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Abstract
Cognitive impairment is an age-associated disorder of increasing prevalence as the aging population
continues to grow. Classified based on the level of cognitive decline, memory, function, and capacity to
conduct activities of daily living, cognitive impairment ranges from mild cognitive impairment to dementia.
When considering the insidious nature of the etiologies responsible for varying degrees of cognitive
impairment, early diagnosis may provide a clinical benefit through the facilitation of early treatment.
Typical diagnosis relies heavily on evaluation in a primary care setting. However, there is evidence that
other diagnostic tools may aid in an earlier diagnosis of the different underlying pathologies responsible for
cognitive impairment. Artificial intelligence represents a new intersecting field with healthcare that may aid
in the early detection of neurodegenerative disorders. When assessing the role of AI in detecting cognitive
decline, it is important to consider both the diagnostic efficacy of AI algorithms and the clinical relevance
and impact of early interventions as a result of early detection. Thus, this review highlights promising
investigations and developments in the space of artificial intelligence and healthcare and their potential to
impact patient outcomes.
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Introduction And Background
With a current report of over 700 million people 65 years of age or older in 2020 and an anticipated doubling
of the number of people within this age group in the United States by 2050, it is important to consider the
current and anticipated prevalence of certain diseases and disabilities [1]. Cognitive impairment is one
specific age-associated disorder to consider.

Cognitive impairment, defined as a decline in cognitive function, can be classified based on the severity of
cognitive decline, loss of learning and memory capacity, and dependence on conducting activities of daily
living [2,3]. Beyond normal age-related manifestations, cognitive dysfunction ranges from mild cognitive
impairment (MCI) to dementia. MCI is identified as a decline in memory and other cognitive abilities [4].
Dementia is identified as a more severe neurocognitive impairment, with a decline in memory, problem-
solving, language, and other higher-level cognitive abilities [5]. MCI is clinically described as a transitional
phase between normal age-related manifestations and dementia [4]. Progression to dementia from MCI has
been estimated to occur in 10% of cases annually [6]. The onset of primary dementia follows a slow
progression as the underlying pathology takes its course. The main underlying etiologies, and therefore
causes of dementia, include Alzheimer’s disease, frontotemporal dementia, Lewy body disease, and
Parkinson’s disease. Vascular dementia, traumatic brain injury, Huntington’s disease, stroke, and prion
disease represent other neurodegenerative etiologies of progressive cognitive dysfunction and dementia [7-
11].

Because of the insidious nature of neurodegenerative disease, many investigations have focused on early
diagnosis and intervention in hopes of improving outcomes for patients [12,13]. Studies have identified the
role of lifestyle modification, risk factor mitigation, and early pharmacological intervention in the
suppression of disease progression [14,15]. The literature continues to suggest that improved diagnostic
capacity, allowing for early intervention, is critical in providing patients with the best outcomes [16,17].

Diagnostic tools for cognitive impairment for many etiologies of dementia include neurocognitive testing,
imaging, cerebrospinal fluid assessment, and biomarker tracking [13,18]. However, despite the availability of
technical diagnostic methods, typical evaluation of dementia is appropriately done in the primary care
setting. Diagnosis is based primarily on the patient’s medical history, with input from close family and
friends, followed by a cognitive and neurological examination as indicated. Considering the subtle nature of
neurocognitive decline, it is reasonable to conclude that screening tools should be established to ensure
early detection and treatment. The 2020 US Preventative Services Task Force came to a similar conclusion,
noting that there was evidence for establishing high specificity and sensitivity screening tools for the
identification of dementia. However, the overall conclusion was that there remains insufficient evidence to
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balance the harms and benefits of cognitive impairment screening [19].

