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Abstract

For decades, tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), has remained a global health
challenge. Central to this issue are the proline-proline-glutamic acid (PPE) proteins, which play a pivotal
role in the pathogenesis and persistence of MTB. This article explores the molecular mechanisms of PPE
proteins and their roles in facilitating MTB’s evasion of the host’s immune system while enhancing
virulence and transmission. Focusing on the structural and functional aspects of PPE proteins, this review
provides a detailed analysis of antigenic variation, a crucial mechanism allowing MTB to elude immune
detection. It also probes the genetic diversity of these PPE proteins and their complex interactions with host
immunity, offering insights into the challenges they pose for therapeutic development. This review delves
into the potential of targeting PPE proteins in novel therapeutic strategies, discussing the prospects of drug
and vaccine development. The evidence reviewed in this article underscores the pressing need for
innovative approaches to combat TB, especially in the face of increasing drug resistance. Ultimately, this
review article highlights the untapped potential of PPE proteins in revolutionizing TB treatment, paving the
way for breakthroughs in drug and vaccine development.
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Introduction And Background

The scourge of tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), continues to be a global
health crisis and is responsible for millions of deaths annually [1]. The persistent challenge in combating
this disease lies not only in its widespread prevalence but also in the complex pathogenic mechanisms of the
causative microorganism. Among the key elements of MTB’s virulence macromolecules are the proline-
proline-glutamic acid (PPE) proteins, named for their characteristic amino acid sequence [2]. These proteins
have garnered significant scientific interest due to their role in the pathogenesis of MTB and their
implications for novel therapeutic strategies. Understanding the role of PPE proteins in MTB infection is
crucial, given the ongoing challenge TB poses to global health. TB is one of the top 10 causes of death
worldwide and the leading cause from a single infectious agent, surpassing even human immunodeficiency
virus (HIV)/acquired immunodeficiency syndrome (AIDS) [3]. The impact of the disease is particularly
pronounced in low- and middle-income countries and exacerbated by factors such as co-infection with HIV
and the emergence of multidrug-resistant MTB strains [4]. These challenges reinforce the urgency of
developing a deeper understanding of MTB’s pathogenic mechanisms and exploring new therapeutic
avenues. The PPE protein family, characterized by a conserved Pro-Pro-Glu motif at the N-terminus,
represents a significant proportion of the MTB genome. Initially identified through genome sequencing,
these proteins have been implicated in various aspects of MTB’s interaction with its host [5]. The diversity
and abundance of PPE proteins indicate a complex role in MTB’s pathogenicity, potentially involving
immune modulation, cell-to-cell spread, and adaptation to different host environments. However, the
specific mechanisms through which PPE proteins contribute to these processes remain only partially
understood. Despite a reduction in TB-related mortalities following the implementation of short-course
directly observed treatment, it remains a leading cause of death globally [6], with approximately 25% of the
global population being infected [7]. Equally important, colleges and universities are at-risk populations [8]
with prior research reporting TB outbreaks among students in Italy, China, and Northwest Ethiopia, often
resulting from repeated exposure to untreated TB cases [9-12]. Research attributes the high TB prevalence in
higher educational institutions to inadequate understanding and awareness about this disease [13,14].

Prior studies have uncovered the association between PPE proteins and MTB’s evasion of host immune
responses [4,5]. These proteins interfere with antigen processing and presentation pathways, eventually
modulating the host’s immune response. This immune evasion capability allows MTB to establish latent
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infections and persist within the host for extended periods. Additionally, PPE proteins are implicated in
bacterial cell wall integrity and influence MTB’s survival under various stress conditions, including those
encountered during infection of the human host [15]. Given their role in MTB virulence, PPE proteins are
potential targets for therapeutic interventions and drug development. Inhibitors that disrupt PPE protein
functions could weaken MTB’s ability to evade the immune system or survive under hostile conditions
within the host. Furthermore, PPE proteins are also being explored in vaccine development. To protect
against MTB infection, the ideal vaccine should elicit a robust immune response against PPE proteins.

