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Abstract
Cardiovascular diseases (CVDs) are significant health issues that result in high death rates globally. Early
detection of cardiovascular events may lower the occurrence of acute myocardial infarction and reduce
death rates in people with CVDs. Traditional data analysis is inadequate for managing multidimensional
data related to the risk prediction of CVDs, heart attacks, medical image interpretations, therapeutic
decision-making, and disease prognosis due to the complex pathological mechanisms and multiple factors
involved. Artificial intelligence (AI) is a technology that utilizes advanced computer algorithms to extract
information from large databases, and it has been integrated into the medical industry. AI methods have
shown the ability to speed up the advancement of diagnosing and treating CVDs such as heart failure, atrial
fibrillation, valvular heart disease, hypertrophic cardiomyopathy, congenital heart disease, and more. In
clinical settings, AI has shown usefulness in diagnosing cardiovascular illness, improving the efficiency of
supporting tools, stratifying and categorizing diseases, and predicting outcomes. Advanced AI algorithms
have been intricately designed to analyze intricate relationships within extensive healthcare data, enabling
them to tackle more intricate jobs compared to conventional approaches.

Categories: Cardiac/Thoracic/Vascular Surgery, Cardiology, Healthcare Technology
Keywords: efficacy of ai in cardiac medicine, ai in cardiology, machine learning, artificial intelligence, cardiovascular
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Introduction And Background
Ischemia, heart failure, myocardial infarction, stroke, problems affecting the aorta and peripheral arteries,
arrhythmias, and diseases of the heart valves are all examples of cardiovascular diseases (CVDs) [1]. In spite
of great strides in the detection and treatment of CVDs, they remained the leading cause of death worldwide
in 2022, accounting for 19.8 million fatalities [2]. Furthermore, with a daily cost of roughly $1 billion, CVDs
are the most expensive sickness [3]. Despite the fact that cardiovascular illnesses are preventable, current
predictions show that their prevalence will rise. By 2035, experts expect that 45% of adult Americans will
have the ailment, and the yearly cost will exceed $1 trillion [4]. Numerous safe and efficient treatments are
already available to combat CVD, which ranks high among public health priorities [5-8]. Over the last several
years, AI's impact on CVD has been steadily increasing. The study of how computers and machine learning
(ML) systems may mimic human intelligence via the use of computational techniques is known as artificial
intellect. This area aims to solve human problems. A more cohesive, trustworthy, and efficient method of
providing high-quality healthcare has been encouraged by the advent of artificial intelligence (AI), which
provides methods for computers to mimic human cognitive functions such as learning and reasoning [9-11].
Research into the early detection and prevention of cardiovascular disorders is now underway, building on
the well-established practice of using AI in cardiovascular sciences. AI consists of complex analytical tools
built into computers in an effort to imitate human intelligence. ML is an AI subfield that distinguishes itself
from classical mathematical algorithms by including a “learning” component gleaned from massive datasets.
There has been a lot of buzz about how CVD and AI may work together to revolutionize cardiovascular
health diagnostics, prognoses, and treatments. The rapid detection and diagnosis of CVDs, together with the
prediction of outcomes and evaluation of prognosis, may be greatly assisted by AI. Health records and other
medical equipment are good places to start when looking for real-world data on patients' conditions and the
healthcare system as a whole. As a result, massive databases including quantitative, qualitative, and
transactional data have been created. To analyze these datasets, AI algorithms are required [12]. AI methods
that analyze massive amounts of therapeutically relevant data may help physicians make more informed
clinical decisions. Also, AI may help find subclinical organ problems before they become serious. As a result,
healthcare delivery is both improved in quality and efficiency [13]. Figure 1 shows a flow diagram showing
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how AI is being used in a healthcare setting. This study aims to summarize the current state of AI
applications for cardiovascular illnesses, explore the expanding domain of AI's usage, and talk about the
potential for early diagnosis and rapid decision-making.

FIGURE 1: Flowchart depicting the use of artificial intelligence in clinical
practice
Reproduced from ref. [13] under the terms and conditions of the Creative Commons CC BY license. Copyright
2023 Springer Nature, The author(s).

Review
AI in acute coronary syndrome
The acronym ACS stands for “acute coronary syndrome,” a group of medical diseases that together restrict
blood flow to the heart. It encompasses a wide range of conditions, including unstable angina, non-ST-
elevation myocardial infarctions, and myocardial infarctions with ST-elevation [14-16]. ACS symptoms can
include severe chest discomfort that travels down the left arm. It is critical to identify ACS quickly and
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accurately to improve patient outcomes and reduce mortality and morbidity. The American Heart
Association states that current approaches for ACS detection include discriminating between STEMI,
NSTEMI, and unstable angina using electrocardiogram (ECG) and serum troponin. Cardiac troponin I (cTnI)
and T (cTnT) are reliable indicators for evaluating myocardial injury, particularly in cases of myocardial
ischemia [17-20]. Within 120 minutes after the discovery of ST-elevation myocardial infarction (STEMI) on
an ECG, it is essential to provide perfusion and carry out primary percutaneous coronary intervention. The
outcome is a 2% reduction in the mortality rate, from 9% to 7% [21]. Immediate treatment is essential since a
7.5% increase in the probability of mortality within a year occurs every 30 minutes if treatment is delayed
[22].

