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Abstract
Resin composites became the material of choice for direct restorations in anterior and posterior teeth.
Despite the revolutionary improvement in the material, restoration failure is still a major drawback due to
the material’s inherent negative properties, including a lack of antibacterial effects. Therefore, many
attempts have been made to incorporate antibacterial agents into resin composite materials to improve
their antimicrobial properties and prevent secondary caries formation. Multiple laboratory studies have
been conducted using different antibacterial agents, such as quaternary ammonium compounds,
methacryloyloxydodecylpyridinium bromide, magnesium oxide nanoparticles, chlorhexidine, and chitosan.
This review provides a glance at the current status of these materials and the research directions needed in
the future. 
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Introduction And Background
Composite resins became the most widely used materials for direct restorations due to the revolutionary
improvement in mechanical, physical, and aesthetic properties [1]. However, the inherent disadvantages of
these materials, including polymerization shrinkage stresses, moisture sensitivity, and lack of antibacterial
properties, are still responsible for restoration failure [1]. It has also been found that composite resin
materials are more susceptible to bacteria adherence and biofilm formation on their surface due to low
surface energy [2]. In addition, the composition of conventional composite resin restorative materials does
not show any bacterial inhibition effect. The concentration of monomers that leached out from composites
is very low to allow antibacterial activity. The inorganic fillers are mainly inert silica fillers with no
antibacterial properties as well [1]. The oral environment is dynamic where demineralization and
remineralization occur simultaneously, and is affected by other several factors, such as salivary flow and the
presence of fermentable carbohydrates [3]. The material’s negative properties with previously mentioned
factors might eventually cause secondary caries and restoration failure [1]. The prevalence of secondary
caries was found to be higher with resin composite restorations compared to other materials such as
amalgam [4]. Thus, the failure rate of composite resin restorations is twice that of amalgam restorations,
with secondary caries as the main cause of failure [5].

Several strategies have been introduced to enhance composite resin properties and reduce secondary caries
initiation and progression. In an attempt to decrease bacteria colonization and plaque formation on the
restoration surface, the resin composite material has been modified by the incorporation of antimicrobial
agents. In modern dentistry, antibacterial dental resin composite restorative materials displayed great
promise in resolving the long-standing issue of bacterial colonization and subsequent secondary caries
formation in restored teeth [6]. Moreover, composite resin has also been modified by adding a combination
of antimicrobial and remineralization agents [7,8]. This review aims to provide insight into available
antibacterial agents that have been added to composite resin restorative materials to enhance the
antimicrobial and anti-caries properties.

Review
Antibacterial agents
Several antimicrobial agents have been tried and incorporated into composite materials. These agents can
be classified according to their chemical composition into organic and inorganic agents. Organic agents
include polymeric agents, quaternary ammonium compounds, and biguanides, while inorganic agents
include metals and metal oxides. According to the method of incorporation into composite resins,
antibacterial agents can also be classified as polymerizable agents, leachable agents, and antibacterial filler
particles. Polymerizable antibacterial agents are incorporated into a composite resin matrix through
copolymerization with resin monomers, providing antibacterial effects without the release of antibacterial
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components and ensuring long-term antibacterial protection. Methacryloyloxydodecylpyridinium bromide
(MDPB) is an example of a polymerizable antibacterial agent. Leachable agents, such as quaternary
ammonium compounds and chlorhexidine, are water-soluble compounds that can be released into the
surrounding area of a composite resin restoration. Filler particles, including metal oxides or metal salts, such
as magnesium oxide, display antibacterial action by releasing trace amounts of metal ions [6]. The
antibacterial agents discussed in this review are summarized in Figure 1.

FIGURE 1: Review flowchart
Flowchart summarizing the antibacterial agents being discussed in this review. MDPB:
Methacryloyloxydodecylpyridinium bromide

Quaternary Ammonium Compounds (QACs)

These compounds exhibit strong antibacterial agents and have been utilized for decades in food packaging
and biomedical applications [9]. Likewise, they showed promising antibacterial effects when added to dental
composites. Their mechanism of action is basically through releasing catalytic agents, which break down
microbial membranes of bacteria and prevent their adherence [9]. Two primary methods exist for their
incorporation into dental composite: either by being added as a filler particle component or they are
polymerized as a QA monomer.