Review
Overview of Mycobacterium tuberculosis

TB primarily affects the lungs but can also affect other body parts, such as the kidneys, spine, and brain [16].
According to the Centers for Disease Control and Prevention (CDC) and World Health Organization (WHO),
TB is responsible for claiming 1.5 million lives annually and ranks as one of the foremost infectious disease
threats worldwide [17,18]. Despite considerable advancements in its management, TB remains a pressing
global health issue.

Symptoms and diagnosis of Mycobacterium tuberculosis

Early diagnosis and timely treatment are imperative in managing MTB infection and preventing its
transmission. A combination of clinical evaluation, diagnostic tests, and understanding common signs and
symptoms is crucial for healthcare professionals to identify and address TB effectively [5]. MTB is a rod-
shaped bacterium about 3-4 pm long and 0.3-0.6 pm wide. It is a slow-growing bacterium, and it can take up
to eight weeks for a single colony to grow on a culture plate [19]. MTB is a hardy bacterium that survives for
long periods outside the body. Latent MTB infection remains asymptomatic; however, signs and symptoms
of active TB vary depending on the severity [20]. Associated symptoms include persistent cough, coughing
up blood, chest pain, chest pain, fatigue, fever, night sweats, weight loss, and shortness of breath [19,20].

Diagnosis of Mycobacterium tuberculosis

Clinical evaluation: Diagnosis often begins with a comprehensive clinical assessment. Medical history,
including risk factors and exposure to TB, is considered along with a physical examination.

Tuberculin skin test (TST): TST, a tuberculosis screening test, utilizes the Mantoux technique. It involves
injecting a small amount of TB protein under the skin. A positive reaction suggests exposure to TB but
cannot differentiate between latent and active infection [20].

Interferon-gamma release assays: Blood tests, such as the QuantiFERON-TB Gold test, detect MTB infection
by measuring the immune response [20].

Chest X-ray: Abnormalities in the lungs may be identified through X-rays. While it can hint at the presence
of TB, further tests are needed for confirmation [19].

Sputum smear microscopy: Examining a sputum sample under a microscope helps detect TB bacteria. This
test is commonly used for diagnosing pulmonary TB [20].

Culture: MTB is grown and identified from sputum or other bodily fluid samples through culture, confirming
the diagnosis and revealing the specific strain [19].

Molecular tests: Polymerase chain reaction and nucleic acid amplification tests identify TB DNA in clinical
samples, enabling faster diagnosis [19].

Treatment of Mycobacterium tuberculosis

The management of MTB infection necessitates a prolonged regimen of combined antibiotic therapy [21].
The treatment aims to eliminate the bacteria and prevent the development of drug-resistant strains. The
specific treatment regimen varies depending on the type of TB infection (latent or active), drug
susceptibility, and individual patient circumstances [21]. According to the CDC, the most common drugs
used include isoniazid (INH), rifampin (RIF), ethambutol (EMB), and pyrazinamide (PZA) [22]. The treatment
lasts six months on average and may be extended in certain cases. The first two months involve all four
drugs, followed by a continuation phase with INH and RIF [23]. Latent TB infection (LTBI) treatment aims to
prevent the progression of active TB disease. The most common LTBI drug is INH, which is recommended to
be taken daily for six to nine months [20]. To ensure that patients take their medications consistently and
complete the treatment, many healthcare providers utilize directly observed therapy [24]. This involves
healthcare workers or skilled individuals documenting patient vitals during their medication periods.
Regularly monitoring the patient’s progress and adherence to the medication is crucial. Non-adherence can
lead to treatment failure, the development of drug-resistant TB, and continued transmission of the disease.
Fully recovered patients undergo routine follow-up evaluations to confirm complete clearance of MTB [24].
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Alveolar macrophage invasion

Individuals who interact with TB patients are mostly asymptomatic and remain healthy as long as they
maintain self-care and an environment unsuitable for the disease’s growth [25]. MTB is transmitted through
the air when an infected person coughs, sneezes, or talks. People can become infected with MTB by
inhalation of bacteria into the lungs [26]. Once inside the lungs’ alveoli, the bacteria replicate to cause an
infection. The outcome of MTB entry and infection varies among individuals [19]. It can be LTBI, where the

immune system can control the infection, or it can progress to active TB, characterized by symptoms and the

potential for transmission to others. Alveolar macrophages are the most abundant immune cells in the lungs
and protect the body from infection and other injuries [27]. MTB invasion of alveolar macrophages is a

