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Abstract
The direct engagement of hafnium (Hf) in biological processes or its critical function in living things is not
well understood as of now. Unlike key elements like oxygen, carbon, hydrogen, and nitrogen, which are
necessary for life, Hf is not known to have any biological activities or functions. It is essential to
acknowledge that scientific research is ongoing and that new findings may have been made. This systematic
review aimed to aggregate and analyze the studies that discuss biomedical applications of Hf metal. This
systematic review was conducted following the guidelines of the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) Statement. The following search strategy was used: two independent
researchers conducted electronic searches in databases including PubMed, Embase, Cochrane Database of
Systematic Reviews, and Google Scholar. The search was conducted up to August 2023 using the Medical
Subject Headings (MeSH) terms “transition elements,” “hafnium,” and “biomedical research.” Boolean
operators “AND” and “OR” were used to refine the search. Electronic databases, along with hand searches,
identified a total of 38 studies. The various database searches resulted in a total of 38 studies, of which 12
were excluded as duplicates, and five were unavailable for full-text data. The remaining 21 full-text articles
were then assessed for their eligibility based on the inclusion and exclusion criteria, and finally, a total of 12
studies were included in the present systematic review. Among the 12 chosen studies, six were on cancer-
related targeted radiotherapy or chemoradiotherapy, five were on bone or apatite-forming capabilities, and
one was on the treatment of inflammatory bowel disease. The common outcome measures included cell
proliferation, osteoblast formation, radiotherapy intensification, and immunotherapy. This review outlines
an overall picture of the biomedical uses of Hf metal, a transition element, as a potent biomaterial. In
conclusion, this transition element, Hf, has some promising scope in the fields of biomedicine, with a
special focus in terms of cancer radiotherapy and osteogenic capabilities.

Categories: Dentistry, Radiology, Therapeutics
Keywords: transition metals, radiotherapy (rt), implant osseointegration, hafnium compounds, hafnium, biomedical

Introduction And Background
Transition elements are important facets of dentistry. These classes of metals are valuable in dental
products and procedures due to their distinctive features [1,2]. A few metals of this group are titanium,
zirconium, cobalt-chromium, nickel-titanium, gold, copper, and silver. These transition elements offer a
range of properties that cater to specific dental applications such as restorations, orthodontics, and implants
[3,4]. The selection of a particular material depends on factors like the patient's needs, aesthetic preferences,
and the functional requirements of the dental restoration or treatment. As dental materials and technology
continue to advance, new applications of transition elements may emerge in dentistry.

The transition metal hafnium is renowned for its resistance to corrosion and high melting point. It is
employed in nuclear reactors, aerospace alloys, and electronic applications because of its resistance to
extreme temperatures and ability to maintain stability in a variety of settings. It is frequently found in
zirconium minerals. As noted in the previous literature, lanthanide-series compounds incorporating
hafnium have been investigated for potential biomedical applications [5-7]. Typically, the focus of these
investigations is on the biocompatibility and security of materials containing hafnium for use in implants,
medical devices, and other healthcare applications [8]. As a potential component to improve
osseointegration in dental implantology, hafnium shows huge promise [9-11]. It is a desirable choice for
covering dental implants because of its special qualities, which include biocompatibility, resistance to
corrosion, and the capacity to produce bioactive oxide layers [12].

Even though research is still in progress, hafnium's contribution to osseointegration may have a major
positive impact on the efficacy and durability of dental implant procedures. To further investigate the
possible uses of hafnium in dentistry and convert research findings into clinical practice, it is essential that
material scientists, dental practitioners, and researchers work together. In this context, hafnium has been
used in various studies before to check its osseointegration potential and tissue compatibility with other
lanthanide metals and showed promising results. This review aims to scrutinize the studies that evaluated
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biomedical applications of hafnium metal.

Review
Material and methodology
This review was reported in accordance with the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) Statement guidelines [13]. The primary objective of this review was to evaluate the
biomedical applications of hafnium. The period of the included studies was extended. An electronic database
search identified a total of 38 studies. A strategy was planned for this scoping review, and the research
question was formulated (Table 1).

 Search strategy

Domain Description

Population Transition metals

Intervention Hafnium

Outcome Biomedical applications

TABLE 1: Search strategy for the research question in this scoping review

Search Strategy

Two researchers independently conducted electronic searches in databases including Embase, Cochrane
Database of Systematic Reviews, PubMed, Scopus, Web of Science, and Google Scholar. The search was
conducted up to August 2023 with the terms “transition elements,” “hafnium,” and “biomedical research.”
“AND” and “OR” Boolean operators were used to refine the search. The search strategy in PubMed yielded 19
articles.

