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Abstract
Artificial intelligence (AI) simulates intelligent behavior using computers with minimum human
intervention. Recent advances in AI, especially deep learning, have made significant progress in perceptual
operations, enabling computers to convey and comprehend complicated input more accurately. Worldwide,
fractures affect people of all ages and in all regions of the planet. One of the most prevalent causes of
inaccurate diagnosis and medical lawsuits is overlooked fractures on radiographs taken in the emergency
room, which can range from 2% to 9%. The workforce will soon be under a great deal of strain due to the
growing demand for fracture detection on multiple imaging modalities. A dearth of radiologists worsens this
rise in demand as a result of a delay in hiring and a significant percentage of radiologists close to
retirement. Additionally, the process of interpreting diagnostic images can sometimes be challenging and
tedious. Integrating orthopedic radio-diagnosis with AI presents a promising solution to these problems.
There has recently been a noticeable rise in the application of deep learning techniques, namely
convolutional neural networks (CNNs), in medical imaging. In the field of orthopedic trauma, CNNs are
being documented to operate at the proficiency of expert orthopedic surgeons and radiologists in the
identification and categorization of fractures. CNNs can analyze vast amounts of data at a rate that
surpasses that of human observations. In this review, we discuss the use of deep learning methods in
fracture detection and classification, the integration of AI with various imaging modalities, and the benefits
and disadvantages of integrating AI with radio-diagnostics.
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Introduction And Background
Artificial intelligence (AI) is a relatively new and upcoming field of computer science that uses algorithms to
mimic human intelligence and assist or augment humans in performing specific tasks [1]. These algorithms
determine the probability of several different outcomes of new data from patterns derived from an extensive
collection of data [2]. The term “machine learning” is used to describe the process in AI that allows these
algorithms to derive patterns from data so as to enhance their operation without depending on definite
programming. “Deep learning” refers to the use of several layers of computing to arrive at a higher level of
information in response to any input.

In the medical field, we have primarily used AI to arrive at image-based diagnoses and determine the
probable outcomes following a treatment modality. There is much scope in the use of AI in radiological
orthopedics, particularly in the detection of fractures, substituting as a service for screening fractures,
assisting in decision-making, and as a second reader support for radiologists [3]. Fractures are a widespread
condition that affects all age groups, and their diagnosis requires vigilance and accuracy to decide the
patient's prognosis. Traditionally, this task relied on the expertise of trained radiologists who took to
analyzing radiographs to detect and classify fractures. This process can be tedious, arbitrary, and vulnerable
to human error. This is especially the case when dealing with subtle or complex fractures that can be easily
missed by the human eye [4]. Human and environmental variables, such as inexperienced clinicians,
weariness, interruptions, suboptimal viewing circumstances, and time constraints, can all play a role in
errors of radiological interpretation. The continuous and uninterrupted assessment of radiographic
images by computers could prove a great help to the field of diagnostic radiology [5].

With the advent of AI, there are possibilities for making more accurate and timely diagnoses with automated
detection, localization, and classification through its ability to uncover insightful patterns from extensive
data collections. This can play to the benefit of the treating doctor in making quick and efficient decisions in
managing the case, assessing the severity of the fracture, and improving the patient outcome. It can also
help in eliminating diagnostic variability between multiple observers [6]. 
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AI's deep learning subfield has revolutionized information technology (IT) by demonstrating significant
potential in applications involving imaging in medicine. Convolutional neural networks (CNNs), which
mimic human visual cortex neurons, and recurrent neural networks (RNNs), two types of deep learning
models, may readily recognize patterns of fractures by acquiring hierarchical representations based on
imagery. Performance optimization and increasing accuracy of fracture detection can be achieved by
training these models using vast, annotated datasets [7]. The subsets of AI relevant to orthopedic radio-
diagnostics are depicted in Figure 1. 

FIGURE 1: Diagrammatic representation of the subsets of AI focused on
in this article
AI, artificial intelligence

The figure is the author’s own creation. 

