between January 1, 2013, and December 31, 2023.
The search strategy employed a combination of key terms related to the effects of microgravity on various
physiological systems. These terms were used in combination with "astronauts" to ensure the results were
specific to the astronaut population. The search query was constructed as follows: ("microgravity") AND
"astronauts" AND ("musculoskeletal" OR "neurology" OR "immunology" OR "gastroenterology" OR
"cardiovascular" OR "dermatology" OR "biomarkers" OR "resilience"). This search strategy yielded a total of
842 articles. The search results were then screened for relevance to the specific topics addressed in this
review. After this initial screening, the bibliographies of the selected articles were manually reviewed to
identify any additional relevant studies not captured by the primary search. The final reference list included
a total of 76 articles that were deemed most relevant to the topics covered in this review. These articles form
the basis of the evidence presented and discussed throughout the manuscript.

Musculoskeletal resilience biomarkers
In the absence of Earth’s gravity, the musculoskeletal system experiences reduced mechanical loading,
resulting in adaptive changes [7]. Muscle atrophy occurs rapidly, with up to 20% loss of muscle mass,
particularly in postural and anti-gravity muscles [8]. This is accompanied by a shift from slow-twitch to fast-
twitch muscle fibers [9]. Atrophy impairs strength, physical performance, and the ability to perform mission-
critical tasks [10]. Bone loss occurs at a rate of 0.5−1.5% per month in weight-bearing bones such as the hip
and spine [11]. This is due to increased bone resorption and decreased bone formation, leading to reduced
bone mineral density and altered bone structure [12]. Notably, astronauts are at risk for fractures and early-
onset osteoporosis [13].

Potential resilience biomarkers for these conditions include low baseline levels of myostatin, a protein that
inhibits muscle growth, which may indicate a reduced tendency for muscle atrophy [14]. Myostatin, a
member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle mass
[15]. Increased myostatin signaling has been implicated in the muscle atrophy that occurs during exposure
to microgravity in mice [16]. Inhibition of myostatin using neutralizing antibodies or other agents has
shown promise in mitigating microgravity-induced muscle loss in animal models [17]. In mice exposed to
microgravity during spaceflight, myostatin inhibition using an anti-myostatin antibody significantly
increased muscle mass compared to untreated mice [17]. The degree of muscle hypertrophy varied between
different muscle groups, with some responding equally well in the presence or absence of gravity. Notably,
myostatin inhibition also modulated the expression of genes involved in muscle architecture that were
altered by microgravity exposure [17]. Elevated levels of insulin-like growth factor-1 (IGF-1), a hormone
associated with muscle and bone growth [18], may also serve as a resilience biomarker. IGF-1 has been
shown to stimulate myogenesis via protein synthesis and reduce muscle degeneration [19]. It also increases
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the proliferative capacity of muscle satellite cells [20]. In addition, IGF-1 production increases in the satellite
cells of damaged muscles, promoting their growth and differentiation into muscle cells [19]. Mechanical
loading affects skeletal muscle production of IGF-1 [18], and low IGF-1 levels are associated with reduced
handgrip strength and poor physical performance [18, 20]. IGF-1 is potentially useful in the management of
muscle atrophy [18] and plays a key role in bone metabolism, stimulating bone formation and remodeling
[21]. Strategies to maintain or increase IGF-1 levels, such as exercise and nutritional interventions [22], may
help counteract microgravity-induced musculoskeletal changes.