Despite uncertainty on asymptomatic screening, with a predilection away from doing so, screening patients
experiencing memory difficulties and other suggestive symptoms is generally accepted. Beyond screening
based on a patient’s medical history, new novel tools have been explored for evaluation, early detection, and
intervention. These include eye tracking devices, peripheral blood-based measures/biomarkers, passive
assessments of cognition using smartphone and tablet devices, remote cognitive assessments, and
repeatable remote brain assessment using electroencephalography (EEG) [20,21]. Artificial intelligence (AI)
is a rapidly growing field that intersects with medicine on many fronts. Previous investigations have
specifically explored the role of AI in the detection of neurocognitive and neurodegenerative diseases
[22,23]. Other investigations suggest that AI can be leveraged to establish a plan of care for at-risk patients
with different forms of neurodecline [24-28]. Ultimately, the role of AI in health care and specifically in
diagnosing patients with neurodegenerative disorders remains unknown to many clinicians. Furthermore, it
is unclear if earlier detection using AI algorithms sufficiently changes patient outcomes. Thus, we present
this review to highlight the capacity of AI in the early detection of neurodegenerative disorders and to
discuss the evidence regarding early intervention and its impact on patient outcomes. In this review, we aim
to clarify if AI’s capacity for early detection is worth the investment of resources based on how impactful
early intervention is on patient outcomes. Many investigations have demonstrated suboptimal outcomes,
however, the focus of this review will be to highlight promising investigations and developments in the
space of artificial intelligence and healthcare and their potential to impact patient outcomes.

Review
Mild cognitive impairment (MCI)
MCI represents a predementia phase of disease in patients with symptomatic cognitive and functional
impairment. Although primarily focused on Alzheimer’s disease being the underlying pathological basis of
the intermediate level of impairment, many other neurodegenerative disorders have been implicated for
MCI in more recent investigations [29-31].

Several studies have explored the use of AI machine-learning models for the detection of MCI (Table 1). One
study specifically leverages the abnormal patterns of emotion and difficulties with facial muscle control
found in patients with MCI [32-35]. Fei et al. utilized a Support Vector Machine model for MCI detection in
the early stages [36]. They demonstrated a detection accuracy of 73.3%.

Reference Disorder AI model Training modality Accuracy

Fei et al. (2022) [36] MCI SVM, MobileNet Facial expressions 73.30%

Kang et al. (2019) [37] MCI ANN NPT data 96.66%

Boettcher et al. (2020) [38] MCI, AD SVM Clinical data 77.17%

Ghoraani et al. (2021) [39] MCI, AD SVM Clinical data 91%

Goenka and Tiwari (2022) [40] AD CNN MRI 98.30%

Almubark et al. (2020) [41] AD MLP Cognitive data 92.98%

Fulton et al. (2019) [42] AD GBM, ResNet-50 MRI 99%

Odusami et al. (2022) [43] AD DenseNet201, ResNet18 MRI 98.86%

Pan et al. (2020) [44] AD CNN MRI 84%

Hazarika et al (2022) [45] AD DNN, DenseNet, Residual Networks, Inception-V1, V2, V3 MRI 90.22%

Mathotaarachchi et al. (2017)
[46]

AD RUSRF MRI, PET 84%

Naganandhini et al. (2019)
[47]

AD DTC-HPT MRI 99%

Pekkala et al. (2017) [48] AD SVM
MRI, CT, Clinical
data

95%

Bron et al. (2014) [49] AD Linear SVM MRI, PET 89-90%

Herzog et al. (2021) [50] AD SVM, KNN, LD, NB MRI 77-93%

Venugopalan et al. (2021) [51] AD SVM, KNN, DL, RF, DT MRI, Clinical data 68-89%

Battineni et al. (2020) [52] AD SVM, RF, GBM, AdaBoosting, LR, NB MRI
95.96-
97.58%

El-Sappagh et al. (2021) [53] AD RF MRI 94.40%
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Shimoda et al. (2021) [54] AD RF, LR, XGBoost Clinical data 86.3-89.3%