It is crucial to remember that not all individuals with elevated cardiac markers and ST segment may really
have a genuine ST-segment elevation myocardial infarction. The term “pseudo-STEMI,” which refers to STE
that is not ischemic at baseline, may apply to certain people [23]. It is recommended to record many ECGs or
continually monitor the ST-segment in patients without a first ST-segment elevation to avoid healthcare
resources from being overloaded. Troponin production, an indicator of cardiac muscle injury, may occur in a
variety of illnesses, not simply ACS. Some additional potential reasons might include heart failure or atrial
fibrillation. It is also worth noting that physiological stresses or vigorous physical exercise may cause high
cTn levels in otherwise healthy persons [24-27]. These restrictions have made it more challenging to
correctly identify and categorize patients with suspected ACS. The consequences of underdiagnosing ACS,
the limits of manual evaluation, and the complexity of diagnosis all point to the need for new approaches to
diagnosis. There is hope that these techniques may improve ACS detection rates, lead to earlier diagnoses,
and shorten treatment times [28].

ML has the potential to greatly aid in the timely detection of ACS [29,30]. Noninvasive evaluation of
coronary artery stenosis may be possible with the application of ML methods that use computed
tomography to calculate fractional flow reserve values. Research by Eberhard et al. [31] including 56
individuals with chest discomfort found that this approach was effective in 68% of cases. Acute plaque
rupture was seen in 29% of patients with ACS with symptoms indicating vulnerable plaques.
Revascularization was done on certain patients based on the findings of this machine-learning diagnostic
tool. A practical and successful method to increase patient triage for patients with chest discomfort might be
FFRCT based on ML, according to Hong et al. [32,33]. Another clinical experiment is looking at the
possibility of detecting myocardial infarction in humans using a ML algorithm called myocardial-ischemic-
injury-index. In this method, variables including age, sex, and levels of cardiac troponin are taken into
account. Hong et al.'s study shown that this AI system can reliably classify patients as low or high risk, which
enables early treatment choices that might be beneficial for them [34,35]. Myocardial ischemia patients were
successfully detected by an artificial neural network (ANN) trained using the jackknife variance approach, as
shown in an additional investigation. The ANN shown potential as a valuable tool for detecting ACS in
patients presenting to the emergency room with chest discomfort, with a sensitivity of 88.1% and specificity
of 86.2%. On top of that, different research indicated that ANN could identify NSTEMIs with a sensitivity of
90.91%, specificity of 93.33%, positive predictive value of 74.92%, and negative predictive value of 96.77%.
ACS risk factors might be better served by using ANNs for the detection, monitoring, and prediction of chest
discomfort [36].

Currently, ML is an innovative and advanced technique extensively used in the medical field and health
informatics for diagnosing and predicting cardiovascular disorders, in particular [37]. Researcher suggested
using a ML soft-voting ensemble classifier (SVEC) to predict outcomes related to ACS such as STEMI and
NSTEMI, discharge reasons for hospitalized patients, and categories of mortality occurring during the
hospital stay. Researcher used the Korea Acute Myocardial Infarction Registry (KAMIR-NIH) dataset, which
comprises data from 13,104 individuals and includes 551 characteristics. Following data extraction and
preprocessing, researcher used 125 relevant characteristics and implemented the SMOTETomek hybrid
sampling strategy to address the data imbalance in minority classes by oversampling. Researcher used three
ML techniques, namely random forest, additional tree, and gradient-boosting machine, in our SVEC model
to predict target variables. The SVEC demonstrated superior performance compared to other ML-based
prediction models in terms of accuracy (99.0733%), precision (99.0742%), recall (99.0734%), F1-score
(99.9719%), and the area under the ROC curve (AUC) (99.9702%). The SVEC outperformed other models but
had a slightly lower AUC than the additional tree classifier in predicting ACS outcomes. The suggested
predictive model demonstrated superior performance compared to previous ML models. It is suitable for
practical use in hospitals for diagnosing and predicting cardiac disorders. This allows for prompt
identification of appropriate therapies and more accurate prediction of illness occurrence (Figure 2) [38,39].
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FIGURE 2: Proposed predictive modeling system's whole process
Reproduced from ref. [38] under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland

 AI in cardiac arrhythmias
Bradyarrhythmia is characterized by a heart rate below 60 beats per minute, whereas tachyarrhythmia is
characterized by a heart rate over 100 beats per minute [40,41]. This arrhythmia may strike anybody at any
time; it shows no age bias. Normal sinus rhythm describes the heart's typical regular and predictable beating
pattern. A sinusoidal origin, a controlled delay via the atrial (AV) node, a journey down the His bundle, a
bifurcation into the left and right bundle branches, and finally distribution along the Purkinje fibers make up
an electrical impulse. Arrhythmia begins the moment this conduction channel deviates from its normal state
[42]. Atrial fibrillation is the most common arrhythmia, and it is estimated that 1.5-5% of the population may
have it [43]. Because cardiac arrhythmias are often asymptomatic, diagnosing them may be challenging.

ECG testing may not detect atrial fibrillation in patients because the rhythm seems normal [44]. Since ECGs
are now digital, AI methods for analyzing them have become commonplace, especially in the prediction of
cardiac arrhythmias. In order to classify ECGs and predict when paroxysmal atrial fibrillation would
commence, a very effective ML method has been developed. A sensitivity of 100% and a specificity of 95.5 %
are achieved by the technique [45]. When trying to predict the likelihood of future atrial fibrillation, AI-ECG
could be helpful. By analyzing the risk factors, AI may predict the occurrence of future AF episodes [46].
Timed rhythms, low-quality ECGs, tremors, alien rhythms, and noise all pose problems, as may weak or
irregular P waves, which can lead to false positives when diagnosing atrial fibrillation. Recent developments
in ECG feature analysis methods, noise reduction strategies, and ML algorithms have substantially improved
computerized ECG interpretation (Figure 3) [47,48].
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FIGURE 3: Arrhythmia treatment improved via artificial intelligence
 Reproduced with permission from ref. [45]. Copyright 2021 Oxford University Press, The author(s).

