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Abstract
Aging is inevitable, but the lifespan (duration of life) and healthspan (healthy aging) vary greatly among
individuals and across species. Unlocking the secrets behind these differences has captivated scientific
curiosity for ages. This review presents relevant recent advances in genetics and cell biology that are
shedding new light by untangling how subtle changes in conserved genes, pathways, and epigenetic factors
influence organismal senescence and associated declines.

Biogerontology is a complex and rapidly growing field aimed at elucidating genetic modifications that
extend lifespan and healthspan. This review explores gerontogenes, genes influencing lifespan and
healthspan across species. Though subtle differences exist, long-lived individuals such as centenarians
demonstrate extended healthspans, and numerous studies confirm the heritability of longevity/healthspan
genes. Importantly, genes and gerontogenes are directly and indirectly involved in DNA repair, insulin/IGF-1
and mTOR signaling pathways, long non-coding RNAs, sirtuins, and heat shock proteins. The complex
interactions between genetics and epigenetics are teased apart. While more research into optimizing
healthspan is needed, conserved gerontogenes offer synergistic potential to forestall aging and age-related
diseases. Understanding complex longevity genetics brings closer the goal of extending not only lifespan but
quality years of life.

The primary aim of human Biogerontology is to enhance lifespan and healthspan, but the question remains:
are current genetic modifications effectively promoting healthy aging? This article collates the
advancements in gerontogenes that enhance lifespan and improve healthspan alongside their potential
challenges.
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Introduction And Background
The field of Biogerontology (biology of aging) is a complex and rapidly growing discipline. Genes that
influence lifespan are broadly referred to as longevity genes, while all genes studied in Biogerontology are
collectively known as gerontogenes. In ancient Greek and Roman times, demographic studies generally
indicate a life expectancy between 20 and 35 years [1,2]. Despite the limitations of these earlier sources, it
can be inferred that very few individuals during this time lived beyond 90 years [3]. While this outcome is
considered low by 21st-century standards, it is noteworthy that individuals of the Greco-Roman era were
less afflicted by aging-related diseases such as cancer, cardiovascular disorders, and multiorgan failures. This
fact contradicts the idealized portrayal of lifespan extension, challenging the assumption that a longer
lifespan naturally equates to a healthier life. The 21st century is ideally the era of aging. The world is getting
older, and the numbers are consistently rising, with nearly 22% of the world population being ≥60 years old
by the year 2050 [4]. Predictably, the cost of healthcare will rise due to numerous aging-associated diseases
with immeasurable effects on quality of life. With most illnesses indicating underlying physiologic changes,
delaying aging may help curb multiple health complications concurrently via modulating genetic pathways.
As the mystery of aging becomes increasingly deciphered, the study of Biogerontology is founded on three
key principles. First, lifespan is defined as the age at which death occurs, and the essential lifespan of a
species marks the point beyond which there is a consistent decline in functional and physiological
capabilities due to cellular aging, culminating in death [5,6]. The onset of aging is considered to begin after
the essential lifespan is surpassed. Second, there is no single biological pathway or set of aging-associated
genes (gerontogenes) identified as the sole cause of aging and death [7-9]. Lastly, the rate of aging varies
among different species, individuals, and even within different organs and tissues of a single organism. This
suggests that co-dependence and interconnected biological pathways across all levels play a crucial role in
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determining the overall lifespan of an individual [8,10,11].