Review
Search methodology
The researchers systematically investigated and compared the use of various AI techniques in orthopedic
radio-diagnostics for this review paper. All research publications, including systematic reviews,
experimental investigations of current fracture detection tests, and randomized and non-randomized
clinical trials, were included. The researchers also considered additional methods, such as combining AI with
other imaging modalities, and using natural language processing to gather data from patient records and
published medical literature, in order to expedite and enhance the process of fracture detection and
classification. Furthermore, the researchers conducted a comprehensive literature search through a variety
of academic journals and search engines, including Google Scholar, Medline, Cochrane Library, and PubMed,
using keywords such as "convolutional neural networks," "recurrent neural networks," "deep learning
methodology," "ground truth," and "long short-term memory networks." The selection criteria employed in
this study are as follows (Figure 2): (1) AI, (2) radio-diagnostics, (3) orthopedic traumatology, (4) deep
learning methods, (5) CNNs, (6) RNNs, (7) natural language processing, and (8) English language. The
following conditions were excluded: (1) inappropriate topic matter, (2) technical issue, (3) article required
payment, and (4) non-English language. Figure 1 shows a PRISMA flow diagram for the search strategy.
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FIGURE 2: PRISMA flow diagram for inclusion and exclusion criteria
PRISMA: Preferred Reporting Items for Systematic Review and Meta-Analyses

Use of deep learning model in automated detection and localization of
fractures
The use of deep learning models in fracture detection and classification has been on the rise. It has been an
area of much speculation and has shown much promise. Utilizing their capacity to extract intricate patterns
and characteristics from large databases, deep learning models have become practical tools for
increasing the precision and effectiveness of fracture detection. Integrating these models with attention
mechanisms and transfer learning has also led to further advancements in fracture detection. By using
attention processes, the model may concentrate on essential areas or details in a picture, improving its
capacity for discrimination. An attention-guided structure was created to recognize wrist fractures, using
attention maps to emphasize key areas in the X-ray scans. When weighed against conventional CNN
systems, the attention-guided model performed better, offering more precise fracture location and
identification [8]. Fracture detection may also be done using transfer learning, a method that makes use of
models that have already undergone training on massive datasets. In order to fit the goal of fracture
detection and classification, these pre-trained models are refined using datasets relevant to fractures.
Despite having relatively little data, this method improves adaptability and efficiency. High accuracy is
achieved when using transfer learning with pre-trained models to identify fractured hips in X-ray images,
illustrating the promise of transfer learning in fracture diagnosis [9].

Convolutional Neural Networks

These are a machine deep learning approach and have become increasingly popular in radio-diagnostics in
the last few years. CNNs acquire identifying characteristics based on the pixel information of large image
datasets to determine the diagnosis. Deep learning CNNs have become capable of functioning at levels
comparable to humans in non-artificial domains, including face detection, handwriting identification, and
natural-world picture categorization. This is made possible by ongoing advancements in CNN designs
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combined with a geometric rise in the processing capacity of the equipment. Early research using deep-
learning CNNs for diagnosis in the field of medicine has demonstrated potential in classifying masses in
mammograms, classifying pulmonary tuberculosis on chest X-rays, determining skeletal age, and classifying
diabetic retinopathy. Research has also demonstrated the viability of CNNs for radiological detection of
fractures [5]. This is further elaborated in Table 1 by the results of some studies [10-18].

S.No. Author
Year
of
study

Modality
Joint/bone
under
investigation

Description Result

1.
Olczak
et al.
[10]

2017 X-ray
Hand, wrist,
and ankle
joints

Five freely accessible deep learning networks were selected to
determine fractures in 256000 images of wrist, hand, and ankle
radiographs. The best-performing system was compared to a gold
standard for fractures. When examined under identical settings, the
degree of precision of the best network was comparable to that of
two senior orthopedic doctors. Notably, the most frequent reason for
mistakes could have been unclear or missing information in the
image.

Accuracy:
83%

2.
Nicolaes
et al.
[11]

2023 CT Vertebrae

The algorithm effectively identified fractures of the vertebrae in the
cohort of men and women aged ≥50, based on medical data, which
retrospectively picked CT images of the abdomen, chest, and
thoracic/lumbar spine.

Accuracy:
93%;
sensitivity:
94%;
specificity:
93%

3.
Wang et
al. [12]

2022 CT Mandible

Three skilled maxillofacial surgeons served as the standard,
classifying and annotating the CT scans of 686 individuals with
mandibular fractures. Using several CT images, an algorithm
involving two CNNs was developed, verified, and examined. The
algorithm's diagnostic efficacy was assessed by contrasting its
results with the benchmark.