An advanced search of the Cochrane search engine was done, and the search yielded two clinical trials.
Three articles were retrieved from the Google Scholar engine, and a hand search yielded 14 results. An initial
search was performed with the abovementioned keywords and databases. Duplicates were excluded, and
studies were screened further. Titles and abstracts of the non-duplicate citations were independently
screened in a standardized manner by two calibrated reviewers (VR and PA) for potential inclusion in this
review. The remaining included articles were then obtained in full text and then screened, excluding studies
as per the inclusion and exclusion criteria, independently by both reviewers. Cohen’s kappa statistic was
used to evaluate the agreement between the two reviewers. Any disagreement between the two reviewers
was resolved by discussion. Finally, 12 articles were included for data extraction (Figure 1).
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FIGURE 1: Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) flow chart describing the inclusion of studies for
this systematic review

Inclusion Criteria

This review included studies meeting specific criteria: those that provided results in terms of biomedical
applications or biomedical research, published in English, focused on animal studies, and relevant to
hafnium and related compounds.

Exclusion Criteria

Excluded were case reports, case series, and reviews or literature articles, studies that do not report
biomedical applications, are irrelevant to hafnium, or do not have full text available.

Focused Question

The focused question was, “Does hafnium have biomedical applications or not?”

Statistical Analysis

A meta-analysis could not be performed for this review as the study results were heterogeneous and non-
parametric.

Results
The searches in various databases resulted in 38 studies in total, of which 12 were excluded as duplicates,
and five were unavailable for full-text data. The remaining 21 articles were then assessed based on exclusion
and inclusion criteria for their eligibility (Table 2), and 12 studies were included in the present review [14-
22].
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Author, year Reason for exclusion

Il Song Y et al., 2011 [14] Outcome: Water and ion penetration in flexible bioelectronic systems

Villa I et al., 2018 [15] Outcome: Cellular imaging

Reszka P et al., 2019 [16] Outcome: The materials were assessed for surface morphology.

Verry C et al., 2019 [17] Review article

Khalladi N et al., 2019 [18] Exclusion criteria: French article

McGinnity et al., 2021 [19] Outcome: Synthesis of intervention, not applications

Sebti et al., 2022 [20] Outcome: Morphological, optical, and photoluminescence properties

Ren HM et al., 2022 [21] Outcome: Mechanical properties measured

Liu N et al., 2023 [22] Inclusion criteria: Intervention modified

TABLE 2: Studies excluded in this review and the reason for their exclusion

Among the 12 chosen studies, six were on cancer-related targeted radiotherapy (RT) or chemoradiotherapy,
five were on the bone or apatite forming capabilities, and one was on the treatment of inflammatory bowel
disease. Most of the studies were based in China; one was a multicenter study, and the other studies were
from Japan, Poland, Russia, and India. The common outcome measures included cell proliferation,
osteoblast formation, RT intensification, and immunotherapy.

Geographic Distribution

In the current research, the geographic distribution of the study centers is widespread. Of the included
studies, five are from China, two studies from Russia and India each, one study from Japan and Poland each,
and one from a multicenter study [23,24]. Due to the distribution of studies in a wide geographic range, the
results can be extrapolated with minimal risk of bias.

Characterization of Intervention

The articles included in the research studied various forms of hafnium and its compounds. Of these, five
studies had hafnium oxide as its intervention, one had hafnium and its alloyed form, one had a coating of
hafnium, and the rest had multiple alloyed or compounded forms [15,25]. As this research included all forms
of hafnium and its compounds in its intervention, there is no bias regarding the same. Previous studies have
had a similar compilation of hafnium and related compounds [26,27].

Outcomes Measured

Among the 12 studies included, six were on targeted RT [28-33] or chemoradiotherapy for cancer, five on the
apatite forming abilities, and one on efficacy in the treatment of inflammatory bowel disease. The current
research aims to find all the biomedical applications of hafnium and its compounds. Hence, it is justified to
have a heterogeneous collection of outcome measures in the included studies. The extracted data
characteristics from the included studies were tabulated (Table 3).

Author,

year

Country

of study
Intervention Outcomes Methods of analysis Relevant findings

Chao Y et

al., 2018

[7]

China

Polyethylene glycol (PEG)-

modified nanoscale

coordination polymers

(NCPs) composed of

hafnium (Hf4+) and

tetrakis(4-carboxyphenyl)

porphyrin (TCPP)

Killing cancer cells,

likely owing to the

interaction of Hf with

γ rays emitted from

99mTc to produce

charged particles for

radiosensitization

Single-photon emission

computed tomography (SPECT)

imaging

TCPP-PEG NCPs offer exceptional therapeutic

results in eliminating tumors with moderate

doses of 99mTc after either local or systemic

administration. Importantly, those biodegradable

NCPs could be rapidly excreted without much

long-term body retention.