Longevity and healthspan are often used interchangeably, yet they encompass distinct aspects. Longevity
primarily centers around lifespan, the observed duration of an organism’s life [12], whereas healthspan
focuses on healthy aging. Healthspan extends beyond the presence or absence of diseases or disease-
susceptible alleles. It includes the development and maintenance of physical, physiological, and
psychological capabilities [13] that contribute to overall well-being and delayed onset of age-associated
diseases. Research indicates that individuals who live exceptionally long lives, such as centenarians, often
experience a prolonged healthspan with minimal incidences of aging-related diseases such as cancer,
cardiovascular disease, dementia, hypertension, and Alzheimer’s disease [14]. Healthy aging encompasses
old age and good health with commendable body performance levels such as mobility and unharmed
cognition [15]. Highlighting the significance of longevity and healthy aging genes is crucial, as numerous
studies have demonstrated their heritability [15]. Notably, the likelihood of inheriting these genes increases
with age, showing a probability of 0.48 in men and 0.33 in women, particularly in centenarians aged
between 100 and 109 years [16]. Further evidence of the association between inherited longevity genes and
increased age has been observed in extensive studies involving over 20,000 Scandinavian twins [17],
Icelanders [18], and other centenarian populations [19,20]. Additionally, comprehensive studies like the New
England Centenarian Study [21], the Leiden Longevity Study [22], and the Long Life Family Study [23] have
compared the offspring of long-lived individuals to contemporaneous controls. These offspring not only
exhibited longer average lifespans but also displayed various healthy aging characteristics, including
beneficial lipid profiles [24], a low rate of cardiovascular and metabolic diseases [25], and a lower prevalence
of hypertension compared to their age-matched controls [24,26]. In recent decades, Biogerontology has
undergone a significant transformation, shifting from limited access to aging pathways to advanced genetic
modifications that can extend lifespan. Contemporary Biogerontology focuses on how these longevity genes
impact healthspan. It is noteworthy that healthspan can be significantly altered, either enhanced or
deteriorated, due to interventions targeting lifespan, often leading to increased morbidity [26].

The relationship between an organism’s lifespan and the maintenance of cellular youthfulness reveals a
complex interconnection of pathways. While there is no single, definite hypothesis to explain the rate of
aging, identified contributing factors include genetics, a combination of epigenetics, physiological factors,
and lifestyle choices. Four broad groups of genes are conserved across various kingdoms and have been
identified to influence aging. These include genes responsible for (i) DNA repair enzymes, (ii) proteins in the
insulin signaling pathway, (iii) mechanistic target of rapamycin (mTOR) signaling pathway proteins
(translation regulators), and (iv) chromatin remodeling enzymes. Further studies extensively explore the
role of mitochondrial heat shock protein genes, such as Hsp22, and various epigenetic and environmental
factors that contribute to aging (Figure 1).

FIGURE 1: Genetic, epigenetic, and environmental factors influencing
lifespan and healthspan.
Image generated using BioRender.com.

Review
DNA repair enzymes
Possessing efficient DNA repair enzymes resistant to mutations enhances longevity by mitigating the effects
of aging-related “wear and tear.” The wear-and-tear hypothesis proposes that the efficiency of cell division
and enzymatic functions decline with age [27,28]. Mutations in DNA repair enzymes, even in younger
individuals, can lead to premature aging conditions, such as progerias [29,30]. The transcription factor p53
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plays a critical role in regulating cell division. It arrests the cell cycle and activates DNA repair enzymes
[31,32]. The pleiotropic effect of p53 allows multi-level regulation from diverse factors, demonstrated with
mouse double minute 2 (Mdm2) and Mdm4 [33]. In the absence or damage to telomeres, p53 becomes active,
halting DNA replication and facilitating DNA repair. The role of telomeres and telomerase activity in
cellular immortality has been a long-standing proposition [34]. The telomerase enzyme replenishes
telomere length after each cell cycle. Studies have shown that telomere lengths are longer in children than
adults, supporting telomeres’ role in aging [34]. Again, a study using transgenic mice, replacing mouse
telomerase RNA (mTR) with neomycin-resistant genes decreased telomere length and telomerase activity
with age [35,36]. Similarly, older zebrafish exhibited shorter telomeric repeats (TTAGGG)n in the terminal
restriction fragment (TRF) compared to their younger counterparts [37]. Reduction in the telomeric repeats
(TTAGGG)n sequence has been associated with chromosomal instability, increased aneuploidy, and a higher
incidence of cell-to-cell fusions [38]. Similarly, cells harboring a mouse telomerase null mutation exhibited
no telomerase activity and, consequently, the least lifespan [39]. The length of telomeric repeats which cap
chromosomal ends is inversely proportional to aging. Premature aging disorders, such as progeria, spleen
atrophy, disrupted germinal centers, and reduced proliferation in bone marrow and neural stem cells, have
been associated with a lack of telomerase and a deleted or nonfunctional telomerase gene [40,41]. This
association led to the hypothesis that extending telomeric repeats might enhance healthspan. However,
attempts to maintain longer telomeric stability present challenges, as they often seed tumorigenesis due to
uncontrolled cellular division [42]. Present methods for measuring telomere length, including TRF analysis
and quantitative polymerase chain reaction, are subject to minor margins of error that affect the accuracy of
telomere length results. Despite the experimental and logistical reliability of these established techniques,
their inherent drawbacks can be addressed by more advanced methodologies such as single telomere length
analysis and telomere shortest length assay (TESLA), albeit at increased financial and labor costs [43].
Telomere length exhibits variations of approximately ±2-4% per month, challenging the prevailing
assumption of consistent telomeric attrition with age [44].