Accuracy:
90%;
AUC=0.956

4.
Yang et
al. [13]

2022 X-ray Scaphoid

A two-step CNN was suggested in this investigation to identify
scaphoid fractures. Utilizing the faster R-CNN network, scaphoid
bone is first isolated from the radiograph. In the subsequent phase,
the feature pyramid network and the convolutional block attention
module are used to create the identification and categorization
algorithms for scaphoid fractures, with the ResNet model serving as
the foundation for obtaining features. The suggested approach's
effectiveness was assessed using a range of measures, including
recall, precision, sensitivity, specificity, accuracy, and AUC. The
findings demonstrated that this technique offered useful benchmarks
for scaphoid fracture measurement.    

Accuracy:
99.70%;
AUC: 0.920

5.
Prijs et
al. [14]

2023 X-ray Ankle

The Mask R-CNN model was used for this study to identify and
classify ankle fractures. Radiographs that had been labeled and
annotated were used for the conditioning of the CNN model. The
ground truth label was determined by three expert trauma surgeons
with fellowships in trauma care. The efficacy of the categorization
was evaluated using diagnostic precision and AUC.

Accuracy:
89%;
sensitivity:
89%;
specificity:
96%.

6.
Oka et
al. [15]

2021 X-rays
Radius and
ulna

The CNN model used in this study is VGG16, which is a trained
model for the identification of images. To locate the fractures in
standard radiographs, it was changed into a network that included
two output layers. While anteroposterior pictures were used to
identify a styloid process fracture, both lateral and anteroposterior
radiographs of the same patient were used to diagnose a distal
radius fracture. The AI was assessed regarding diagnostic
specificity, sensitivity, and accuracy.    

Accuracy for
distal radius
fractures:
98.0±1.6%;
AUC: 0.991;
accuracy for
fractures of
the styloid
process of
the ulna:
91.1±2.5%;
AUC: 0.956

ResNet and VGG, two varieties of CNN methods with varying
network levels, were assessed and contrasted for their ability to Accuracy:

0.793;
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7.
Pranata
et al.
[16]

2020 CT Calcaneum
classify CT images into fracture and non-fracture groups according
to coronal, sagittal, and transverse views. The methodology for
detecting bone fractures included contour tracing, accurate border
recognition, and fracture region comparison through the SURF
approach.

specificity:
0.729;
sensitivity:
0.829

8.
Warin et
al. [17]

2022 X-rays Mandible

Retrospective access of 855 mandibular radiographs from 2016 to
2020 was attained from the local trauma facility. DenseNet-169 and
ResNet-50, CNN-based algorithms for classification, were created to
recognize fractures in the radiographs. An evaluation of the
results was conducted using a test set in conjunction with
comparisons with oral and maxillofacial surgery specialists on a
subset of one hundred images. The models' performance in binary
classification produced encouraging outcomes.  

Sensitivity:
100%;
specificity:
100%; AUC:
90%

9.
Chung
SW et
al. [18]

2018 X-rays
Proximal
humerus

The purpose of the research was to assess CNN algorithms'
performance in identifying and categorizing proximal humerus
fractures based on 1891 plain AP shoulder X-rays. In contrast to the
human participants, the CNN performed better than orthopedic
surgeons and general practitioners, on par with shoulder-specific
orthopedists, and ruled that AI can reliably identify and categorize
proximal humerus fractures on standard AP X-rays of the shoulder.  

Accuracy:
65-86%;
AUC: 0.90-
0.98

TABLE 1: Findings of some studies done in the past seven years demonstrating the successful
integration of CNNs in fracture detection and classification
CT, computed tomography; CNN, convolutional neural network; R-CNN, region-based convolutional neural network; VGG, visual geometry group; AUC,
area under the receiver operating characteristic curve; SURF, speeded-up robust feature