Compounds as a QA Monomer: Several in vitro studies have been conducted to test the effect of
incorporation of QA monomers on the antibacterial and physical properties of dental composites. To
maximize chain length and other properties of the compounds involved, QA dimethacrylate monomers were
tested and used in dental resin systems containing bisphenol A-glycidyl methacrylate and trimethylene
glycol dimethacrylate for antibacterial activity [10]. In vitro studies investigated copolymers based on
triethylene glycol dimethacrylate and QA urethane-dimethacrylate analogs [11]. The tested copolymers
exhibited acceptable physical properties as well as superior antibacterial properties. However, these
experimental materials have not been tested clinically to be validated.

Compounds as QA Filler Particles: QA compounds can be either polymeric particles (e.g.QA
polyethylenimine (QPEI)) or coupled with silica filler particles. These compounds have been thoroughly
investigated through in vitro and in vivo studies [12]. These compounds are more advantageous compared to
QA monomers, as the latter tend to leach out the composite restorative materials resulting in deterioration
in the physical properties of the material with time [6].

In laboratory studies, QPEI polymeric nanoparticles have been prepared and incorporated into bonding
agents, and flowable and hybrid composite resin restorative materials at different concentrations ranging
from 0.1 to 3 % (wt/wt). Most of these in vitro studies revealed a high antibacterial effect over time. An
increase in solubility and a decrease in mechanical properties such as flexural strength were observed with
concentrations above 1% [12, 13,14]. Few in-vivo studies have been conducted to test these materials
intraorally with similar observations found regarding a high wide-spectrum antibacterial effect [15]. The
QPEI caused cell death throughout the formed biofilm, and not just at the restorative material surface.

Regarding QA silica particles, several in vitro studies revealed a high antibacterial effect. Incorporation of
QA silica particles into experimental composite materials at a concentration of 1.5% showed significant
antibacterial activity with no negative impact on the mechanical properties of the material [14]. Moreover,
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QA silica particles are dispersed evenly throughout the dental material without being leached out,
minimizing the risk of accumulation in the body. There are a limited number of commercially available
restorative materials that contain QA silica particles. Infinix is a light-cured universal resin composite
restorative material that has been introduced recently by Nobio (Infinix; Nobio, Israel), containing 1.5% QA
silica particles. This material was tested in situ and showed a significant decrease in the metabolic activity
of salivary bacteria when it encountered the material surface. This bacterial inhibition prevented salivary
sugar- induced pH drop and maintained near neutral pH compared to other restorative materials, including
amalgam and conventional resin composite [16]. Furthermore, the antibacterial activity was found to
prevent tooth demineralization in enamel adjacent to a 38-μm gap for up to 4 weeks when compared to a
conventional composite [16,17,18]. Clinical studies are needed to prove the effectiveness of these materials
with time.

Methacryloyloxydodecylpyridinium Bromide (MDPB): The antibacterial monomer 12-methacryloyloxy
dodecyl-pyridinium bromide is a combination between a methacryloyl group and quaternary ammonium
[19]. At low concentrations (8 μg/ml), it displayed a bacteriostatic effect by interfering with bacterial lactate
dehydrogenase enzyme activity and inhibiting acid production from S. mutans. At higher concentrations
(1,000 μg/ml), MDPB has a bactericidal effect on planktonic and biofilm S. mutans [20]. 

MDPB has been incorporated into several restorative materials such as adhesive systems. Laboratory studies
conducted on adhesive systems containing MDPB showed promising results regarding their antibacterial
activity with no impact on tensile bond strength to dentin [21,22]. Clinical and in situ studies, however,
were not congruent with the laboratory studies and showed no superior preventive effect against secondary
caries formation between MDPB-containing and MDPB-free adhesives [23]. Moreover, no studies are
available so far to investigate the incorporation of MDPB into restorative composite resin materials.