With a sensitivity of 100% and specificity of 97%, the AliveCor Heart Monitor was able to identify AF and
atrial rhythm irregularities more effectively than the conventional trans telephonic monitor. An end-to-end
DL methodology for ECG analysis was developed by Hannun et al. [49] and used to the analysis of ECGs to
identify rhythm anomalies. Deep learning approaches, specifically end-to-end DL employing deep neural
networks (DNNs), were used in this investigation. A DNN was used to detect 12 irregularities in the heart
rate. Their system outperformed the typical cardiologist in identifying these rhythm abnormalities when
evaluated using different data analyzed by a panel of professional cardiologists. By analyzing long-term ECG
data, deep learning algorithms have successfully detected a number of cardiac arrhythmias. Identifying
people at risk is made easier with AI-powered monitoring devices since they are dependable, inexpensive,
and provide continuous ambulatory monitoring. This improves the detection of arrhythmias and allows for
the earlier diagnosis of atrial fibrillation in patients without symptoms. One non-invasive and cost-effective
way to monitor atrial fibrillation risks and control it over time is via wearable devices like smartwatches [50].

Elbey et al. conducted a study that assessed a few of these devices [51]. Wristwatch technology using single-
lead ECG and photoplethysmography is just as successful as conventional methods of AF monitoring,
according to nine observational studies including 1559 patients (average age 63.5 years), with 39.5% having a
history of AF. On average, 75.6 days of monitoring were conducted. For the detection of atrial fibrillation,
smartwatches were just as successful as composite 12-lead ECG/Holter monitoring, patch monitoring, and
composite ECG monitoring systems. The sensitivity and specificity of the AF detection using smartwatches
are 95% and 94%, respectively. Atrial fibrillation may be adequately monitored using either a single-lead
ECG or photoplethysmography via a wristwatch. A study was conducted by Chen et al. [52] on the detection
of atrial fibrillation utilizing a smart wristband that included ECG and photoplethysmography sensors.

For the purpose of diagnosing AF in patients exhibiting symptoms, the ECG-based AliveCor Heart Monitor
has been the subject of substantial study. With a diagnostic accuracy of over 90% for atrial fibrillation and
flutter, the AliveCor Heart Monitor has consistently shown excellent performance. Researchers created a
novel technology called Cardio-HARTTM that employs bio-signals improved by AI to anticipate outcomes
that are similar to echocardiography. It is possible to identify hemodynamic, functional, and structural
problems using this technique. Dysfunctions of the systole and diastole are the primary foci of this
functional evaluation. Additionally, this helps detect cardiac failure at an early stage. This cutting-edge
technique shows improved sensitivity in detecting common heart diseases by combining ECG,
polycardiogram, and a novel physiological bio-signal. The incorporation of AI enhances the efficacy of every
bio-signal by detecting electro-physiological issues like arrhythmias and bundle-branch obstructions [53].

AI in heart failure
When the ventricles are unable to adequately fill or empty blood, a complex clinical disorder known as heart
failure develops. This condition is accompanied by a variety of symptoms and signs. There are four classes of
heart failure according to the New York Heart Association: class I, which has no restrictions on physical
activity, class II, which has some restrictions, class III, which has significant limits, and class IV, which has
symptoms even while at rest [54]. Improved treatments for heart failure and longer survival rates among
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those who suffer from the condition have led epidemiologists to declare heart failure a global epidemic.
Heart failure's monetary effect on healthcare expenditures may be substantially mitigated if hospitalization
rates were to be reduced. In order to reduce hospitalization expenses and improve patient outcomes, AI
algorithms are used to predict which heart failure patients will experience a worsening of their symptoms
[55-57]. This information is then utilized to initiate therapy at an earlier stage. Several heart failure patients
were monitored with remote invasive pulmonary artery pressure during the COVID-19 pandemic. This
allowed for the early detection of cardiac decompensation, which improved clinical outcomes and reduced
hospital visits for these patients. The study by Stehlik et al. included monitoring the vitals of 100 heart
failure patients in real time using wearable sensors that recorded their core body temperature, skin
impedance, and ECG waveform [58]. Hospitalizations due to HF exacerbation were predicted with 76%
sensitivity and 85% specificity using data evaluated using similarity-based modeling [59]. The results further
demonstrated the potential of AI in the early detection and treatment of heart failure.

One such idea is to have patients work together with the PASSION-HF consortium's virtual doctor, Abby, to
transition from professional therapy to AI-enabled personalized self-care. A self-learning feedback system,
interactive physician avatar interface, decision support engine, and serious gaming tools will all be part of
Abby's revolutionary features [60]. This would make self-care for heart failure more feasible, which might
reduce the need for medical attention, especially in underserved rural regions where the number of doctors
is expected to be lower. It is particularly important for patients to have access to tools that may help them
make healthy choices outside of the hospital setting, as many health determinants are typically situated
outside of it [61-63]. Help for patients suffering from heart failure is now available via the use of mHealth
technologies. mHealth technologies are incredibly effective because of features like bidirectional
communication made possible by interaction, customization made possible by personalization, intervention
delivery made possible by timeliness, adaptation made possible by context sensitivity to individual needs,
and the fact that mHealth is ubiquitous and accessible to all users. By electronically recording weight
measurements and providing scheduled reminders, mHealth technologies assist heart failure patients in
complying with daily weight monitoring. When patients with heart failure reach certain weight thresholds,
their doctors may be informed [64].