critical step in the early stages of TB infection [28]. Alveolar macrophages are the first line of defense against

inhaled pathogens and play a key role in controlling MTB infection [27]. However, MTB has evolved several
strategies to evade and subvert the macrophage immune response [29]. One of the mechanisms through
which MTB invades alveolar macrophages is phagocytosis. [30]. MTB triggers phagocytosis by interacting
with various receptors on the surface of alveolar macrophages. Once inside the macrophage, MTB replicates
and survives within a specialized vacuole [31]. Alternatively, MTB invades alveolar macrophages via direct
penetration of the macrophage plasma membrane. This process is mediated by the MTB type VII secretion
system (T7SS), a complex protein complex that allows MTB to inject proteins into the host cell. MTB T7SS
proteins disrupt the macrophage plasma membrane, allowing the bacteria to enter the cell without being
phagocytosed [30]. Once inside the macrophage, MTB subverts the macrophage’s immune response in a few
ways. For example, inhibiting the production of pro-inflammatory cytokines and chemokines, which are
important for recruiting other immune cells to the site of infection. MTB also interferes with the
macrophage’s ability to kill bacteria while promoting apoptosis, as detailed in Figure 1.
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FIGURE 1: Sequential steps by which Mycobacterium tuberculosis
evades the host immune system via PPE proteins. The flowchart begins
with the pathogen-expressing PPE proteins, which modulate the
immune response. These proteins interact with host immune cells, such
as macrophages and dendritic cells, altering their function and
inhibiting immune response. Consequently, the pathogen survives and
proliferates within the host, potentially resulting in chronic infection or
latency. The pathogen can be transmitted to new hosts, completing the
infectious cycle. The pathogen adapts and develops mechanisms to
further evade the immune response.

PPE: proline-proline-glutamic acid

Created with BioRender.com.

Mycobacterium tuberculosis reactivation and immune response

While some individuals exposed to MTB remain asymptomatic, the bacterium can persist in their bodies,
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resulting in LTBI. Many individuals who inhale MTB do not immediately develop active TB disease; instead,
the bacteria remain dormant in the body, often residing within granulomas in the lungs, a state referred to
as LTBI [32]. The transition from LTBI to active TB disease is known as reactivation [32]. Several factors can
trigger this transition, including an immunocompromised system, with conditions such as HIV infection,
malnutrition, certain medications (e.g., immunosuppressive drugs), and other illnesses significantly
reducing the body’s ability to control the latent infection [26]. The immune response to MTB is complex and
involves various cells and signaling pathways [31]. The innate immune response is the first line of defense
against MTB infection, followed by the adaptive immune response. The adaptive immune response is more
specific to MTB and is essential for controlling MTB infection, but MTB has evolved several mechanisms to
evade it [28,31]. A study by Afkhami and colleagues investigated the efficacy of a multivalent adenoviral-
vectored vaccine against replicating and dormant MTB in conventional and humanized mice [33]. The
vaccine was delivered intranasally, a more natural route of infection for MTB. The researchers found that the
vaccine was highly effective in protecting mice against replicating and dormant MTB. The vaccine induced a
strong immune response, including both humoral and cellular immunity. The same vaccine enhanced the
development of tissue-resident memory T cells, which is critical for long-term protection against TB [33].
Similarly, studies have uncovered a novel technology that detects active MTB infection antibodies using a
peptide enzyme-linked immunosorbent assay (ELISA) test, which is substantial in TB serodiagnosis [34]. The
test measures levels of IgG antibodies against three peptides from the MTB transketolase enzyme. With 292
subjects in this study, the researchers found that TB patients had significantly higher TKT-specific antibody
levels than healthy controls and patients with LTBI [34]. This suggests that the TKT-peptide ELISA test can
distinguish between active TB and LTBI.