Chlorhexidine (CHX)

CHX is a biguanide cation with a broad-spectrum antibacterial activity against Gram-negative and Gram-
positive bacteria. Its bacteriostatic mode of action relies on penetrating and damaging the bacterial cell, thus
compromising the integrity of the cell. At higher concentrations, it exhibits a bactericidal effect by causing
precipitations and cytoplasmic coagulation [24]. In the dental field, it has been used for centuries as an
effective anti-bacterial mouthwash and varnish for the treatment and prevention of periodontal diseases and
dental caries. In addition, CHX exhibits a matrix metalloproteinases (MMPs)-inhibition effect. MMPs are
endogenous proteolytic enzymes within the dentin organic matrix. When activated, MMPs lead to the
degradation of collagen fibers and the deterioration of the dentin-resin composite bond strength. CHX has
been utilized in restorative procedures as a therapeutic primer, added to acid etch, and incorporated into
adhesive agents [25]. A laboratory study showed that the application of 0.2% CHX solution as a therapeutic
primer before the dentin bonding procedure would reduce nanoleakage [26]. CHX has also been incorporated
into acid etching when bonding to eroded dentin and displayed a significant nanoleakage inhibition effect
[27]. Despite the promising MMP inhibition effect of CHX provided by in vitro studies, not enough clinical
evidence is available in the literature to provide strong clinical recommendations [28]. 

In addition to the application of CHX solution during bonding procedures, several trials have been
performed in order to incorporate CHX into restorative materials to create anti-caries restorations. It has
been incorporated into composite resins by using mesoporous silica nanoparticles to encapsulate and
release CHX [29]. The resulting experimental composite showed controlled CHX release over time without
compromising mechanical and surface properties. In another attempt, vesicle-templating technology was
utilized to create core-shell CHX/ACP nanoparticles and incorporated into experimental composite resin
restoration, following which their antibacterial and physical properties were tested. Acceptable mechanical,
antimicrobial, and remineralization properties were displayed by the modified dental resin composite
containing 5% CHX/ACP nanoparticles [30]. In addition, CHX was also incorporated into adhesive resin
systems and showed promising results. Indeed, a meta-analysis study revealed that bonding agents
containing 0.2% CHX enhanced bond strength with time. This could be explained not only by the
antimicrobial effect, but also by being an MMP inhibitor exhibiting anti-proteolytic activity [31]. These
observations might indicate the possibility of creating the perfect restorative material in the future.

Octenidine dihydrochloride, another cationic compound derived from pyridine that acts similarly to CHX,
showed antibacterial and biofilm prevention effects. It has been incorporated into experimental composite
resin and showed a promising anti-biofilm formation effect [32]. Further research is still needed as only a few
in situ studies have investigated this material [32,33].

Chitosan

Chitosan is a chitin-derived polysaccharide that exhibits antimicrobial activity. It is considered a
biocompatible and biodegradable natural polymeric antimicrobial agent that can be used in multiple
biomedical applications and tissue regeneration [34]. Chitosan polymeric nanoparticles can be produced by
polymer coagulation from solutions containing several concentrations of the material, which is subsequently
crosslinked with sodium tripolyphosphate. The antimicrobial effect of chitosan nanoparticles is via bacterial
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cell membrane disruption. The large positively charged chitosan nanoparticles interact with the negatively
charged bacterial cell wall, increasing the permeability of the bacterial cell membrane [35].