Sabry et al. (2022) [55] AD SVM, KNN, LR, LDA Clinical data 90.1-91.8%

Miltiadous et al. (2021) [56] AD SVM, KNN, RF, DT, ANN, NB EEG 80-99.1%

Danso et al. (2021) [57] AD RF, XGBoost Clinical data 85-87%

Byeon (2020) [58] AD, PD RF MRI 73.30%

Ni et al. (2021) [59] LBD, AD ResNet-50 SPECT 71-90%

Bougea et al. (2022) [60] LBD, PD SVM, KNN, binomial logistic regression, NB, Ensemble Clinical data
82.05-
91.2%

Boutet et al. (2021) [61] PD ML model MRI 88%

Signaevsky et al. (2022) [62] PD CNN WSI 99%

Juutinen et al. (2020) [63] PD
SVM, RF, KNN, LR, LDA, NB, Classification tree, Ensemble,
Gaussian Kernel

Clinical data 74.1-84.5%

Hu et al. (2021) [64] FTD, AD CNN MRI
89.86-
93.45%

Garcia-Gutierrez et al. (2022)
[65]

FTD, AD SVM, KNN, GBM, DT, NB, RF PET, Clinical data 82.9-85.4%

TABLE 1: Overview of papers utilizing artificial intelligence for early detection of
neurodegenerative disorders.
MCI: mild cognitive impairment; AD: Alzheimer’s disease; PD: Parkinson’s disease; LBD: Lewy body dementia; FTD: frontotemporal dementia; SVM:
support vector machines; ANN: artificial neural network; CNN: convolutional neural network; MLP: multilayer perceptron; GBM: gradient boosting
machine; RUSRF: random under-sampling random forest; DTC-HPT: decision trees classifier hyperparameter tuning; KNN: k-nearest neighbors classifier;
LD: linear discriminant; NB: Naïve Bayes; DL: deep learning; RF: random forest; DT: decision trees; ML: machine learning; NPT: non-linear projection
trick; MRI: magnetic resonance imaging; PET: positron emission tomography; CT: computerized tomography; EEG: electroencephalogram; SPECT: single-
photon emission computed tomography; WSI: whole-slide images

Kang et al. utilized the Seoul Neuropsychological Screening Battery, a tool commonly used in Korea for
cognitive function assessment in patients with neurological disorders, to develop an algorithm for
differentiating and therefore detecting cognitive impairment in patients [37]. Their model demonstrated
79% accuracy in the three-way classification of normal cognition vs. MCI vs. Alzheimer’s disease dementia
and 96.66% accuracy in the detection of MCI.

Boettcher et al. and Ghoraani et al. both conducted investigations for the detection of MCI using gait data
from the dual-task assessment. With the use of a Support Vector Machine and gradient tree boosting
machine learning models, they demonstrated an accuracy of MCI detection ranging from 78% to 81.52%
[38,39].

With promising developments in AI-based early detection of MCI, it is reasonable to anticipate better
outcomes for patients because of the capacity for early intervention. Despite no specific treatment for MCI,
there is evidence suggesting the benefits of early intervention. Memory training and cognitive training have
both demonstrated improvements in memory functioning and enhanced brain activity on neuroimaging [66-
68]. Previous research has also demonstrated the capacity of traditional Chinese medicines to delay the
transition to Alzheimer’s disease from MCI [69]. Considering the evidence of improved outcomes with
earlier intervention, advancements in AI for the detection of MCI have the potential to play a major role in
the overall care of patients experiencing neurocognitive decline.

Alzheimer’s disease (AD)
AD is a neurodegenerative disorder responsible for the majority of cases of adult-onset dementia [70].
Initially presenting with mild symptoms of short-term memory loss, as AD progresses, patients experience a
gradual loss of memory, changes in personality, and other changes in brain function including problem-
solving, executive functioning, and judgment [71]. The literature regarding the use of AI for the diagnosis of
neurodegenerative decline majorly focuses on AD (Table 1). Almost all previous works utilized AI in
conjunction with imaging and/or cognitive datasets.