Not only is HF becoming more common, but it also puts a heavy financial burden on patients. Clinicians may
often find it especially challenging to diagnose HF. Patients with heart failure may be classified according to
their ejection fraction, which can be maintained, mid-range, or lowered [65-69]. Different approaches are
necessary for treating each of these categories. As a result of fresh research and novel drug discoveries, the
guidelines for the treatment of heart failure are changing at a rapid pace. AI has shown to be an invaluable
resource for medical professionals when it comes to making diagnosis [70,71]. When it comes to diagnosing
and treating patients, professionals rely on the Clinical Decision Support System. At a Korean tertiary
hospital, researchers tested the reliability of AI-CDSS HF diagnoses in comparison to those of HF specialists
using a sample of 600 patients with and without HF. Physical examination results, abnormal ECGs, left
ventricular mass index, left atrial volume index, and left ventricular ejection fraction were some of the
factors used by the AI-CDSS model. Based on the data, HFpEF had a 78.9% accuracy rate and no-HF had an
80.5% accuracy rate, whereas HFmrEF and HFrEF had a 100% accuracy rate. It is possible to put faith in AI-
CDSS to diagnose certain forms of HF. When compared to HFrEF, HFpEF is known to have a number of
underlying problems. Phenotypic mapping using ML algorithms was used in a study including 397
ambulatory HFpEF patients. Different groups of HFpEF patients were identified based on clinical
characteristics, ECG values, echocardiographic findings, and outcomes (Figure 4) [72].
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FIGURE 4: Diagram illustrating the many uses of Artificial Intelligence in
the field of Cardiology
Reproduced with permission from ref. [73]. Copyright 2022  Elsevier, a division of RELX India, Pvt. Ltd on behalf
of Cardiological Society of India.

AI in Hypertension disease
One of the most important global public health concerns is arterial hypertension (AH). Hypertension,
defined as blood pressure more than 140/90 mm Hg, is quite common and almost certain to affect 90% of the
population at some time throughout their life. A substantial reduction in life expectancy has been associated
with even modest increases in arterial blood pressure [74]. As a result of AH, which worsens with age, the
brain, heart, and kidneys are put at serious risk from high blood pressure. Reducing worldwide rates of
cardiovascular morbidity and mortality is the main objective of its treatment [75-79]. More than 580 million
people, according to the study, have no idea that their blood pressure is abnormal [80-83]. Twenty years ago,
clinical guidelines for AH management were vague and did not provide any recommendations for screening
or treatment; now, however, they do include specific recommendations for particular high-risk categories
[84-88]. ML and AI are powerful medical technologies that may aid in the accurate diagnosis of AH, the
prediction of when hypertension will start, and the estimation of the possible decrease in cardiovascular
events. According to recent studies, ML and AI are helping in hypertension detection, with AI reaching
diagnostic accuracy rates of 80% to 90% depending on the data and model utilized. Accurate diagnosis of
hypertension, which affects 9%-30% of the population, is challenging and often relies on clinical blood
pressure measurements. Evidence from studies [89-94] highlights the risk and highlights the need for
alternative diagnostic methods. An artificial neural network model that incorporates demographic and
lifestyle variables showed great specificity but low sensitivity [59,95,96], while a classification tree ML model
had limited sensitivity and specificity. Outperforming previous models, a trained k-nearest neighbors
algorithm applied to ECG data attained an impressive 97.7% accuracy, 98.9% sensitivity, and 89.1%
specificity. When it came to predicting hypertension status, the ECG-derived model outperformed estimates
based on anthropometric, demographic, and lifestyle factors. In order to provide a more precise diagnosis of
hypertension, identification technologies could aid doctors in identifying patients [97,98]. Area under the
curve values in validation groups were beneficial for predictive algorithms that use data mining and ML to
anticipate the risk of hypertension, such as XGBoost and Bayesian networks [99,100]. Predicting
cardiovascular events using AI involves evaluating clinical parameters and visit-to-visit blood pressure
fluctuations, with varying AUC performances.

Inadequate blood pressure control and lack of awareness usually exacerbate hypertension, but new methods
of monitoring blood pressure could help lessen its effects. New methods that may be combined with
smartphones and wearable gadgets are improving upon conventional cuff-based assessments, which are
generally believed to be the most trustworthy. Among these techniques are the use of transdermal optical
imaging technologies, analysis of vital signs, voice recordings, photoplethysmogram, and ECG data, and the
estimation of blood pressure [101].

Some of these methods have achieved very high levels of accuracy and conformity with predetermined
standards, such as those set by the British Hypertension Society and the Association for the Advancement of
Medical Instrumentation, according to research [102,103]. Using voice recordings, PPG-driven models, and
approaches that use ECG signals and neural networks to estimate blood pressure levels has shown promising
results, meeting or exceeding clinical standards [102]. In addition, integrating auscultatory blood pressure
kits with cellphones and evaluating changes in face blood flow captured by cameras on smartphones offers
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new ways to monitor blood pressure without intrusive procedures. The clinical accuracy of cuff-less devices
remains uncertain because to the lack of validation according to International Validation Standards
[104,105], despite advancements in the field. On the other hand, if AI can enhance blood pressure
monitoring, it may increase patient care by relieving physicians of some of their responsibilities; this would
allow them to focus more on hypertension treatment's cornerstones: patient motivation and adherence.
There are benefits and drawbacks of adopting AI for hypertension detection and treatment. New research
indicates that AI may improve blood pressure control and even aid in the prediction of hypertension risk
factors. The field is still in its infancy, however, and some are concerned about AI's reliability, accuracy, and
consistency in this domain [106-108]. By overcoming these obstacles, AI and ML may greatly enhance
patient outcomes, provide personalized treatment plans, and reduce the global burden of hypertension.