Granuloma formation

Granuloma formation is an important immune response technique to MTB infection. Granulomas are
walled-off inflammation areas containing infected macrophages, lymphocytes, and other immune cells.
They contain the infection and prevent the spread of MTB to other body parts [31]. Granuloma formation
begins when MTB invades alveolar macrophages. The macrophages release pro-inflammatory cytokines and
chemokines, which recruit other immune cells to the site of infection [35]. These include T and B
lymphocytes and phagocytic cells, such as neutrophils and dendritic cells. The immune cells recruited to the
infection site form a closed network around the infected macrophages, creating a granuloma [35]. The
granuloma wall consists of epithelioid cells, which are specialized macrophages fused to form a barrier. The
lymphocytes within granulomas help coordinate the immune response to MTB. Granulomas can be either
active or inactive [36]. Active granulomas contain replicating MTB and are characterized by a high level of
inflammation and many infected macrophages [37]. Inactive granulomas are those in which MTB is dormant
or dead. These granulomas are characterized by a lower level of inflammation and a smaller number of
infected macrophages [37]. Granuloma ensures the containment and prevents body-wide dissemination of
MTB.

Proline-proline-glutamic acid proteins

The PE/PPE (proline-glutamate/proline-proline-glutamate) protein family represents a cluster of proteins in
the cell wall of mycobacteria, including the human pathogen MTB [19]. Although the precise functions of
most PE/PPE proteins remain elusive, current studies reveal involvement in a range of crucial processes,
including interactions between the host and pathogen, virulence, and the development of drug resistance
[38]. PPE proteins are secreted to the cell surface through the T7SS. Thus, T7SS allows PPE proteins to
interact directly with host cells and modulate the immune response. PPE proteins are unique in that they are
highly glycosylated; glycosylation helps PPE proteins adhere to host cells and resist the host immune
response [39]. PPE proteins aid in MTB survival in the host environment by protecting MTB from antibiotics
and the host’s immune system. Since the discovery of PPE proteins in the early 2000s, there has been a surge
in research to uncover details about their structure, function, and role in MTB pathogenesis [39,40].

Cellular location and classification of proline-proline-glutamic acid
proteins

PPE proteins form a diverse family of proteins abundant in the MTB cell wall. Over 160 PPE genes have been
identified in the MTB genome, and PPE proteins comprise about 10% of the MTB proteome [41]. The
abundance and diversity of PPE proteins emphasize their important role in MTB pathogenesis. PPE proteins
are involved in many functions, including adhesion to and invasion of host cells, host immune response
modulation, and host environment survival [31]. PPE proteins are also highly polymorphic, which makes it
difficult for the immune system to recognize and respond effectively in cases of index infection [42].
Localized PPE proteins within the MTB cell wall are secreted directly into the host cell via the T7SS. This
allows PPE proteins to interact directly with host cells and modulate the immune response [42]. Once
secreted to the cell surface, PPE proteins are anchored in the cell wall via the PPE domain, a highly
conserved domain throughout all PPE proteins [43]. It anchors PPE proteins to the cell wall and mediates
their interactions with host cells, thus enabling MTB to modulate and evade the host’s immune system. PPE
proteins are classified into several groups based on different criteria [42,43]. They can be categorized based
on their sequence, with PPE-PPW proteins involved in adhesion and invasion of host cells, PPE-MPTR
proteins modulating the host immune response, and other PPE proteins whose functions are not yet fully
understood [44]. Functional classification comprises adhesion and invasion, immune modulation, and aiding
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in intra-host survival. PPE proteins can be further distinguished by their secretion pathways, glycosylation
status, and polymorphism, with some showing significant variation across MTB strains and others
remaining relatively conserved. These classifications enhance our understanding of the diverse roles of PPE
proteins in MTB pathogenesis, shown in Figure 2, and immune evasion [44].

The Role of PPE Proteins in MTB Pathogenesis
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FIGURE 2: Progression of Mycobacterium tuberculosis infection and
role of PPE proteins. (1) PPE proteins aid in the initial survival of the
bacteria. Following alveolar deposition, bacilli encounter and infect
macrophages. (2) PPE proteins facilitate immune evasion. The
subsequent immune response leads to the formation of granulomas. (3)
PPE proteins contribute to a latent infection. (4) The potential
reactivation of MTB. (5) Active TB: PPE proteins modify the bacterial
phenotype to promote replication and disease progression. Damaged
respiratory epithelial cells are depicted in the background, indicating
the pathological effect of an active infection. While indirectly related to
MTB pathogenesis, the allergen icon alludes to external factors that can
exacerbate lung damage and influence the course of the disease.