Recurrent Neural Networks

In fracture evaluation, RNNs, specifically, long short-term memory (LSTM) networks, have been
implemented to make use of spatial data as well as serial interconnections. RNNs work effectively in jobs
where informational background and sequence are important considerations. They can be applied for the
accumulation of the extracted traits and for coming to the final diagnosis [19]. In a study conducted by Jasim
K et al. on the identification and categorization of spinal column injuries, employing an osteoporotic
vertebral fractures (OVF) database, the use of a deep RNN was compared against other existing models for
injury classification. Injury identification was carried out using a deep CNN. After the presence and
localization of the same on the vertebral column were determined, the suggested deep RNN was used to
classify the level of the injury into normal, wedge, biconcavity, and crush. If there was no damage, the
procedure was ended. The accuracy, sensitivity, and specificity of the suggested model were assessed, and
the results showed that the deep RNN approach in question outperformed the other methods used to classify
injuries. These values were 0.895, 0.871, and 0.933, respectively [20]. RNNs have also been used in the
analysis of sequentially ordered clinical information, for instance, the time-series information gathered from
sensors worn by patients or from medical files, for the purpose of fracture identification. An LSTM-based
model that uses accelerometer readings to identify stress fractures successfully did so with excellent
precision by capturing temporal trends in the data [21].

Combination of Convolutional Neural Network/Recurrent Neural Network

In terms of obtaining context-sensitive data and features of an image, the integration of CNNs and RNNs has
demonstrated encouraging outcomes because it allows for the incorporation of both spatial and temporal
data. An RNN/CNN hybrid was suggested in research conducted by Tomita et al. on the automated diagnosis
of OVF on computed tomography (CT) images. Radiological characteristics were extracted from every slice
of the scan using a CNN approach. Using an LSTM network, the features retrieved were run through a feature
aggregating component to get the most accurate diagnosis for the entire scan. The outcomes were assessed
against the results of diagnosis from practicing expert radiologists in actual clinical settings. An accuracy of
89.2% was attained by using this proposed method, combining both modalities [19]. Through the utilization
of CNNs' capabilities in analyzing images and RNNs' advantages in serial computation of information, these
hybrid models improve the accuracy of diagnostics and offer a thorough comprehension of fractures. Using
their combined structures in fracture detection shows how these models may enhance medical
investigations and choice-making regarding precision, effectiveness, and speed. These artificial neural
network designs' capacity for fracture detection will be further improved by ongoing developments and the
incorporation of more AI methods [22].
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Use of natural language processing in fracture detection
Automatic techniques for searching medical information have been developed as a result of the increasing
adoption of digital radiography and computerized health records, together with advancements in
information technologies [23,24]. In recent years, the purpose of enhancing the acquisition and
comprehension of pertinent data from reports on patients, radiological notes, and medical texts has led to a
rise in demand for NLP approaches in fracture detection. Natural language processing (NLP) makes it
possible to process and evaluate unstructured textual data automatically, which makes it easier to obtain
information, classify it, and improve decision-making while diagnosing fractures [25]. NLP also provides the
additional benefit of enhancing search performance through automatic machine-learning techniques [26].
NLP-based programs have been tested and used in an exploratory capacity to detect fractures, support
radiology diagnoses, and determine medically meaningful changes. Conventional methods depend on the
laborious and error-prone human assessment and transcription of radiological records. Information related
to fracture type, its site, and any corresponding features may be automatically identified and extracted from
free-text documents through NLP methods like named entity recognition and relationship extraction [27].
Studies have shown that NLP-based programs, such as the X-Ray Artificial Intelligence Tool (XRAIT), may
identify individuals with previous fractures who are susceptible to osteoporosis three times more frequently.
One theory regarding this software's high specificity and accuracy is that it uses a rule-based execution
approach founded on specialist expertise [28]. Wang et al., in a control cohort conducted in 2019,
demonstrated a sensitivity of 93% and specificity of 100% in the automated recognition of fractures at
certain specific skeletal sites, which were related to osteoporosis using a rule-based NLP program [29].

Combining AI with other imaging modalities
AI's ability to work with different radiological modalities, including CT and magnetic resonance imaging
(MRI), has created novel possibilities for precise and thorough fracture identification. Through the
utilization of machine learning algorithms in conjunction with the distinct advantages associated with every
technique, researchers have achieved noteworthy progress in fracture diagnosis, characterization, and
therapy prescription. A more thorough assessment of fractures is made possible by the detailed cross-
sectional pictures that CT imaging gives, especially for complicated fractures. AI systems have been created
to diagnose fractures by analyzing CT scans. On thoracic CT scans, deep learning models can reliably identify
and classify broken ribs, substantially minimizing the time needed for identification and lowering the
likelihood of overlooked and incorrect diagnoses. It is possible to increase the accuracy of rib fracture
diagnosis in chest CT scans with CNN methods [30].