AI in peripheral artery disease
A narrowing or blocking of the arteries that carry blood from the heart to the legs is called Peripheral Arterial
Disease according to the CDC. Fatty plaque builds up in the arteries and causes atherosclerosis. Though it
may develop in any blood vessel, peripheral artery disease disproportionately affects the lower limbs. The
painful sensation of cramping in the lower legs, thighs, or buttocks while walking, known as claudication, is
a common symptom of this condition. Tissue deterioration and eventual amputation are possible outcomes
of this disease in its later stages. Over the years, the prevalence of peripheral artery disease has skyrocketed
over the world. According to projections, 236 million people worldwide would be living with peripheral
artery disease in 2015 [106]. The prevalence of peripheral arterial disease has increased more rapidly in
developing nations than in industrialized ones. It is possible that the current official data on PAD may not
adequately identify all forms of PAD in some regions. Inconsistent screening recommendations, a lack of
understanding on both the part of patients and healthcare professionals, and the high prevalence of silent or
odd symptoms in patients make it difficult for physicians to diagnose PAD. A major concern, untreated PAD
may cause amputation and death. Ensuring that patients receive the proven preventative drugs and
therapies they need to be healthy depends on our ability to recognize and diagnose different forms of PAD.
This is an area that shows potential for AI and ML. Peripheral artery disease is one condition that can
benefit from ML for early detection. Researchers demonstrated AI's effectiveness in identifying
underdiagnosed PAD in a 2016 study. Clinical trial participants showing symptoms consistent with elective
coronary angiography were included in the data collection. Only 17% of individuals were found to have PAD;
the remaining 68% went undiagnosed. Combining various data components such as medical history,
sociodemographics, genetic information, and coronary angiography findings allowed researchers to build a
ML classification model. This model's main purpose is to find previously unidentified cases of peripheral
artery disease. A high area under the receiver operating curve of 0.84 indicates great diagnostic accuracy,
and the full model includes over 120 baseline characteristics. Classifications using traditional linear models
on the same dataset yielded an AUC of 0.60, but this outcome outperforms it. With 76% sensitivity versus
56% for the previous model, the ML model showed a 19% increase in sensitivity over the traditional linear
model. People with PAD who have not yet received a diagnosis may be more easily located thanks to this
heightened sensitivity [107].

When it comes to PAD, ML might be used to build prediction models that help with patient prognosis
evaluation and clinical decision-making. The goal of the research by Arruda-Olson et al. was to develop a
prognostic tool that could provide real-time, individualised risk prediction for PAD patients by
autonomously extracting data from EHRs. A larger patient pool might be available for the development of
accurate risk prediction models tailored to individual patients if an automated prediction model were to
gather data from EHRs. The study's findings suggest that automated, real-time risk calculators for PAD
patient survival probability evaluations are feasible with the use of technological technologies. Researchers
found that the developed model might save time and effort in patient care by replacing human data entry
into web-based apps (Figure 5) [106-108].
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FIGURE 5: Application of AI in Peripheral artery disease
Reproduced with permission from ref. [106]. Copyright 2022 by the Society for Vascular Surgery. Published by
Elsevier Inc.

AI in cardiomyopathy
Heart muscle pathology, or cardiomyopathy, is a medical disorder that causes abnormalities in the heart's
structure and function, as well as abnormalities in its electrical activity. Heart failure, along with significant
illness and mortality, is a common symptom of cardiomyopathies, a group of related illnesses. Out of every
100,000 adults, five will have dilated cardiomyopathy, whereas 0.57 will be affected by this condition in
children. After hypertension and coronary artery disease, it is the third leading cause of heart failure in
Americans. Two primary clinical manifestations of cardiomyopathy-dilated cardiomyopathy and ischemic
cardiomyopathy are known to cause heart failure. In dilated cardiomyopathy, the left ventricle enlarges and
contrac.tions are impaired. In ischemic cardiomyopathy, the heart's oxygen supply and demand are
chronically out of sync, causing myocardial scarring, cell death, and ventricular failure. Both DCM and ICM
play important roles as risk factors for the development of HF, hence it is necessary to diagnose and classify
them promptly. To diagnosis cardiomyopathies, a variety of clinical methods may be used, such as ECG,
cardiac magnetic resonance imaging (MRI), cardiac computed tomography scan, blood tests, and
echocardiography. However, the diagnostic classification and characterization of these disorders is not
consistent [109-119].

MRI and echocardiography are the gold standards for diagnosing LVH, a hallmark of hypertrophic
cardiomyopathy [120]. ML, DL, and cognitive computing are sub-disciplines of AI. ML, a branch of AI, has
shown promising results in several areas of medicine, including the detection of new genotype-phenotype
associations, the improvement of illness diagnosis, the mitigation of adverse effects, and the decrease of
hospital readmission and death rates. Differentiating between diseases and training ML models to forecast
disease subtypes are two potential uses of RNA-Seq data. The first study demonstrating the efficacy of ML
modeling on whole genome transcriptomic data for clinical cardiomyopathy diagnosis was carried out by
Alimadadi et al. using five ML algorithms-svmRadial, pcaNNet, decision tree, ENet, and random forest-this
study analyzed RNA-Seq data from 49 nonfailure controls, 47 patients with DCM, 47 patients with ICM, and
41 patients without DCM. An early ML model achieved an accuracy of roughly 93% when trained on
svmRadial to differentiate between NF and DCM, 82% when trained on RF to differentiate between NF and
ICM, and 80% when trained on ENet and svmRadial to differentiate between DCM and ICM [118]. To retrain
ML models, 50 highly contributing genes were chosen as potential biomarkers to detect NF and DCM, 68
HCGs for NF and ICM classification, and 59 HCGs for DCM and ICM classification. When it came to
differentiating between NF and DCM, the retrained models achieved an accuracy of over 90% with Random
Forest, over 90% with pcaNNet, and about 85% with pcaNNet and Random Forest.
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In cardiac dysfunctions such as cardiomyopathies, hypertrophies, and fibrosis, the pathway analysis
implicates the chosen highly connected genes. One of the long-standing uses of AI in ECG systems is
automated analysis of readings. However, not all results are precise or applicable to treatment. There are a
number of new ways that have emerged as a result of AI research that may significantly change the way the
ECG works. The classification of ECG data in traditional automated ECG interpretation relies on criteria that
have been set by humans. Using reference ranges based on demographic data is a frequent technique when
creating these standards. An ECG may measure how often PR intervals occur. The computer has determined
that a PR interval greater than 200 ms indicates first-degree heart block. A complicated set of diagnostic
criteria may be developed from a number of input ECGs via the deep learning approach, which may uncover
relevant aspects [121,122].