Mechanistic target of rapamycin pathway
Altering genes in the mTORC1 pathway directly impacts cellular longevity [45]. When activated, the insulin
signaling pathway upregulates the activity of the mTORC1 pathway and inhibits the FoxO transcription
factor [45,46]. In the mTORC1 pathway, the protein kinase complex mTORC1 stimulates the conversion of
mRNA into essential proteins and enzymes in response to nutrients and hormones [47]. Inhibiting mTORC1
interferes with insulin signal transmission, leading to reduced metabolism, slowed aging, and a decline in
age-related conditions such as cognitive dysfunction [48,49]. Since the discovery of rapamycin as an
antibiotic in 1975, it has been extensively studied for its potential to extend lifespan [50]. Studies show that
rapamycin, in combination with FK506-binding proteins, downregulates genes in the mTOR pathway and is
evident in yeast [51], nematodes [52], rotifers [53], drosophila [54], and mouse models [55,56]. Interestingly,
rapamycin has a sexually dimorphic effect on mTOR signaling with varying mean healthspan extension in
females than males in different research models [52,57,58]. Growing evidence indicates that rapamycin
contributes to an improved healthspan, as seen through delayed aging of organs (Figure 2) and reduced
incidence of disease conditions, including liver degeneration, ovarian aging, heart abnormalities, and
benign tumors in the adrenal gland [59,60]. Mechanistically, rapamycin improves healthspan via inhibition
of the mTOR pathway, which impacts multiple biological processes such as apoptosis, inflammation, cell
growth, and metabolism [60,61]. Rapamycin specifically inhibits the mTORC1 signaling pathway [62] to
enhance healthspan through delayed aging in kidneys, liver, ovaries, intestines, respiratory, circulatory,
integumentary, and immune systems. A major setback in rapamycin clinical administration is the
simultaneous inhibition of mTORC2 signaling while blocking the mTORC1 pathway [62]. This off-target
effect induces adverse effects on metabolic and immunologic functions and can be prevented by selectively
inhibiting mTORC1 with rapamycin derivatives and structural analogs. An extensive study introduced the
importance of long noncoding RNAs as essential regulators of mTOR signaling, in general, to improve
lifespan expectancy and decline onset of aging-related disorders and cancer in humans [63]. Currently,
rapamycin is a great candidate for both lifespan and healthspan extension with extensive research and
clinical studies.
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FIGURE 2: General role of rapamycin in sustaining organ health.
Image generated using BioRender.com.

Insulin and insulin-like growth factor 1 signaling pathways
Similar to DNA repair enzymes, genes within the insulin signaling pathway exhibit a functionally conserved
role in aging across various species. Downregulation of these genes indicates limited food availability,
leading to a decline in metabolism and an enhanced synthesis of free radical scavenging enzymes via the
upregulation of the FoxO/DAF-16 transcription factor [64-66]. FoxO is crucial to the immortality of hydra
and a conserved longevity regulator operating downstream of insulin signaling pathways of several species
in the animal kingdom. Several reports indicate that the IGF-1 receptor regulates lifespan and oxidative
stress in mice [67,68]. Upon modification of different exons in the IGF-1 gene and feeding mice ad libitum,
heterozygous IGF-1 mice lived longer than the wild type [69,70]. In animal models, such as Caenorhabditis
elegans and Drosophila, reduced insulin signaling has been linked to an extended lifespan [71,72]. As aging
broadly depicts a decline in physical activities, studies involving the maximum velocity of C. elegans
revealed that the daf-2 mutant (E1370) exhibited a higher maximum velocity, approximately twice that of
the wild type [73]. Notably, the daf-2 mutant/insulin/IGF-1 receptor exhibits pleiotropic effects by
exponentially enhancing lifespan and immunity while diminishing reproduction and motility [74]. Loss-of-
function mutation in daf-18(nr2037), encoding phosphatase and tensin homolog (PTEN), is essential to the
extended lifespan of daf-2 mutants [75]. PTEN dephosphorylates phosphatidylinositol 3,4,5-trisphosphate to
phosphatidylinositol 4,5-bisphosphate [76]. Despite disorders in insulin signaling causing conditions such as
type 1 and 2 diabetes and neuronal dysfunction due to metabolic stress [77], they have been associated with
extended lifespans in humans [78], C. elegans [64], and Drosophila melanogaster [79]. A shared trait among
these organisms is the reduction in serum IGF-1, associated with the insulin/IGF signaling cascade.
However, mutagens in ingested food and free radicals such as hydroxyl and superoxide radicals formed as
metabolic by-products accumulate to induce age-related diseases. Reduced IGF-1 signaling by deleting the
IGF-1 receptor decreases metabolism and eventually reduces the overall cell senescence caused by oxidative
stress [77]. Furthermore, due to higher metabolic rates in males than females, the overall impact of lifespan
extension varies between genders [80]. This conservation of insulin signaling pathways and their influence
on aging highlights a fundamental aspect of biology that transcends species, offering potential insights for
human aging and longevity research.