Yet another helpful imaging technique for diagnosing fractures is MRI, which offers superior soft tissue
perception and aids in evaluating soft tissue injuries. Interfacing AI with MRI has demonstrated the
potential to enhance fracture characterization and identification. This study demonstrated how an approach
developed using machine learning techniques could adequately determine the likelihood of a scaphoid
fracture on an MRI based on factors such as gender, age, ulnar deformity, and scaphoid pain. The technique
decreased the amount of patients having to get advanced scanning by a third, with a minuscule chance of
failing to identify a fracture [31]. The conjunction of AI with different imaging techniques presents potential
for digital surgery preparation and simulation. Surgeons can improve operative methods, anticipate fracture
reduction, and assess the durability of stabilization by merging artificial neural networks with pre-operative
scans. While the benefits of merging AI with other imaging modalities are plentiful, there are also concerns
such as technical complexity, the need for scanning technique uniformity, and information compatibility.
Furthermore, research is still being done to create strong AI models that can process multifaceted data as
well as offer trustworthy fracture evaluation [32].

Applications in clinical practice - potential benefits and pitfalls
The previously cited studies of deep learning integration in radiology demonstrate the prospective
advantages of developing and implementing machine learning algorithms in routine practice for both
fracture description and identification. AI has the ability to supplement current radiological methods in a
way that might increase the speed and precision of diagnosis while reducing the demand for professionals
by enabling radiologists to focus on less time-consuming duties [7]. When weighed against experienced
medical professionals, machine learning algorithms can serve as a trustworthy secondary opinion,
increasing overall accuracy and notably lowering the number of overlooked fractures [33]. Machine learning
techniques can also help find inconspicuous or complicated fractures that would be difficult to see with the
human eye. Algorithms powered by AI can help in fracture classification as well as detection, as errors in
classification may result in a substantial effect on planning the management. AI-based classification
systems have the potential for standardizing fracture analysis, producing findings that are accurate and
uniform. This lowers the possibility of incorrect categorization and guarantees the use of successful
therapies that enhance outcomes for patients. Laborious operations may be mechanized by utilizing AI
algorithms, freeing radiologists to concentrate on more complicated analyses, and opening up possibilities
for quicker and simplified diagnostic operations. Moreover, it offers an opportunity to utilize medical assets
better and save costs. AI may result in significant reductions in expenses and effective distribution of
resources in the orthopedic diagnostic department by optimizing the diagnostic procedure, accelerating the
evaluation and reporting process, decreasing needless radiological investigations, and improving efficiency
[34].

2024 Bhatnagar et al. Cureus 16(4): e58364. DOI 10.7759/cureus.58364 6 of 12

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


Pitfalls

AI in fracture diagnosis brings up significant ethical and legal issues that require serious examination. The
increasing prevalence of machine learning methods in medical environments necessitates careful
consideration of ethical considerations, patient rights, anonymity, and confidentiality, as well as compliance
with applicable legislation. Because a recommendation by an AI model lacks an operator interface, is not
readily apparent, and cannot be challenged, a doctor may be hesitant to utilize it. Furthermore, it is still up
for debate as to who might be deemed accountable if the algorithm makes a mistake and does harm,
underscoring the necessity of having the right laws in place [2]. For the purpose of training the
corresponding AI systems, the majority of studies employ databases containing ground truth labels derived
from reports from radiologists. These might contain some inherent inaccuracies and incorrect
interpretations due to human error. Improved and more detailed ground truth labeling might help us create
AI systems that are more exact [35]. Furthermore, these AI algorithms could be able to identify the fracture,
but they might not be able to identify which fractures, for example, might contain a bone tumor [36]. On the
other hand, while reviewing radiographs of fractures, an orthopedic surgeon or radiologist is likely to
identify other pertinent pieces of evidence. In addition, doctors possess the ability to integrate unbiased
criteria and patient preferences into meticulous medical decision-making [37]. Table 2 depicts the summary
of all the studies included in the article.