The researchers at the Mayo Clinic used a convolutional neural network deep learning method that is based
on AI to detect abnormalities in the left ventricle's systolic function. Second, after examining data from
44,959 individuals with 12-lead ECG and echocardiography data, they used a second sample of 52,870
patients to validate their strategy. It was successful for the network model with an AUC of 0.93, 85.7%
certainty, 85.7% accuracy, and 86.3% sensitivity. By combining AI with ECG, asymptomatic persons may be
identified for ALVD. Mayo Clinic-funded research by Shrivastava et al. developed a CNN model for early DC
detection in ECGs. With an Area Under the Curve of 0.955 in a sample of 16,025 healthy adults and 421
patients with Dilated Cardiomyopathy, AI-ECG was able to identify LVEF≤45%. It is possible to screen for
Dilated Cardiomyopathy and decide whether patients need further echocardiographic testing using the AI-
ECG since it has a negative predictive value of above 99%. Those with normal left ventricular ejection
fraction but diastolic dysfunction may be able to be detected by an ECG driven by AI, according to the study's
authors. Ko et al. developed and assessed an AI-enabled ECG using a dataset including 24,48 patients with
hypertrophic cardiomyopathy and 51,153 healthy controls who were matched for age and gender. An ECG
was used to diagnose HCM in a test group of 612 patients with HCM and 12,788 healthy controls. The model
achieved an area under the curve of 0.96, sensitivity of 87%, and specificity of 90%. A promising indication
that AI-ECG might be useful for screening hypertrophic cardiomyopathy [123] is the model's excellent
performance in subjects less than 40 years old.

Siontis et al. demonstrated that AI-ECG can accurately distinguish between a typical 12-lead ECG and
juvenile HCM in a group of 300 patients with HCM by using a deep-learning AI model. There were 18,439
non-HCM controls and patients matched according to age and sex. The case group had a higher average AI-
ECG probability of hypertrophic cardiomyopathy (92% vs. 5% in the control group). The AI-ECG model
achieved an area under the curve of 0.98 for HCM detection, with a sensitivity of 92% and a specificity of
95%. There was a 22% positive predictive value and a 99% negative predictive value. Patients of both sexes,
including those with positive and negative genes for hypertrophic cardiomyopathy, showed similar
performance with the model. Performance would often enhance with time. Area Under the Curve for the test
in children less than 5 was 0.93. According to the study, the AUC was 0.99 for the 15-18 age bracket
[119,124].

Cardiomyopathy is most common during pregnancy and the first few weeks after giving birth. In comparison
to natriuretic peptides and traditional clinical indicators, ECGs enhanced with AI performed better,
according to a study conducted by the Mayo Clinic. Using ECG data, a deep learning model was trained to
diagnose cardiomyopathy in 1,807 women. Seven percent of these individuals exhibited a left ventricular
ejection fraction below 35%, 10% below 45%, and 13% below 50%. By analyzing the ECG, a deep learning
model was trained to detect cardiomyopathy when the Left Ventricular Ejection Fraction was below 35%,
0.89 when it was below 45%, and 0.87 when it was below 50%. Black women's AUC was 0.95 and Hispanic
women's was 0.98 among those with LVEF levels of 35% or lower; White women's AUC was 0.91. Natriuretic
peptides ranged from 0.85 to 0.86 in the multivariable model, which had an area under the curve of 0.72
[125].

Echocardiography provides a visual representation of the heart. The accuracy of echocardiographic tests is
directly correlated to the competence of the operator, who in turn needs extensive training to become
proficient. These days, AI is used in echocardiography to automate tasks like measuring strain, calculating
ejection fraction, and evaluating left ventricular function. Marketers have created real-time guidance
software to assist less experienced physicians in obtaining normal echocardiographic images. A
convolutional neural network achieved a 92% success rate in identifying eight standard 3D
echocardiographic images, when tested against ground truth training data annotated by doctors. A non-
cardiologist can conduct an echocardiogram in an emergency; this might aid in the education of cardiac
sonographers and the mechanization of image acquisition. Using a deep learning model, Zhang and
colleagues were able to achieve C statistics of 0.93 for hypertrophic cardiomyopathy, 0.87 for cardiac
amyloidosis, and 0.85 for pulmonary hypertension. In addition, they proved that it could differentiate
between different echocardiographic perspectives and reliably automate cardiac structural evaluations that
were comparable to or better than human measurements [126,127].

Hwang and colleagues developed a deep learning algorithm using convolutional neural networks for long
short-term memory to differentiate between hypertrophic cardiomyopathy, cardiac amyloidosis, and
hypertensive heart disease, which are common causes of left ventricular hypertrophy. The area under the
curve for hypertensive heart disease (0.962), heart failure (0.982), and cardiac amyloidosis (0.996) were all
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found in the test set. Compared to echocardiography experts, whose accuracy rates were 80.0% and 80.6%,
the DL algorithm achieved a much higher 92.3% [127,128].