Chromatin remodeling
Genes encoding proteins to modify chromatin structure influence aging and aging-associated diseases by
regulating the spatial expression of genes during development. Chromatin modification techniques include
but are not limited to methylation/demethylation, phosphorylation, acetylation/deacetylation, and
sumoylation. Geneticist Amar Klar first described sirtuins in the 1970s when he discovered the silent
information regulators II (Sir2) gene in Saccharomyces cerevisiae cells. However, the only study
demonstrating an effect on lifestyle was published 20 years later in 1991 by Leonard P. Guarante [81].
Sirtuins belong to the class of deacetylases that help coordinate DNA repair, cell survival, healthy aging,
development, apoptosis, and metabolic control [82]. The sirtuin gene, known for its anti-aging properties
and encoding proteins involved in chromatin silencing through histone deacetylation, is found across the
eukaryotic kingdoms [83]. As growth occurs, sirtuin gene products, such as enzymes and proteins, are re-
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purposed to repair single- and double-stranded DNA breaks at the expense of chromatin silencing [82].
Consequently, genes that were initially silenced become active as aging progresses. Cognitive decline,
associated with the mammalian aging syndrome, can be mitigated by upregulating DNA methylation and
histone (H4K12) acetylation in the brain’s frontal lobes [83]. Sirtuins comprise seven regulatory proteins for
metabolism, antioxidant protection, and cell cycle regulation. Deletion of the Sir2 gene, responsible for the
expression of sirtuins, shortens the lifespan of S. cerevisiae and has, therefore, become an important focus of
research on the aging process [84]. Contemporary methodologies associated with chromatin analysis are
both high-throughput and labor-intensive, necessitating the use of chromatin immunoprecipitation,
antibody staining, microscopy, and, at times, sequencing. The experimental workflows employed in
chromatin studies can introduce background noise and variability and often permit only relative
quantification [85].

In conjunction with sirtuins, polyphenols such as butein, fisetin, and resveratrol have been shown to extend
yeast lifespan by 31%, 55%, and 70%, respectively, also contributing to an increase in the maximum lifespan
for each of these activators [86]. Research has highlighted the potency of resveratrol to delay the onset of
aging-associated diseases by mimicking calorie restriction [87]. Over time, the homologous recombination
between the ribosomal DNA repeats, forming a circular, autonomously replicating extrachromosomal DNA,
which is toxic in old cells. Resveratrol increases the activity of yeast Sir2 to prevent the formation of
extrachromosomal structures [88]. The synergistic increment in lifespan in the presence of polyphenols is a
culmination of antioxidant, metal ion chelating, and free radical scavenging roles of polyphenols and the
chromatin silencing effect of sirtuin via histone deacetylation. Invariably, no observable increments in
lifespan are noticed in Sir2 null mutants in S. cerevisiae [89] and humans [90]. Hence, Sir2 primarily regulates
longevity, while polyphenols directly stimulate Sir2 activity in vivo.