S.No Authors Year Summary  

1.

Kuo RYL,
Harrison C,
Curran T-A, et
al. [1]

2022
AI and clinicians had comparable reported diagnostic performance in fracture detection, suggesting that AI
technology holds promise as a diagnostic adjunct in future clinical practice.

2.

Langerhuizen
DWG, Janssen
SJ, Mallee WH,
et al. [2]

2019
Preliminary experience with fracture detection and classification using AI shows promising performance,
and AI may enhance processing and communicating probabilistic tasks in medicine, including orthopedic
surgery.

3.  

McKinney SM,
Sieniek M,
Godbole V. et
al. [3]

2020
A robust assessment of the AI system paves the way for clinical trials to improve the accuracy and
efficiency of breast cancer screening and using a combination of AI and human inputs could help to
improve screening efficiency.  

4.

Chan HP,
Samala RK,
Hadjiiski LM,
Zhou C [4]

2020

Deep learning, particularly through the use of hierarchical feature representations learned from data, has
significantly advanced the interpretation of medical images, leading to improved identification,
classification, and quantification of patterns in various medical applications such as image registration,
anatomical/cell structures detection, tissue segmentation, and computer-aided disease diagnosis or
prognosis.

5.

Thian YL, Li Y,
Jagmohan P,
Sia D, Chan
VEY, Tan RT
[5]

2019
The ability of an object detection CNN to detect and localize radius and ulna fractures on wrist
radiographs with high sensitivity and specificity was demonstrated.

6.

Cui Y, Zhu J,
Duan Z, Liao Z,
Wang S, Liu W
[6]

2022
AI can make images of the spine more useful to patients and doctors by improving image quality, imaging
efficiency, and diagnostic accuracy through the convergence of imaging, AI, and radiomic techniques.

7.

Kalmet PHS,
Sanduleanu S,
Primakov S, et
al. [7]

2020
The ways in which deep learning until now has been applied to fracture detection on radiographs and CT
examinations are described and what value deep learning offers to this field is discussed; and future
directions of this technology are commented on.  

8.

Wang X, Peng
Y, Lu L, Lu Z,
Bagheri M,
Summers RM
[8]

2017
In this article, a radiomics-guided transformer is proposed to fuse global image information with local
radiomics-guided auxiliary information to provide accurate cardiopulmonary pathology localization and
classification without any bounding box annotations.

9.

Smets J,
Shevroja E,
Hügle T, Leslie
WD, Hans D [9]

2021

In this article, the authors present a qualitative review of osteoporosis management using machine
learning techniques in complex data environments where the human capacity to identify high-dimensional
relationships is limited, notwithstanding technical and clinical concerns regarding the application of
machine learning methods.
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10.  

Olczak J,
Fahlberg N,
Maki A, et al.
[10]

2017
This study supports the use of orthopedic radiographs of AI, which can perform at a human level, while
current implementation lacks important features that surgeons require.

11.
Nicolaes J, Liu
Y, Zhao Y, et
al. [11]

2023
In order to identify scans with vertebral fractures, the CNN method achieved a sensitivity of 94% and
specificity of 93%. The method may help clinicians identify vertebral fractures early in conventional CT
images of the abdomen and chest, according to the findings of the external validation.  

12.
Wang X, Xu Z,
Tong Y, et al.
[12]

2022

In this paper, the authors evaluated the performance of CNN-based models for the detection and
classification of maxillofacial fractures in CT bone window images. The study concluded that CNNs were
equally dependable and accurate in identifying and categorizing mandibular fractures on CT scans.
Medical professionals will benefit from the expertise provided by the computer program for automatic
identification and categorization of maxillofacial fractures, which will also help to increase diagnosing
performance.    

13.

Yang TH,
Horng MH, Li
RS, Sun YN
[13]

2022
A two-stage CNN is proposed to detect scaphoid fractures using the faster R-CNN network and uses the
ResNet model as the backbone for feature extraction to develop the detection and classification models
for scaphoids fractures.

14.
Prijs J, Liao Z,
To MS, et al.
[14]

2023
In this paper, the mask R-CNN was used for the segmentation of fracture lines on ankle radiographs, and
a mean accuracy of 0.65 (SD±0.16) was observed.