Central nervous system resilience biomarkers
Microgravity exposure during spaceflight can have profound effects on the central nervous system (CNS),
leading to a range of potential neurological issues [23, 24]. One of the most common CNS disturbances
experienced by astronauts is space motion sickness (SMS), which is characterized by symptoms such as
nausea, vomiting, headache, and disorientation [25, 26]. SMS is thought to result from a sensory conflict
between visual, vestibular, and proprioceptive inputs in the microgravity environment [27]. Potential
biomarkers for resilience against SMS may involve a blunted increase in plasma arginine vasopressin (AVP)
levels after rotation [28]. AVP is a hormone that plays a role in fluid balance and has been implicated in the
development of motion sickness [29]. Studies have shown that individuals with a smaller increase in AVP
levels after exposure to provocative motion stimuli are less susceptible to motion sickness [30]. Therefore,
assessing baseline AVP levels and the magnitude of AVP response to vestibular stimulation could help
identify astronauts who are more resilient to SMS. Microgravity can also lead to alterations in smell and
taste perception [31], which can have significant effects on food intake, nutrition, and overall well-being.
The underlying mechanisms of these sensory changes are not fully understood but may involve structural
and functional adaptations in the olfactory and gustatory systems [31, 32]. High levels of sonic hedgehog
(Shh), a protein involved in the development and maintenance of sensory neurons, in nasal mucus and
saliva could indicate resilience to alterations in smell and taste, respectively [33, 34]. Shh plays a critical role
in the regeneration and plasticity of olfactory and gustatory receptors [35]. Astronauts with higher baseline
levels of Shh in these fluids may be more capable of adapting to the sensory challenges posed by
microgravity.

Immune system resilience biomarkers
Microgravity exposure during spaceflight can have significant effects on the immune system, leading to a
range of alterations in immune function and increased susceptibility to infections [36, 37]. One of the
potential consequences of microgravity-induced immune dysregulation is the development of
hypersensitivity reactions [37]. Hypersensitivity reactions are exaggerated or inappropriate immune
responses to specific antigens, which can manifest as allergic reactions, autoimmune disorders, or other
inflammatory conditions [38, 39]. In the context of spaceflight, hypersensitivity reactions may be triggered
by factors such as altered antigen presentation, changes in cytokine profiles, and increased oxidative stress
[36]. Eosinophils, a type of white blood cell, are involved in the initiation and maintenance of allergic
inflammation through the release of various mediators, such as cytokines, chemokines, and granule
proteins. Elevated eosinophil counts are often associated with allergic diseases, such as asthma, allergic
rhinitis, and atopic dermatitis [40]. Therefore, maintaining normal ranges of eosinophils could indicate
resilience against hypersensitivity reactions in the microgravity environment. Astronauts with lower
baseline eosinophil counts and a reduced propensity for eosinophil activation may be less susceptible to
developing allergic reactions during spaceflight. Immunoglobulin E (IgE) is another key player in the
development of hypersensitivity reactions. Upon exposure to an allergen, IgE binds to the allergen and
triggers the release of inflammatory mediators from mast cells and basophils, leading to the manifestation
of allergic symptoms [41]. Elevated IgE levels are a hallmark of atopic disorders and are often used as a
biomarker for allergic sensitization [41]. Hence, monitoring IgE levels before and after spaceflight could help
identify individuals who are at a higher risk of experiencing allergic reactions in the microgravity
environment. Periostin, a matricellular protein, has recently emerged as a promising biomarker for allergic
inflammation [42]. Periostin has been implicated in the pathogenesis of allergic diseases, such as asthma
and atopic dermatitis [43]. Elevated serum periostin levels have been associated with increased disease
severity and resistance to treatment in patients with allergic disorders [42, 43]. In the context of spaceflight,
astronauts with lower baseline periostin levels and a reduced propensity for periostin upregulation in
response to inflammatory stimuli may be less susceptible to developing allergic reactions during long-
duration space missions.