Goenka and Tiwari utilized a deep convolutional neural network technique with the incorporation of
regularization algorithms to achieve three-class categorization of AD, MCI, and normal control whole brain
volumetric scans [40]. They demonstrated an accuracy of 98.26% in differentiating between the three classes
of neurocognition. Another study utilized convolutional neural networks and deep learning for early
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diagnosis of AD with accuracy ranging from 93.61% to 97% respective to stage classifications of the disorder
within the paper [72]. Similarly, Almubark et al. demonstrated a 92.98% accuracy in diagnosing AD using
cognitive data with convolutional neural networks [41]. Fulton et al. and Odusami et al. demonstrated nearly
100% accuracy in detection in their investigations for classifying AD stages with DenseNet and ResNet using
the clinical dementia ratio and mini-mental state examination tests [42,43]. Many other studies have
proposed novel approaches for early diagnosis of AD using magnetic resonance imaging (MRI) [44-53,58],
and electroencephalogram (EEG) [38,39,54-57].

Evident by the number of investigations and the demonstration of high accuracy by the many different
proposed algorithms, the use of AI as an aid for the early diagnosis of AD by future clinicians is a reasonable
expectation as this area of research continues to grow and prove its efficacy. Despite no definitive treatment
of AD, there is evidence that early treatment preserves cognition, behavior, and functional independence in
patients. Early treatment with donepezil demonstrated cognitive stabilization and improvement in several
control trials [73-76]. Others have demonstrated the efficacy of early treatment with cholinesterase
inhibitors [77]. Many other treatment options are currently available for mild and severe cases of AD, but
more investigations are required to assess their efficacy early on [78]. In either case, with the continuous
introduction of new novel therapeutics for managing AD, early diagnosis is becoming increasingly important
for optimizing patient outcomes. With this understanding, it is clear that advances in AI in healthcare, with
respect to early diagnosis of AD, have the potential to play a major role in the overall management of
patients experiencing this major category of neurocognitive and functional decline.

Frontotemporal dementia (FTD)
FTD is commonly underdiagnosed as symptoms of the disease overlap with different psychiatric
manifestations. FTD clinically presents with features of behavior deficit, language deficits, and/or executive
function decline [79]. Because of the overlap in clinical presentation, FTD is challenging to diagnose as it
must be differentiated from AD and other etiologies of neurocognitive decline. Different algorithms have
been explored on this front, but each has presented with different levels of difficulty (Table 1). Some
investigations have specifically explored deep learning techniques for differentiating between FTD and AD,
but the results remain inconclusive [64]. Deep-learning-assisted diagnostic investigations have
demonstrated promising findings but are difficult to apply because they rely on expert-level pre-processing
[80]. Genetic algorithms have been successful in differentiating between the two, mimicking etiologies of
dementia using machine learning [65]. However, it is clear that further research is required before
definitively understanding the potential role of AI in the early diagnosis of FTD.

Despite the necessity of growth in the intersection between AI and healthcare for the management of FTD, it
is still crucial to understand if an early diagnosis, beyond what clinicians are currently capable of, could
provide value to patients. Unfortunately, there is no indication that an early diagnosis would provide a
benefit to patients. There are currently no treatment or management options to decrease the progression of
FTD. Current management approaches focus on symptomatic treatment using off-label medications [81].
Although efficacious in some circumstances, there is limited control trial evidence supporting the use of
these medications. Furthermore, these medications are not expected to play a role in minimizing the
progression of the disease because they do not target the underlying pathophysiology of FTD [82-89]. With
an unclear understanding of management and treatment options for patients with FTD, it is not expected
that the use of AI for early detection will play a relevant role in patient care. However, if novel treatment
approaches demonstrate efficacy at early points of disease presentation, the use of AI for early diagnosis
should be explored.