Epigenetics and diet
In addition to genetic determinants, the effects of epigenetic factors influence the overall lifespan of an
organism. Susceptibility to errors during cell division cycles and possible activation of oncogenes increase
with prolonged cell divisions, making aging a protective mechanism against tumorigenesis [91]. The
methylation of CpG islands occurs under several conditions such as genetic, dietary, and exposure to
xenobiotics and mutagens. While Ames dwarf mice have thrice fewer CpG islands than wildtype, caloric
restriction prevents demethylation at hypomethylated regions and enhances methylation of
hypermethylated loci than rapamycin [92]. Thus, the epigenetic influence on the aging process is far more
convoluted and is species-specific. Therefore, studies involving cell longevity and healthspan involve
cautious consideration of the numerous ongoing, interrelated pathways, cell divisions, and
reactions. Dietary intake has strong correlations with aging. A highly inflammatory diet dwindles the body’s
repair potential and eventually speeds up aging [93]. This reduction in the repair potential arises from the
continuous disruption of cell types responsible for the repair of inflammation resulting from tissue injury
[94]. Dietary restriction (caloric reduction) is known to delay aging and the onset of diseases as well as
enhance longevity in most organisms [95]. Dietary enhancement of longevity is best achieved by a
combination of low protein/high carbohydrate food rations (Figure 3) [96] as low protein/high carbohydrates
inhibit the mTORC1 pathway, enhance thrombospondin signaling pathway, and suppress the production of
reactive oxygen species by the mitochondrion as opposed to the lower intake of carbohydrates and fats [97].
This reduction in reactive oxygen species coupled with a decrease in metabolic rate has long been regarded
as the means through which dietary restriction may prolong lifespan. Several studies have cited caloric
reduction as important in preventing the signs of aging, such as telomere deterioration, epigenetic changes,
genome instability, mitochondrion inefficiency, and cellular senescence [42,98,99]. Moreover, caloric
reduction effectively limits age-associated alterations in DNA methylations in vital organs [100] and delays
age-related decline in mitochondrial biogenesis and function [101].
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FIGURE 3: Effects of dietary restriction of major food nutrients on
longevity.
Image generated using BioRender.com.

Mitochondrion and aging
Aging is generally associated with increased oxidative stress and declining mitochondrial efficiency. The
mitochondrial gene encoding heat shock proteins, Hsp, has garnered significant interest in anti-aging
studies. A study by Lagunas-Rangel highlighted the influence of G protein-coupled receptors on lifespan
using animal and human models [102]. Given mitochondria’s sensitivity to reactive oxygen species, the
presence of genes that produce antioxidants within mitochondria is essential. The overexpression of Hsp22
has been reported to protect mitochondrial proteins within motoneurons and extend the lifespan of D.
melanogaster [103]. Hsp22 genes contribute to extending the lifespan in D. melanogaster by predominantly
guarding against oxidative stress. Studies have highlighted the functional roles of mitochondrial Hsp22 in
lifespan extension and oxidative stress resistance in Drosophila [104]. Conversely, overexpression of Hsp22
yielded a reduced lifespan in mouse models due to myocardial hypertrophy [105]. An optimal mitochondrial
function stems from good protein quality. The Hsp22 proteins act as molecular chaperones against ruined
proteins, as unchecked damaged proteins gradually amass into toxic aggregates with further deteriorating
effects on mitochondrial integrity. Hsp22 concentration is an aging biomarker in D. melanogaster and
predicts the remaining lifespan. Ultimately, Hsp22 increases longevity by chaperoning damaged proteins
and improving stress resistance.

Conclusions
To enhance the applicability of these models to human research, efforts should concentrate on identifying
study metrics that accurately represent the unique physiological and pathological aspects of aging in
different species. The gerontogenes encoding telomerase/telomeric repeats, insulin-like growth factor
receptor 1, Sir2, and mitochondrial heat shock proteins (Hsp22) enhance longevity, while daf-2 gene
mutants and downregulation of mTOR signaling genes by rapamycin enhance both longevity and
healthspan. Healthspan is a complex, multi-metric analysis of functional and physiologic efficiencies of
organs in different organisms. More studies are needed to streamline the healthspan conception and the best
multi-metrics for a specific anti-aging model organism. Moreover, these conserved gerontogenes
influencing longevity and healthspan are functionally nonexclusive; hence, understanding the synergistic
efforts of two or more gerontogenes can introduce novel techniques to minimize geriatric syndrome while
maintaining healthy cells.
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