Kuang Y et
Cisplatin-loaded Gd2Hf2O7

1) Combined chemo/

photothermal therapy

(PTT)/radiotherapy

The less release of Gd showed excellent

cytocompatibility, high relaxivity, pH, and dual-

sensitive release of loaded cisplatin. The

2024 Rajaraman et al. Cureus 16(2): e54054. DOI 10.7759/cureus.54054 4 of 9

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


al., 2020

[8]

China nanoparticles (NPs) (RT) in vivo; 2) long-

term biodistribution;

3) histology analysis

in vivo

Intravenous injection into mice effective PTT/RT ability showed the potential of

Gd2Hf2O7@PDA@PEG-Pt-RGD NPs as

multimodal theranostic nanoplatform for MRI-

guided combined chemo/PTT/RT.

Rajaraman

V et al.,

2021 [9]

India

Hafnium (Hf)-coated

titanium (Ti) and uncoated

Ti

Implant stability

histologic evaluation

of bone formation

toxicology

Hematoxylin and eosin (H&E)

stain, Masson trichome stain,

aspartate aminotransferase

(AST), alanine transaminase

(ALT), creatinine kinase (CK)

assay using enzyme-linked

immunosorbent assay (ELISA)

kit

Hf coating in the rat mandible showed promising

osseointegration with good tissue

biocompatibility.

Seweryn A

et al., 2020

[11]

Poland

Homogeneous, amorphous

layer of Hf(IV) oxide (HfO2)

using atomic layer

deposition (ALD)

technology

Pre-osteoblast

(MC3T3), pre-

osteoclasts (4B12),

and macrophages

cell lines

Immunofluorescence and

reverse transcription-quantitative

real-time polymerase chain

reaction (RT-qPCR)

HfO2 1) enhanced osteogenesis, 2) reduced

osteoclastogenesis, 3) did not elicit an immune

response, and 4) exerted anti-inflammatory

effects. HfO2 layer can be applied to cover the

surface of metallic biomaterials in order to

enhance the healing process of osteoporotic

bone fracture.

Rajaraman

V et al.,

2020 [12]

India
Chitosan NP and Hf metal-

based composite

Cytotoxic effect and

antimicrobial activity

Brine shrimp lethality assay and

the disc diffusion method

This study substantiates the antimicrobial

activity and highlights the possible cytotoxicity of

the chitosan and Hf composite.

Sherstiuk

AA et al.,

2021 [23]

Russia

HfO2 NPs coated with oleic

acid and a

monomethoxypoly(ethylene

gglycol)-poly(-

caprolactonelycol)-poly(ε-

caprolactone) copolymer

shell (nanoplatform)

Targeted delivery of

chemotherapeutic

compounds, imaging,

and an enhanced

radiotherapy

Cytotoxicity IC50 value

X-ray irradiation of cancer cells loaded with a

nanoplatform shows a higher death rate than

that for cells without NPs.

Li R et al.,

2022 [24]
China

Tannic acid (TA) capped Hf

disulfide (HfS2@TA)

nanosheets

Prophylactic and

therapeutic effect

and potential of oral

administration of

HfS2@TA on dextran

sulfate sodium

(DSS)-induced acute

colitis

NCM460 cells Balb/c mice

intravenous/oral administration

followed by H&E stain and blood

work up

HfS2@TA had excellent therapeutic effects, like

repair of the intestinal mucosal barrier,

restoration of colonic length, and reduction of

proinflammatory factor levels.

Fohlerova

Z et al.,

2019 [25]

Czech

Republic

Flat film and

nanostructured anodic Hf-

oxide films

Cell culture and cell

proliferation

Human osteoblast-like MG-63

cells (European Collection Of

Authenticated Cell Cultures

(ECACC), Salisbury, UK) were

used for in vitro characterization

of hafnium oxide (HO) films

Nanostructured Hf film absorbed nine times

larger amounts of fibronectin and albumin,

relatively better initial attachment and

significantly promotes the viability of the cells.

Miyazaki T

et al., 2018

[27]

Japan
Pure Hf and Ti-xHf alloy x =

20,40,60,80

Zeta potential

indicating negative

charge on surface,

which indicated

apatite-forming

abilities in simulated

body fluid (SBF)

Electrophoretic light scattering

zeta potential analyzer (ELSZ,

Otsuka Electronics Co., Osaka,

Japan) in a connected box-like

quartz cell

1) Pure Hf metal enabled formation of apatite on

its surfaces and exhibits bone-bonding potential.

2) The apatite-forming ability of Ti-Hf alloys was

low at Ti-60Hf.

Bao J et

al., 2020

[28]

China

Folic acid (FA) modified

nanoscale metal-organic

framework (NMOF) of Hf

cluster and Mn(III)-

porphyrin

In vivo PTT/RT

efficiency

H&E staining was performed on

the heart, liver, spleen, lung,

kidney, and tumor from one

mouse in each group

fHMNM held great clinical application potential

for targeting the enhancement of

MRI/CT/photoacoustic tomography (PAT)

imaging modalities and PTT/RT synergistic

treatments of cancer.