Parkinson’s disease (PD)
PD is a neurodegenerative disorder characterized by bradykinesia and the presence of a resting tremor,
rigidity, or similar symptom. PD is a progressive disorder but has a slow onset. Patients typically present
with tremors, followed by cardinal features of rigidity and bradykinesia [90,91]. Boutet et al. utilized MRI for
the implementation of a machine-learning model for the detection of PD [61]. Signaevsky et al. utilized
whole slide images for the implementation of a conventional neural network for the detection of PD [62].
Others have developed algorithms for PD detection with the incorporation of clinical data [55,63] and MRI
[58]. Accuracy ranges for these investigations were from 74% to 99% (Table 1). Despite a wide range in
accuracy across these investigations, reasonable strides have been made to demonstrate the utility of AI in
the early detection of PD. To evaluate the relevance AI will have in patient management, the impact of early
detection on outcomes of patients with PD needs to be explored.

Previous literature has established that early treatment of PD is crucial in slowing both the progression and
symptomatic manifestations of the disease. Targeted for the management of motor and non-motor
symptoms, clinical trials have studied the efficacy of early intervention of PD using rasagiline, ropinirole,
pramipexole, and rotigotine [92-95]. However, an important and specific consideration must be made
regarding the initiation of early intervention in patients with PD. Many therapeutic options for these
patients come with a reasonable risk of additional side effects [96,97]. Outside of pharmacological treatment,
physical therapy, speech therapy, and exercise are all early interventions for effective symptom management
[98].

Considering the efficacy of early pharmacological and non-pharmacological treatment options for patients
with PD, early detection plays a relevant role. Because of this, the role of AI in the early detection of PD is
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clinically relevant and will likely grow in importance as future investigations demonstrate more streamlined
and efficient approaches compared to the current diagnostic standard.

Lewy body dementia (LBD)
LBD is a progressive neurodegenerative disorder that clinically presents with features of both dementia and
PD. Typically, patients will present with dementia prior to motor signs and visual hallucinations [99].
Similarly to what has been discussed in the case of FTD, LBD is challenging to diagnose because of its
clinical similarities to many different etiologies of dementia. Differentiation of LBD from AD has been
achieved using deep learning models leveraging medical experience as a concatenation layer [60]. Other
investigations have capitalized on machine learning algorithms that rely on easily attainable, non-invasive
predictors such as imaging and patient surveys [59,100]. Accuracy for the discussed investigations ranged
from 82.05% to 91.2% (Table 1). Although the literature is modest in this subtype of neurodegenerative
decline, findings suggest a reasonable role for AI in the early detection of LBD. However, the clinical
relevance of early detection depends on the efficacy of early treatment.

Early intervention for patients with LBD is imperative because it is most responsive early in its disease
course [101]. The efficacy of early treatment of LBD has been demonstrated with memantine, rivastigmine,
olanzapine, and Yokukansan [102,103]. Of the discussed etiologies of neurocognitive decline, early detection
with AI may be most beneficial in the context of LBD. Because of the importance of early intervention and
treatment, earlier detection of LBD is critical in optimizing outcomes for patients and improving the quality
of care.

Conclusions
The impact of early treatment for different pathologies responsible for cognitive decline emphasizes the
importance of early detection for maximizing patient outcomes. The role of AI in the early detection of
cognitive decline is becoming increasingly relevant as novel algorithms continue to demonstrate increased
levels of efficacy. However, it is important to recognize that many factors, such as differences in data set size
and modalities, reduce the reproducibility of the findings of these studies. It is also important to recognize
that reported accuracy may not be the best figure to demonstrate the efficacy of the proposed AI models in
detecting neurodegenerative disease. In addition, the lack of clinical application makes it unclear how truly
feasible and efficacious these models are. Lastly, the role of early detection, and therefore the role of AI
algorithms in that space, may not currently be relevant, regardless of model efficacy, in pathologies with no
definitive treatment or evidence of improved outcomes with early intervention. Despite this, future
investigations should continue to explore the efficacy of early treatment for all pathologies and the role of
AI in the early detection of these pathologies to facilitate earlier intervention.
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