Gastrointestinal system resilience biomarkers
Microgravity exposure during spaceflight can have profound effects on the gastrointestinal (GI) system,
leading to alterations in gut microbiota composition [44, 45] and increased intestinal permeability [46]. One
of the major concerns is the development of gut microbiota dysbiosis, which refers to an imbalance in the
composition and function of the gut microbial community [47]. Dysbiosis has been associated with various
GI disorders, such as inflammatory bowel disease and irritable bowel syndrome [48]. In the context of
spaceflight, factors such as altered nutrient intake, stress, and radiation exposure can interact with
microgravity to promote the development of gut microbiota dysbiosis [49]. Serum levels of gut permeability
biomarkers, such as zonulin and lipopolysaccharide (LPS) [50], may serve as potential indicators of resilience
against microgravity-induced gut microbiota dysbiosis. Zonulin is a protein that regulates intestinal
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permeability by modulating the tight junctions between epithelial cells [51]. Elevated serum zonulin levels
have been associated with increased gut permeability and the development of various GI disorders [52]. LPS,
a component of the outer membrane of gram-negative bacteria, is another marker of gut permeability [53].
When the intestinal barrier is compromised, LPS can translocate from the gut lumen into the systemic
circulation, leading to endotoxemia and inflammation [53]. Astronauts with normal serum levels of zonulin
and LPS may be more resilient to the development of gut microbiota dysbiosis and its associated
complications during spaceflight. Plasma levels of short-chain fatty acids (SCFAs), such as acetate,
propionate, and butyrate [54], may also serve as biomarkers of gut microbiota health and resilience against
microgravity-induced dysbiosis. SCFAs are produced by the fermentation of dietary fibers by the gut
microbiota and play a crucial role in maintaining intestinal homeostasis [55]. They exert various beneficial
effects, such as regulating intestinal motility, promoting the growth of beneficial bacteria, and modulating
immune responses [54]. Reduced plasma levels of SCFAs have been associated with gut microbiota dysbiosis
and the development of GI disorders [56]. Astronauts with normal plasma levels of SCFAs may have a more
resilient gut microbiota that is better equipped to withstand the challenges posed by the microgravity
environment. Another potential GI issue during spaceflight is the development of cholecystitis [57]. Normal
biochemical markers of cholestasis and liver injury, such as alkaline phosphatase, gamma-glutamyl
transferase, and bilirubin levels, along with normal abdominal ultrasound findings, may indicate resilience
against the development of cholecystitis during spaceflight.