Chitosan nanoparticles have been utilized for targeted drug delivery for several therapeutic uses in dentistry,
including treatment of periodontitis and dentin-pulp regeneration, as well as incorporation into dental
adhesive systems and resin composites [36]. Controversial results have been reported regarding the
antibacterial effect of chitosan addition into composite resin and the impact of this addition on the
mechanical properties of the material. A previous report [37] added chitosan into methacrylate, which was
successfully incorporated into a total-etch bonding system with no adverse influence observed on bond
strength and physical properties. In another laboratory study, the incorporation of chitosan-composite resin
and adhesives showed a significant reduction in S. mutans biofilm formation. This increase in the
antibacterial effect of the experimental composite led to a reduction in mechanical properties such as
surface hardness and flexural strength [38]. Lia et al. reported that the incorporation of 2% chitosan/fluoride
microparticles into the bisphenol A-glycidyl methacrylate (Bis-GMA) resin matrix resulted in a significant
reduction in bacterial growth to 10% without compromising the mechanical properties of the material [39].
Likewise, 0.25% of chitosan particles incorporated into composite or dentin bonding agents exhibited
antibacterial action without impacting the bond strength when tested in class II restorations in vitro [40].
On the other hand, improved microhardness was observed when different concentrations of chitosan were
added to the resin composite (0.5-1%); no significant bacterial inhibition effect was compared to the
chitosan-free control [41]. Overall, the inconclusive results obtained by the in vitro studies necessitate the
need for further investigations with more standardized methods to optimize the concentration of chitosan
particles and properties of the resulting composite material. 

Metallic Nanoparticles

Magnesium oxide nanoparticle (nMgO): Magnesium oxide nanoparticles are biocompatible substances with
promising antimicrobial properties [42]. They have been utilized in cancer treatment for tumor inhibition,
bone regeneration, and stomach pain relief [43]. MgO nanoparticles also have been found to exhibit
antimicrobial properties against oral pathogens. Their mode of action relies on the release of magnesium
ions causing the disruption of the bacterial cell membrane and a reduction in bacterial growth [44].
Therefore, it has been incorporated as an antibacterial filler into resin composites, dental cement, and
glass-ionomer cement, to prevent secondary caries formation [45,46]. At low concentrations (2-7.5% by
weight), this addition was found to greatly enhance anti-biofilm properties without compromising their
mechanical, physicochemical, or biocompatibility properties [47,48]. Furthermore, it's possible that a
minimum quantity of MgO nanoparticles improved resin composite polymerization and enhanced the depth
of curing, as well as decelerating the aging process of the material [47,48]. This could be a useful tool in the
development of antibacterial resin composites to prevent secondary caries formation.

Zein protein is a polymer derived from corn and characterized by being anti-film-forming, biodegradable,
and biocompatible. In combination with MgO nanoparticles, it enhances their properties and makes the
nanoparticles suitable for drug delivery and therapeutic agents for different biomedical applications. Zein-
coated MgO nanoparticles can be prepared via several techniques, including covalent bonding or adsorption.
Zein-coated MgO displayed promising antibacterial properties against Streptococcus mutans, Enterococcus
faecalis, Staphylococcus aureus, and Candida albicans (as oral fungus) [49]. Besides, when Zein-coated MgO
nanoparticles were incorporated into resin-modified glass ionomer cements and resin cements, they showed
a prominent antibacterial effect [45].

MgO has also been accompanied with bioactive glass (BAG) and incorporated into composite resin. MgO-
BAG is suggested to exhibit an antimicrobial effect from inorganic MgO, as well as a remineralization effect
from organic BAG. When 2.5 wt% MgO and 12.5 wt% BAG were simultaneously incorporated into a
composite resin, it displayed higher antimicrobial activity than the ones containing only MgO or BAG. This
combination did not affect the physical, mechanical, and chemical properties of the modified composite
resin material [50]. Overall, MgO nanoparticles were promising antibacterial fillers for dental composites;
however, limited research is available to provide strong evidence for clinical use. This emphasizes the need
for further research in this area.

Zinc oxide (ZnO): ZnO nanoparticles are considered insoluble and colorless particles that provides long-
lasting antibacterial properties. Thus, they would be suitable as antibacterial filler nanoparticles in a direct
resin composite restorative material. There was a significant increase in the antibacterial effect of composite
resins that contain 1-2 wt % ZnO nanoparticles compared to controls [51]. The highest antibacterial effect
has been observed with the addition of 5% ZnO nanoparticles by reducing lactic acid production by
cariogenic bacteria [52]. However, some studies suggested that ZnO nanoparticles are mainly effective on a
single species rather than multispecies biofilm.