15.

Oka K, Shiode
R, Yoshii Y,
Tanaka H,
Iwahashi T,
Murase T [15]

2021
In this article, the authors developed an AI system capable of diagnosing distal radius fractures with high
accuracy even when learning with relatively small data by learning to use bi-planar X-ray images.

16.

Pranata YD,
Wang KC,
Wang JC,
Idram I, Lai JY,
Liu JW, Hsieh
IH [16]

2019
A computer-aided method for calcaneal fracture detection achieves a faster and more detailed observation
and attains a high precision rate of 86%, with a fast computational performance of 133 frames per
second, used to analyze the severity of injury to the calcaneus.

17.

Warin K,
Limprasert W,
Suebnukarn S,
Inglam S,
Jantana P,
Vicharueang S
[17]

2022
In this article, a two-stage deep learning framework was used to detect mandibular trauma and fractures
in panoramic radiographs, and a comparison was made between the accuracy, specificity, and sensitivity
of AI and general dentists.

18.
Chung SW,
Han SS, Lee
JW, et al. [18]

2018
The CNN showed superior performance to that of general physicians and orthopedists, similar
performance to orthopedists specialized in the shoulder, and the superior performance of the CNN was
more marked in complex 3- and 4-part fractures.

19.

Tomita N,
Cheung YY,
Hassanpour S
[19]

2018
In this paper, an end-to-end pipeline for the detection of osteoporotic compression fractures of the
vertebral body in CT images is presented. However, the method is limited to a single vertebra.

20.
K MJ, Brindha
T [20]

2021

The research paper proposes a model using optimized RNNs for spinal cord injury classification and level
detection, achieving high accuracy, sensitivity, and specificity in experimentation. The experimental
results show that the proposed deep RNN model is better than the existing models in terms of accuracy,
sensitivity, and specificity.

21.

Wang Y, Oyen
D, Guo W
(Grace), et al.
[21]

2021
A deep learning model is proposed to predict the entire sequence of maximum internal stress based on
fracture propagation and the initial stress data, using the temporal independent CNN and the bidirectional
LSTM, to reduce computational cost while preserving accuracy.

22.

Lex JR, Di
Michele J,
Koucheki R,
Pincus D,
Whyne C, Ravi

2023

In this paper, a systematic review and meta-analysis of 39 studies identified similar error rates of hip
fracture diagnosis between AI models and expert clinicians and suggested that there was minimal
advantage of machine learning models over traditional regression techniques for postoperative outcome
prediction.
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B [22]

23.

Hassanpour S,
Bay G,
Langlotz CP
[23]

2017
A natural language processing method to automatically extract clinical findings in radiology reports and
characterize their level of change and significance according to a radiology-specific information model
using a combination of machine learning and rule-based approaches.

24.

Demner-
Fushman D,
Chapman WW,
McDonald CJ
[24]

2009

Natural language processing is utilized in clinical decision support systems to extract and process
unstructured clinical texts, enabling the development of predictive models for disease diagnosis. In this
paper, a module for the extraction and pretreatment of patients' electronic medical record data was
developed, which can be used for preliminary assessment of patient health status, as well as integrated
into existing medical decision support systems.

25.
Névéol A,
Zweigenbaum
P [25]

2017

The paper discusses recent advancements in clinical NLP, highlighting tools for concept recognition, co-
reference resolution, and temporal analysis, crucial for processing biomedical language data. The five
clinical NLP best papers provide a contribution that ranges from emerging original foundational methods
to transitioning solid established research results to a practical clinical setting and offer a framework for
abbreviation disambiguation and co-reference resolution.

26.
Do BH, Wu AS,
Maley J, Biswal
S [26]

2013

The paper discusses developing an NLP system to extract fracture concepts from the text in real time,
demonstrating automatic retrieval of bone fracture knowledge using natural language processing. This
work developed and validated an NLP system. which extracts fracture and anatomy concepts from
unstructured text and retrieves relevant bone fracture knowledge in real time and implements the system
in an HTML5 web application to demonstrate a proof-of-concept feedback NLP system.

27.