Cardiovascular system resilience biomarkers
Microgravity exposure during spaceflight induces a constellation of cardiovascular adaptations that can lead
to orthostatic intolerance [58] and cardiac deconditioning [59]. Orthostatic intolerance, characterized by an
inability to maintain blood pressure and cerebral perfusion upon assuming an upright posture, affects up to
80% of astronauts returning from long-duration missions [60]. The mechanisms underlying post-spaceflight
orthostatic intolerance are multifactorial and include hypovolemia, altered autonomic control, and reduced
vascular responsiveness [61]. Potential biomarkers for resilience against orthostatic intolerance include
normal heart rate variability (HRV) and normal circulating levels of renin, aldosterone, and norepinephrine.
HRV, a measure of the beat-to-beat variations in heart rate, reflects the autonomic control of the
cardiovascular system [62]. Maintained HRV during simulated microgravity may indicate a preserved ability
to regulate blood pressure and cardiac output upon return to Earth's gravity. Similarly, astronauts who
maintain their blood volume and exhibit normal levels of renin, aldosterone, and norepinephrine, key
regulators of fluid balance and vascular tone [63], may be less susceptible to post-flight orthostatic
intolerance. Cardiac myocyte atrophy, characterized by a reduction in cardiomyocyte size and contractile
function, is another consequence of prolonged microgravity exposure [64]. This atrophic remodeling is
thought to result from altered cardiac loading conditions and reduced metabolic demands in the
microgravity environment [65]. The absence of mutations in the phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit alpha (PIK3CA) gene and the presence of a “ PTEN-less” phenotype - characterized
by loss or inactivation of the phosphatase and TENsin homolog deleted on chromosome 10 (PTEN) gene -
may contribute to the maintenance of cardiac myocyte structure and function, potentially serving as
biomarkers for resilience against cardiac myocyte atrophy. The PIK3CA gene encodes the p110α catalytic
subunit of phosphatidylinositol 3-kinase α (PI3Kα), which is a lipid kinase that plays a crucial role in cell
growth, survival, and motility [66]. In the context of the heart, PI3Kα has been shown to be protective in
various models of heart failure and cardiac stress [66]. Specifically, PI3Kα activation is part of a
compensatory response during heart failure, and reduced PI3Kα activity has been observed in human and
dog hearts with dilated cardiomyopathy [66]. Moreover, PI3Kα deficiency in mice leads to accelerated
progression of heart failure and exacerbates cardiac atrophy [66]. This suggests that normal PI3Kα activity,
which would be altered by PIK3CA mutations, is important for maintaining cardiac structure and function
under stress. PTEN is a negative regulator of the PI3Kα pathway, and its loss has been shown to provide
marked and persistent protection against cardiac stress [67]. PTEN loss or inactivation, referred to as “PTEN-
less”, has been implicated in the regulation of cardiac physiological and pathological processes, including
hypertrophy, proliferation, apoptosis, and survival [67]. Inactivation of PTEN in mouse models has been
shown to protect the heart from hypertrophic growth in pathological remodeling [67]. Given the protective
roles of PI3Kα activity [66] and the negative regulation by PTEN in the heart [67], it is plausible that the
absence of PIK3CA mutations and the “PTEN-less” phenotype could be indicative of a heart’s resilience to
microgravity-induced atrophy. The absence of PIK3CA mutations would suggest normal PI3Kα activity,
which is necessary for a resilient actin cytoskeleton and compensatory responses during heart failure [66].
Similarly, the presence of a “PTEN-less” phenotype would ensure proper regulation of the PI3K pathway,
which is involved in cardiomyocyte survival and function [67]. Therefore, astronauts with normal PIK3CA
and the “PTEN-less” phenotype may be less prone to microgravity-induced cardiac atrophy. Another
significant cardiovascular risk associated with microgravity is the development of internal jugular vein
thrombosis (IJVT) [68]. IJVT is a potentially serious condition that can lead to pulmonary embolism and
other complications [69]. The risk of IJVT is increased in the microgravity environment due to factors such as
fluid shifts, venous stasis, and altered coagulation pathways [70]. Normal levels of D-dimer, prothrombin
time, partial thromboplastin time, platelet count, and fibrinogen, along with negative Factor V Leiden and
prothrombin G20210A mutation [71, 72], could suggest a lower risk of IJVT. These biomarkers reflect the
balance between coagulation and fibrinolysis and can help identify individuals with a more favorable
hemostatic profile [71, 72]. Astronauts with normal levels of these markers and an absence of prothrombotic
single nucleotide polymorphisms may be more resilient to the development of IJVT during spaceflight.
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Cutaneous system resilience biomarkers
Astronauts often experience skin-related issues during space missions, including skin thinning, dryness,
slower wound healing, and a heightened risk of infections [73]. Recent research has identified biomarkers
that could signal skin resilience in space. Among these, matrix metalloproteinases (MMPs) have drawn
significant interest. A study examining the impact of simulated microgravity on human mesenchymal stem
cells found that such conditions trigger proteolytic activity within the cellular matrix and reduce the cells'
adherence to the extracellular matrix [74]. Consequently, astronauts with naturally lower levels of MMPs
might be more resistant to the skin damage and wound healing challenges posed by microgravity. In addition
to biochemical markers, skin biophysical parameters could also serve as indicators of resilience. These
parameters include skin hydration, transepidermal water loss (TEWL), pH, and elasticity [75]. Astronauts
with well-maintained skin barrier function, as evidenced by optimal hydration levels, low TEWL, slightly
acidic pH, and good elasticity, may be less susceptible to the adverse effects of microgravity on the skin. To
elucidate the role of these biomarkers in predicting skin resilience, longitudinal studies involving astronauts
are necessary. Pre-flight assessments of MMPs and skin biophysical parameters should be conducted and
compared with post-flight measurements. Additionally, correlations between these biomarkers and the
incidence and severity of dermatological issues during spaceflight should be investigated.