Since the turn of the century, cardiac MRI has come a long way in terms of patient diagnosis and prognosis.
The left and right ventricles of the heart can be reliably evaluated using CMR, which also helps in accurately
diagnosing the condition's underlying cause by identifying tissue characteristics using late gadolinium
enhancement, T1, and T2 mapping. Cardiomyopathies can be diagnosed and prognostically assessed with
the use of cardiac MRI, according to a study on the subject [128].

A technique called late gadolinium enhancement uses the prolonged presence of gadolinium-based contrast
agents to differentiate scar tissue, necrosis, or inflammation from healthy tissue. If there is myocardial
edema or damage, T2-weighted imaging can show it. Over the course of three years, Bruder et al. tracked the
all-cause and cardiac mortality rates of 243 patients diagnosed with hypertrophic cardiomyopathy. A total of
67% of cases had LGE, which was associated with an OR of 5.5 for all-cause mortality and an OR of 8.0 for
cardiac mortality. There is a noticeable pattern of patchy distribution of late gadolinium enhancement in
approximately two-thirds of patients with hypertrophic cardiomyopathy, particularly at the right ventricular
septal insertion sites and in the areas with the most hypertrophy. Late gadolinium enhancement was
associated with an eightfold increase in heart failure, appropriate implantable cardioverter-defibrillator
activation, and cardiac mortality in a study of 65 patients with dilated nonischemic cardiomyopathy and an
ejection fraction of 35% or less. Results showed that patients with dilated cardiomyopathy who showed
midwall fibrosis had similar results to those with ischemic cardiomyopathy, when compared to 161 patients
with ischemic cardiomyopathy. The study included 97 patients with DCM. If scar tissue or fibrosis is present,
it suggests a poor prognosis and a less than ideal response to device therapy, just like in ischemic
cardiomyopathy [129].

 AI in congenital heart disease
Problems with the heart's structure that are noticeable from birth are known as congenital cardiac disease.
There are a variety of minor to severe symptoms that might appear, and the worldwide incidence of this
disorder varies from 0.8% to 1.2%. Less severe, more common, and potentially self-correcting, minor cardiac
abnormalities include pulmonary stenosis, patent ductus arteriosus, atrial and ventricular septal defects,
and ventricular and atrial septal defects. Surgery is often necessary for babies with more serious defects,
such as tetralogy of Fallot, within their first year of life due to the increased risk they provide. There has
been a dramatic increase in the number of persons with congenital cardiac defects, with over 90% of
neonates surviving into adulthood, because to advancements in operations and drugs. Unfortunately,
surgery cannot cure the disease. As adults, people with even minor surgical defects may have complications.
Prenatal diagnosis of congenital heart disease significantly improves results for both the newborn and their
care in the long run, according to the available research. AI has the ability to assess data from many imaging
modalities and complex medical diagnoses in order to develop algorithms that may enhance prenatal
diagnosis, adult disease therapy, and outcome prediction [130-134].

Prenatal diagnostics using AI algorithms to automatically acquire standard cardiac imaging planes might
one day be a thing of the past, according to research. Because of this, physicians are able to save time and yet
get high-quality images for analysis. By feeding 2,694 participants' mid-trimester ultrasound scans into a
Convolutional Neural Network-a deep learning AI that detects and labels important patterns in pictures -
Baumgartner et al. demonstrated this successfully [135]. In routine screening, the algorithm produced high-
quality fetal cardiac imaging planes, proving that AI may be effective with small data sets [135]. In their
study on prenatal diagnosis, Yang et al. demonstrated that AI had a higher detection accuracy. We found a
detection accuracy of 73.8% for atrial septal defect, 78.8% for ventricular septal defect, and 88.9% for patent
ductus arteriosus out of 518,258 people who were analyzed. When compared with auscultation, the
detection accuracies for ventricular septal defect (p=0.007) and patent ductus arteriosus (p=0.021) were
significantly higher [136].

Prognosis and risk categorization for adult CHD patients is sometimes a lengthy and complicated process;
however, AI has the potential to streamline and improve this process. Patients who had undergone repair for
Tetralogy of Fallot were categorised as having a low, moderate, or high risk for ventricular arrhythmias based
on a risk assessment provided by a ML algorithm using clinical data. Using cardiac MRI datasets, deep
learning algorithms were used to predict life-threatening events such as tachycardia and cardiac arrest.
Using information from more than 235,000 people who had congenital heart surgery, models were developed
to forecast variables such as the likelihood of death and the duration of hospitalisation. These models show
that AI can predict all possible risk factors for CHD, as long as the data is big and diverse enough for
algorithms to handle [135-137].

Without large data sets and ongoing research to train algorithms, implementing AI in practice is very
difficult. Studies on coronary heart disease often use small samples, which limit the generalizability of the
results and make it difficult for algorithms to learn and interpret. If we want AI datasets to be more efficient
and effective, we need to work together and upgrade our infrastructure. Also, doctors and data scientists do
not talk much about patients' demands, search terms, and how AI can help with such things. Working
together, computer scientists and medical professionals may better understand one another's disciplines.
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Doctors, nurses, and other medical staff should be familiar with AI's foundational concepts and open to
using them to save time and effort. If computer scientists are interested in using AI to treat congenital heart
disease, they should be well-versed in medical procedures and have ideas for AI-friendly solutions [135-138].