MTB: Mycobacterium tuberculosis; PPE: proline-proline-glutamic acid; TB: tuberculosis

Created with BioRender.com.

Mechanistic roles of proline-proline-glutamic acid proteins in
Mycobacterium tuberculosis

PPE proteins in MTB play a crucial role in creating antigenic variation, a strategy similarly employed by
pathogens such as the influenza virus to elude the host’s immune defense by continuously altering their
surface antigens [45,46]. This ability to induce heightened antibody responses is observed in TB patients
compared to healthy individuals vaccinated with Bacille Calmette-Guérin (BCG), indicating a probable
upregulation of PPE proteins during active TB infection. In diagnostic applications, the purified protein
derivative (PPD), a composite of MTB antigens used in the TST, demonstrates a response nearly equivalent
to that elicited by synthetic PPE peptides across diverse TB patient categories, indicating the consistency in
immune recognition of these proteins [47]. Moreover, Rv2430c, a specific PPE protein, has been shown to
induce robust B-cell immune responses in infected individuals, underscoring its role in the immunological
landscape of MTB infection, as documented by Choudhary and colleagues [48]. Together, these findings
accentuate the significance of PPE proteins in immune evasion, their applications in TB diagnosis, and
understanding the host-pathogen interactions. The PPE protein families in MTB play a significant role, with
a substantial number of them being upregulated under stressful conditions, which could potentially enhance
the bacterium’s resilience and adaptive capabilities within the host cells [49-51]. In particular, PPE31
(Rv1807) and PPE68 (Rv3873) have proven to be crucial for the growth of MTB in mouse models [52,53],
while PPE44 (Rv2770c) has been found to induce T-helper 2 cell immune response under stressful conditions
[54]. PPE41, conversely, is known to elicit the production of cytokines such as interferon-gamma, tumor
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PPE
PPE44 (Rv2770)
PPE37 (Rv2123)
PPE36 (Rv2108)
PPE18 (Rv1196)
PPE41 (Rv2430)
PPE17 (Rv1168c)
PPE62 (Rv3533c)
PPE42 (Rv2608)
PPE28 (Rv1800)
PPE63 (Rv3539)

PPE6S (Rv3873)

necrosis factor-alpha (TNFa), and interleukin 2 (IL-2), playing a pivotal role in the host immune response
[55]. Focusing on PPE68 (Rv3873), located in the RD1 region, it has displayed remarkable immunogenicity in
mice, and studies by Okkels and associates have identified it as a potent T-cell antigen in individuals
infected with MTB [56,57]. Moreover, proteins such as Rv2108 (PPE36), Rv3873 (PPE68), Rv1818c, and
Rv1196 (PPE18) have been associated with the cell wall, hinting at their potential roles in mediating host-
pathogen interactions [58]. Intriguingly, in the context of active TB infection, patients exhibit a diminished
Th1 response to the PPD, and PPE18 has been implicated in this immune modulation, inhibiting the
proliferation of anti-PPD T cells and steering the immune response toward a Th2-type profile [59].

The Rv1168c protein can accurately identify cases of pulmonary TB, a task that sometimes proves
challenging for conventional diagnostic methods [60]. On a similar note, Rv3347c demonstrates a unique
capacity to differentiate patients with latent TB from those showing early signs of active disease. Regarding
protein interactions, the synergy observed within PE/PPE protein complexes has garnered significant
attention in recent studies [59,61,62]. Experimental immunization of mice using the PE25/PPE41 complex
enhanced T-cell proliferation, with increasing CD8+ and CD4+ T-cell populations, outperforming the
immune response generated when immunizing with PE25 alone [54]. Further investigations into PPE
proteins revealed a direct interaction between PPE18 and macrophages through the TLR2 receptors,
influencing phagocytic activities [59]. This interaction facilitates MTB survival and replication by promoting
IL-10 production and suppressing IL-2 and TNFa levels in the host, a process associated with an
upregulation of phosphorylated SOCS3 protein (59). Moreover, PPE18 has been found to form various
heterodimeric complexes through its interactions with PE13 and PE31 [58,60]. These specific interactions
may play a role in regulating the functions of the PPE18 protein during host-pathogen interactions, adding
another layer of complexity and specificity to the immune response against MTB [58]. Table 7 highlights the
functions and cellular characteristics of PPE proteins observed in MTB.