Ho-Le TP,
Center JR,
Eisman JA,
Nguyen TV,
Nguyen HT [27]

2017
Artificial neural networks were trained and validated to predict hip fractures in post-menopausal women,
achieving up to 87% accuracy, outperforming existing statistical models.

28.

Kolanu N,
Brown AS,
Beech A,
Center JR,
White CP [28]

2021
Natural language processing of radiology reports, like XRAIT, can efficiently identify patients with
fractures, aiding in fracture detection and treatment prioritization in fracture liaison services.

29.

Wang Y,
Mehrabi S,
Sohn S,
Atkinson EJ,
Amin S, Liu H
[29]

2019

The results verified the effectiveness of the proposed rule-based NLP algorithm in automatic identification
of osteoporosis-related skeletal site-specific fractures from radiology reports and showed it could be
utilized to accurately identify the patients with fractures and those who are also at high risk of future
fractures due to osteoporosis.

30.
Lin Z, Dai W,
Lai Q-Q, Wu H
[30]

2023
In this article, a deep learning-based automatic detection algorithm was developed for rib fracture CT
images of high-energy trauma patients, and the clinical effectiveness of this algorithm was evaluated.

31.

Bulstra AEJ,
Buijze GA,
Bulstra AEJ, et
al. [31]

2022
An algorithm to guide non-orthopedic providers was developed after a review of the medical literature and
fashioned with the aim of reducing complications and poor outcomes associated with delayed diagnosis of
scaphoid fractures, affecting soldier health and unit readiness.

32. Sharma S [32] 2023
AI in orthopedic X-rays shows potential to enhance fracture diagnosis accuracy and efficiency through
advanced algorithms and integration with other imaging modalities, promising improved patient outcomes.

33.
Recht M, Bryan
RN [33]

2017

AI, particularly machine learning, is viewed as a boon to radiologists, enhancing their value, efficiency,
accuracy, and personal satisfaction, rather than posing a significant threat. These changes, particularly
machine learning, will be a boon to radiologists by increasing their value, efficiency, accuracy, and
personal satisfaction.

34.

Brink JA,
Arenson RL,
Grist TM, Lewin
JS, Enzmann D
[34]

2017

The future of radiology is heavily reliant on informatics and IT advancements, impacting decision support,
big data correlation, data mining, and business analytics for improved resource utilization and decision-
making. This article focuses primarily on areas where this IT transformation is likely to have a profound
effect on the practice of radiology, including clinical decision support and business analytics.

35.

Oliveira E
Carmo L, van
den Merkhof A, 2021

In this article, external validation of a CNN on a temporally separate (separated by time) or geographically
separate dataset is crucial to assess the generalizability of the CNN before application to clinical practice
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Olczak J, et al.
[35]

in other institutions.

36.

Rudolph, J.,
Schachtner, B.,
Fink, N. et al.
[36]

2022
Clinically focused multi-cohort benchmarking is crucial for externally validating AI algorithm performance
in basic chest radiography analysis, considering various clinical scenarios, reference standards, and
expert comparisons.

37.
Goodman B,
Flaxman S [37]

2017
It is argued that while deep learning will pose large challenges for the industry, it highlights opportunities
for computer scientists to take the lead in designing algorithms and evaluation frameworks, which avoid
discrimination and enable explanation.

TABLE 2: Summary of studies included in the review
CNN, convolutional neural networks; NLP, natural language processing; XRAIT, X-Ray Artificial Intelligence Tool; IT, information technology; AI, artificial
intelligence; CT, computed tomography

Conclusions
We hypothesize that AI could perform better than humans in many data-driven statistical activities. The
biggest obstacles, though, will be resolving legal concerns and figuring out how to gather and interpret
massive volumes of data effectively. Doctors will gain more from adopting AI than from rejecting it, even
with its current drawbacks. Radiologists' roles are not confined to analyzing AI outcomes; neither do they
substitute a professional clinician’s work. Instead, radiologists might employ AI techniques as an additional
means to verify their uncertainties and choices. Radiologists must have a fundamental grasp of machine
learning and tools that utilize AI to fully combine these fields; further study is required on the link between
doctors and AI, particularly how to teach radiologists to utilize AI technologies and understand their
findings. To enable more precise and quick diagnosis, AI systems need to keep adding medical applications
to their repertoire.
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