Discussion
This review has provided a summary of potential biomarkers that may predict resilience to microgravity
hazards across multiple physiological systems (Table 1).

Microgravity-
related Hazards

Alterations Candidate Resilience Biomarker

Musculoskeletal   

 Muscle and bone atrophy Low baseline myostatin levels, elevated insulin-like growth factor-1 levels

Neurology   

 Space motion sickness Blunted increase in plasma arginine vasopressin levels after rotation

 Altered smell and taste
Smell: high sonic hedgehog levels in nasal mucus; Taste: high sonic hedgehog levels
in saliva

Immunology   

 Hypersensitivity Eosinophils, IgE levels, and periostin within the normal range

Gastroenterology   

 Gut microbiota dysbiosis
Normal serum levels of gut permeability biomarkers (zonulin, lipopolysaccharide);
normal plasma short-chain fatty acid levels

 Cholecystitis
Normal biochemical markers of cholestasis and liver injury, normal findings on
abdominal ultrasound

Cardiovascular   

 Orthostatic intolerance
Normal heart rate variability, blood volume, and blood pressure. Renin, aldosterone,
and norepinephrine within the normal range

 Cardiac myocyte atrophy Absence of PIK3CA mutations and "PTEN-less" phenotype

 
Internal jugular vein
thrombosis

Normal levels of D-dimer, normal prothrombin time and partial thromboplastin time,
normal platelet count, normal fibrinogen, no carriage of prothrombotic single
nucleotide polymorphisms

Dermatology   

 
Skin thinning, dryness,
delayed wound healing,
cutaneous infections

Low baseline matrix metalloproteinases levels; normal skin biophysical parameters

TABLE 1: Overview of potential biomarkers for resilience against the adverse effects of
microgravity
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A carefully selected panel of biomarkers, measured at baseline and in response to microgravity, could be
used to comprehensively assess an astronaut’s overall resilience profile. This personalized approach would
enable tailored countermeasures to mitigate individual risks. Insights gained may also translate to health
conditions on Earth characterized by reduced physical activity and mechanical loading. Earth-based
microgravity analogs, such as dry immersion and head-down tilt bed rest [76], may provide valuable
platforms to validate candidate resilience biomarkers in a controlled setting. Unfortunately, the relative
contribution of each biomarker to overall resilience and the potential interactions between biomarkers
across physiological systems are still unclear. Albeit not currently implemented, standardized protocols for
biomarker measurement and interpretation need to be established and harmonized across space agencies.
Despite these hurdles, the development and validation of a robust panel of resilience biomarkers has the
potential to revolutionize astronaut selection, monitoring, and individualized countermeasure regimens. As
space agencies prepare for ambitious exploration missions to the Moon, Mars, and beyond, investing in this
critical biomarker research will be essential for ensuring crew health and mission success in the face of the
unforgiving spaceflight environment. Future research should focus on conducting prospective studies to
validate candidate biomarkers, developing integrated predictive models that account for biomarker
interactions, and establishing consensus protocols for resilience biomarker testing. Emerging technologies
such as organ-on-a-chip systems and artificial intelligence-driven data analysis may accelerate progress.
Importantly, research should also investigate the potential to enhance resilience through targeted
interventions, guided by an individual's biomarker profile.

Conclusions
The dawn of personalized medicine for spaceflight is on the horizon. By harnessing the power of resilience
biomarkers, we can unlock the full potential of human adaptability and usher in a new era of space
exploration. The stars are calling - and with rigorous research to develop the most suitable biomarkers, we
can ensure that future astronauts are equipped to answer that call as safely and successfully as possible.
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