Cellular triggers/indicators References
Stress [53]

Low iron [63,64]
Heme-iron acquisition [65]
Palmitic acid [66]

Low nutrient [49]

Low to no oxygen/Latent TB infection [44,67,68]
heme [65]
immunogenicity [69-71]
Immune modulation [72]

Cell wall modulation [72]
Immune modulation [73]

TABLE 1: Differential expression, cellular indicators, and triggers of PPE proteins in MTB.

MTB: Mycobacterium tuberculosis; PPE: proline-proline-glutamic acid; TB: tuberculosis

Proline-proline-glutamic acid proteins as drug targets

The PPE proteins, integral to the pathogenicity of MTB, present a novel therapeutic frontier in the struggle
against TB. These proteins, due to their significant representation in the MTB genome and their
multifaceted role in pathogenesis, particularly in mechanisms of immune evasion, offer a unique target for
drug development [74]. Given the rising challenge of multidrug-resistant MTB strains, the quest for
innovative pharmacological interventions targeting these proteins is more than just opportune but exigent.
Contemporary research has identified a subset of PPE proteins as critical to the virulence and survival of
MTB [42]. These discoveries have laid the groundwork for synthesizing novel pharmacological agents to
inhibit these specific proteins, thereby impeding the pathogen’s lifecycle [42]. The conceptualization of
small molecule inhibitors targeting distinct PPE proteins holds significant promise in disrupting the
pathophysiological processes of TB [75]. Emergent research has brought to light several candidate molecules
with potent efficacy against specific PPE proteins with substantial virulence attenuation in both in vitro and
in vivo models [75]. The exploration of PPE-targeted drug development, elucidated through various case
studies, offers a comprehensive view of both the potential and the challenges inherent in this therapeutic
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approach.

Proline-proline-glutamic acid proteins in vaccine development

Beyond pharmacological interventions, PPE proteins are also the focus of innovative vaccine research. The
inherent immunogenicity and variability of these proteins render them viable candidates for inclusion in
vaccine formulations [76]. Current research endeavors are concentrated on identifying PPE proteins that
elicit robust immune responses to develop a vaccine that surpasses the protection offered by the current
BCG vaccine [77]. Recent advancements have demonstrated that integrating specific PPE proteins into
vaccines enhances immunogenicity, thereby conferring improved protection in preclinical models [78].
These findings are pivotal in steering the development of next-generation vaccines against TB. The field of
PPE protein research is dynamic, with novel discoveries and methodologies continually advancing the field.
Advanced molecular and immunological techniques are currently employed to unravel the intricate
interactions between these proteins and the host immune system [45,73]. Notwithstanding the potential of
PPE protein-targeted therapies, several challenges impede their clinical translation. The genetic
heterogeneity of PPE proteins may limit the effectiveness of therapies aimed at specific variants, posing a
significant hurdle in drug and vaccine development [79]. Moreover, the complexity of the host-pathogen
interaction raises concerns about unforeseen impacts on host immunity [80]. Additionally, the perennial
issue of emerging drug resistance necessitates monitoring and strategic development of new therapeutic
agents. The profound challenge is fully dissociating downstream associations between PPE and PE proteins
to fully inhibit PPE protein activity [81]. The potential of PPE proteins as targets for drug and vaccine
development offers a paradigm shift in TB treatment.

Conclusions

Our investigation into the role of PPE proteins in the pathogenesis of MTB and their therapeutic potential
has yielded significant insights, particularly in the context of the ongoing global TB crisis. The critical role
of PPE proteins in the MTB genome, aiding in immune evasion and promoting bacterial transmission,
emphasizes their influence on the virulence and survival of the pathogen. A pivotal aspect of this research is
the exploration of PPE proteins as therapeutic targets for new TB drug development. The discovery of
compounds effective against these proteins opens promising avenues for transforming TB treatment,
especially amid rising drug resistance. Furthermore, the possibility of integrating PPE proteins into vaccine
strategies, potentially enhancing the efficacy beyond that of the current BCG vaccine, presents an avenue for
future research and development.
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