Bonvalot S

et al., 2019

[29]

Multicenter

study

HfO2 functionalized NP

NBTXR3

Proportion of

patients with a

pathological

Assessed by a central pathology

review board following European

Organisation for Research and

Treatment of Cancer guidelines

NBTXR3 activated by radiotherapy could

represent a new treatment option in patients

with locally advanced soft-tissue sarcoma of the
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complete response in the intention-to-treat

population full analysis set

extremities or trunk wall

Li J et al.,

2022 [33]
China

Metal-phenolic

nanosensitizer (Hf-PSP-

DTC@PLX) integrated via

an acid-sensitive hydrogen

sulfide (H2S) donor

(polyethylene glycol-co-

polydithiocarbamates,

PEG-DTC)

Radiotherapy

intensification and

immunogenicity

H2S-reprogrammed oxygen

metabolism

Hf-sensitization could fully utilize the well-

preserved oxygen to intensify RT efficacy and

activate immunogenicity. Such a synergistic

strategy for improvement of oxygenation and

oxygen utilization would have great potential in

optimizing oxygen-dependent therapeutics.

TABLE 3: Characteristics and data of the included studies of this review

Risk of Bias

The risk of bias was assessed using the Risk Of Bias for Non-Randomized Studies: Intervention (ROBINS-I
tool) provided in the Cochrane Database of Systematic Reviews (Figure 2).

FIGURE 2: Risk of bias table for the included studies in the systematic
review using the ROBINS-I tool by Cochrane Database of Systematic
Reviews
Red (X) = serious risk of bias. Yellow (-) = moderate risk of bias. Green (+) = low risk of bias.

Discussion
Titanium is used worldwide as a medical biomaterial in prosthetics. Titanium in dentistry is well-established
and used in prosthodontics. From metal frameworks to dental implants, titanium plays a vital role in

2024 Rajaraman et al. Cureus 16(2): e54054. DOI 10.7759/cureus.54054 6 of 9

javascript:void(0)
javascript:void(0)
https://assets.cureus.com/uploads/figure/file/896354/lightbox_211d90f0b9e111ee987c1ba9748f5253-Rob-cureus.png


prosthodontics. Finding alternative biomaterials comparable to this metal would be a challenging task. This
said, very few scientists have explored different elements in the periodic table to replace this metal [10].
Hafnium is a promising element as it belongs to the same group in the periodic table as that of gold standard
titanium [31]. Since the properties of the same group elements are comparable, newer elements as an
alternative to titanium could be explored [31-33].

The current study aims to aggregate and critically analyze the studies that discuss biomedical applications of
hafnium metal. Our study has collected scientific evidence from articles that highlight the uses of hafnium
in various medical disciplines. The widespread use of this transition metal is researched in targeted RT,
chemoradiotherapy, inflammatory bowel disease treatment, and bone tissue regeneration [34,35]. In
previous studies on RT, hafnium has proven as a potential biomaterial [23,26, 36].

Functionalized hafnium oxide nanoparticles (NBTXR3) have been synthesized to increase the effects of RT
[35]. Hafnium-based nanoparticles are potent contrast enhancement agents for imaging in cancer. They are
also used for liquid biopsy in diagnosing cancer [36]. In the past two decades, these nanomaterials have
grown to be potential biomaterials for two main fields. One is the CT-guided bioimaging and RT-associated
cancer treatment due to their excellent electronic structures and intrinsic physiochemical properties [37].

Hafnium has shown promising tissue response and hence cemented its biocompatibility in the research
arena [38-40]. Studies also show osseointegration properties exhibited by hafnium coatings over titanium
surfaces [10,27]. Research has been done on chemoradiotherapy and the immune therapeutic properties of
hafnium. Our previous research on the lines of bone tissue adhesion over hafnium metal or coated hafnium
surfaces also showed moderate success [5,9]. This study adds to the existing evidence and analyzes the
overall biomedical applications.

On the whole, the biomedical application of the metal hafnium has been often explored in the past decade.
The applications are majorly limited to the therapeutic section, especially on cancer. Minor exploration in
the field of dentistry suggested that hafnium is biocompatible with positive results in bone tissue
integration to dental implants. This review thus provides an overview of the avenues in which the metal
hafnium can be explored and experimented with.

Conclusions
This review outlines an overall bigger picture of the biomedical uses of hafnium metal, a transition element
as a potent biomaterial. Various studies conducted in this regard are either primitive or include wider
dimensions. Specific research on this metal or its potential applications is in the groundwork. In conclusion,
this transition element, hafnium, has some promising scope in the fields of biomedicine with special focus
in terms of cancer RT, chemotherapy, and osteogenesis.
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