Within low concentrations (1-2%), ZnO nanoparticles provide an antimicrobial effect without affecting
mechanical properties, bond strength, or degree of conversion of the dental composite. Controversial results
were observed for higher concentrations (5%), as one study reported a significant reduction in curing depth
and degree of conversion of the material. However, there were other studies no negative impact was
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reported [52,53]. A finite study conducted by Yazdani et al. supported that the addition of 5% ZnO particles
into resin composite provides the best thermo-mechanical behavior [54].

Silver nanoparticles: Silver nanoparticles (AgNPs) are used as antibacterial agent for several medical and
dental uses. Its antibacterial action relies on multiple methods including the disruption of the cytoplasmic
membrane and cell wall, ribosome denaturation and inhibition of protein synthesis, as well as interruption
of ATP formation [55].

Yassaei et al. suggested that 1% is the maximum concentration of AgNPs to be incorporated into resin
composite material to provide the best antibacterial effect without affecting the materials’ properties.
Increasing AgNP concentrations might increase the risk of toxicity and deterioration in the aesthetic
properties of the material [56]. A more recent study where resin composite was modified by adding 1-1.5%
Ag nanoparticles extracted from a plant (Equisetum sylvaticum) displayed significant antibacterial activity
against Streptococcus mutans with no effect on the materials’ surface hardness [57].

Several attempts have been made to use a combination of Ag with other antibacterial agents for superior
properties. Arif et al. investigated the incorporation of Ciprofloxacin with Ag nanoparticles into resin
composite material. The modified material was biocompatible and displayed significant antibacterial
activity as well as improved compressive strength compared to the control group [58]. Moreover, an
orthodontic composite resin loaded with a combination of ZnO and Ag nanoparticles was also explored and
found to significantly enhance, both, the antibacterial properties and the bond strength to tooth structure
[59].

Titanium dioxide nanoparticles (TiO2): TiO2 nanoparticles are considered as photocatalytic antibacterial

agent fillers that can be activated by absorbing UV radiation and releasing reactive oxygen species [60].
Recently there have been attempts to increase light absorption of TiO2 nanoparticles by creating doped

nanoparticles using different elements such as nitrogen without affecting the materials’ antimicrobial
properties. In a study investigating composites used for orthodontic retainers, TiO2 nanoparticles

containing resin composite showed significantly higher bacterial inhibition compared to conventional
composite without any impact on bond strength [61]. The combination of TiO2 and Ag nanoparticles also

showed substantial improvement in the mechanical properties of dental composite in addition to the
antibacterial effect. Likewise, the incorporation of 1.5% nitrogen and fluorine-doped TiO2 enhanced the

antibacterial effect in addition to mechanical properties including flexural strength and flexural modulus of
flowable resin composites [62]. Despite several studies supporting the use of TiO 2 nanoparticles as an

antibacterial agent, further research is still needed to determine the exact composition and concentration of
the nanoparticles to be incorporated into resin composite materials.

Research gap and future directions
There are several adhesive systems with antibacterial properties available in the market. However, only one
restorative composite resin product exists in the market for clinical use containing QA silica particles
(Infinix; Nobio, Israel). No longitudinal clinical trials have been conducted and published on this product to
prove its clinical performance in comparison to conventional and bulk-fill resin composite materials.

In-vitro studies are needed to explore the impact of antibacterial agents’ incorporation on the depth of
curing and degree of conversion, microleakage, and bond strength to enamel and dentin, as well as
compatibility with different adhesive systems. Color stability, discoloration, and wear resistance need to be
tested immediately and after aging periods. Researchers are also encouraged to conduct in situ studies to
investigate the impact of human saliva and oral environments on the materials’ antibacterial, mechanical,
and physical properties. Research must continue to find the perfect composition and ratios of the
antibacterial agents that provide the best antibacterial effects without affecting the mechanical and physical
properties of the composite material. Subsequently, translational research should be conducted to bridge the
gap between laboratory studies and clinical practice.

Conclusions
The knowledge available in the literature regarding antibacterial composites are mainly at the level of basic
research. Laboratory studies and basic research provided promising results regarding the performance of
antibacterial composite resin restorative materials. Translational research is needed to move forward with
the production of such materials for clinical use. The production of such materials will improve caries
control and management, as well as improve the longevity of resin composite restorative materials.
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