AI in valvular heart disease (VHD)
VHD refers to problems with the aortic, mitral, tricuspid, or pulmonary valves. Clinically significant VHD
affects around 10% of the population over 65. The identification and treatment of cardiovascular illnesses
might be significantly improved with the application of AI [139]. VHD is very dangerous; hence it is critical
to diagnose and treat the condition as soon as possible. Various forms of echocardiography,
phonocardiography, and ECGs have used AI to assist in the detection of VHD [140]. When it comes to VHD,
low- and middle-income countries are more affected by rheumatic heart disease, while high-income nations
are more impacted by degenerative illnesses. In any case, the global incidence of VHD has increased by 45%
in the last 30 years due to the ageing population [141].

There is no requirement for specialized equipment when employing AI for ultrasound screening of aortic
stenosis [142]. AI-enabled digital stethoscopes could be useful for identifying heart murmurs. Although
computer-assisted auscultation may detect rheumatic heart disease early on, it is more often acquired in
poor countries [143]. The progression of aortic valve disease may be assessed using AI-based algorithms that
integrate data from echocardiographic valvular assessment with additional clinical information [144]. There
is a wealth of data available for AI applications in biochemical test results and clinical assessment data. With
the use of AI, it may be easier to acquire and segment pictures of cardiac and valve structures for research
purposes [145].

Commercially available digital stethoscopes and computer-aided auscultation both improve the
identification and classification of heart murmurs. Automated evaluations of several parameters, pattern
detection, and photo sorting are all ways in which AI may improve image quality. Personalized treatment
regimens and disease monitoring might both benefit from solutions offered by ML. Transcatheter valve
replacement decisions, such as size and selection, may be improved with the use of AI by automating the
evaluation of anatomical dimensions derived from imaging data [146].
The presence of mitral regurgitation may be detected by an AI system using a single lead ECG [147]. AI has
been used in echocardiography for a variety of purposes, including picture capture, image classification,
quality assessment, and the detection of cardiac amyloidosis. A deep learning framework may be used to
screen for VHD and, if detected, to segment in order to ascertain severity. The use of ML to classify the
severity of AS in echocardiographic data could help in deciding when to replace the aortic valve. Natural
language processing has been used to predict severity from echocardiography reports due to the challenges
in obtaining and using structured data generated by echocardiographers. There is a 99% PPV and NPV for
NLP. More and more, VHD is turning to ML to forecast AVR results and reactions. Predicting death in
patients with severe AS undergoing AVR using the random forest approach inside the supervised ML method
is possible [148]. The multidata integration and prediction capabilities of AI are really remarkable. These
capabilities include genetic, imaging, electrophysiological, and clinical data, among others.

By analyzing large amounts of data, they facilitate the rapid decision-making process. Similar to how the
visual cortex in the brain is structured, convolutional neural networks are able to identify images by
identifying key features inside them. By using filters on the left ventricular outflow tract and the left atrium,
respectively, to extract features from pictures and correlate them with outcomes of interest, it has been
feasible to localise regurgitation for atrial fibrillation and mitral regurgitation. Finding and tracking the
mitral and tricuspid valve leaflets in the apical four-chamber view allows AI to identify illness. Automated
size and function measurements are the goal of applying image segmentation to 2D and 3D
echocardiographic chamber images [149]. Very accurate VHD screening is provided by ECGs that are driven
by AI. However, its low PPV emphasizes the need for a hybrid strategy including clinical judgement,
especially in primary care settings [150].

Limitations of AI
Despite its limitations, AI has achieved remarkable strides in a number of medical domains. The importance
of data bias and an equitable algorithm. The quality of the training data is the primary determinant of the
prediction accuracy in supervised learning. This situation necessitates the precise classification of the real
data. Accurate labelling of the training data pictures is crucial for an image classifier to work well. The same
category also includes data bias. It would be inappropriate to use an x-ray classification algorithm developed
for use with male data on females. Data bias may be subtle and not always easy to spot. Because it is always
evolving, dynamic data may cause major issues. Included in this group is algorithmic fairness. Prejudice
against underprivileged populations might be a result of algorithms educated on historical data. An
outstanding example is the publication of an algorithm for the management of the health of millions of
patients. Black patients were falsely shown by the algorithm to be much sicker than white patients [151].

Malicious inputs used to deliberately manipulate ML algorithms in order to cause misclassification and
introduce security holes is an example of an adversarial attack. The risk is real, and proper precautions are
currently being prepared, even though no incidents have been documented [152]. Recognising that, despite
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the increasing use of AI algorithms in research, the most trustworthy approach in medicine is still the
randomised clinical trial that evaluates the algorithm's influence on patients' clinical outcomes is essential
when thinking about the effect on clinical outcomes. Just being in harmony with the fundamental reality is
not enough. The therapeutic outcomes of RCTs ought to be at least as good as, if not better than, what would
be obtained by using human intelligence [151,152].

Conclusions
In this narrative review, we have examined a wide range of literature on the application of AI in the early
detection of CVDs. Summarily, AI techniques have shown great potential in improving the accuracy,
efficiency, and timing of CVD diagnosis. By combining ML algorithms with image analysis and other AI
techniques, risk factors for CVDs can be detected early, thereby enabling early intervention and personalized
treatment plans for patients. The net result will be an improvement in diagnostic capabilities, a reduction of
diagnostic errors, and adequate management of health resources. However, it is important to note the
limitations mentioned above as they call for further research. Moving forward, there should be a focus on
validating the efficacy and reliability of AI-based diagnosis in diverse patient populations and healthcare
settings. Ethical issues should also be addressed to ensure that AI is used appropriately and fairly in medical
practice. This review emphasizes the importance of AI in the management of CVDs, and we anticipate that
the knowledge acquired will help us improve healthcare delivery.
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