
Review began 09/10/2023 
Review ended 09/11/2023 
Published 09/20/2023

© Copyright 2023
Arslan et al. This is an open access article
distributed under the terms of the Creative
Commons Attribution License CC-BY 4.0.,
which permits unrestricted use, distribution,
and reproduction in any medium, provided
the original author and source are credited.

From Pixels to Pathology: Employing Computer
Vision to Decode Chest Diseases in Medical
Images
Muhammad Arslan  , Ali Haider  , Mohsin Khurshid  , Syed Sami Ullah Abu Bakar  , Rutva Jani  , Fatima
Masood  , Tuba Tahir  , Kyle Mitchell  , Smruthi Panchagnula  , Satpreet Mandair 

1. Department of Emergency Medicine, Royal Infirmary of Edinburgh, National Health Service (NHS) Lothian,
Edinburgh, GBR 2. Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, Gujrat, PAK 3.
Department of Microbiology, Government College University Faisalabad, Faisalabad, PAK 4. Department of Internal
Medicine, Youjiang Medical University for Nationalities, Baise, CHN 5. Department of Internal Medicine, C. U. Shah
Medical College and Hospital, Gujarat, IND 6. Department of Internal Medicine, Gulf Medical University, Ajman, ARE 7.
Department of Business Administration, Iqra University, Karachi, PAK 8. Department of Internal Medicine, University
of Science, Arts and Technology, Olveston, MSR 9. Department of Internal Medicine, Ganni Subbalakshmi Lakshmi
(GSL) Medical College, Hyderabad, IND 10. Department of Internal Medicine, Medical University of the Americas,
Charlestown, KNA

Corresponding author: Ali Haider, alihaider535@gmail.com

Abstract
Radiology has been a pioneer in the healthcare industry's digital transformation, incorporating digital
imaging systems like picture archiving and communication system (PACS) and teleradiology over the past
thirty years. This shift has reshaped radiology services, positioning the field at a crucial junction for
potential evolution into an integrated diagnostic service through artificial intelligence and machine
learning. These technologies offer advanced tools for radiology's transformation. The radiology community
has advanced computer-aided diagnosis (CAD) tools using machine learning techniques, notably deep
learning convolutional neural networks (CNNs), for medical image pattern recognition. However, the
integration of CAD tools into clinical practice has been hindered by challenges in workflow integration,
unclear business models, and limited clinical benefits, despite development dating back to the 1990s. This
comprehensive review focuses on detecting chest-related diseases through techniques like chest X-rays
(CXRs), magnetic resonance imaging (MRI), nuclear medicine, and computed tomography (CT) scans. It
examines the utilization of computer-aided programs by researchers for disease detection, addressing key
areas: the role of computer-aided programs in disease detection advancement, recent developments in MRI,
CXR, radioactive tracers, and CT scans for chest disease identification, research gaps for more effective
development, and the incorporation of machine learning programs into diagnostic tools.

Categories: Radiology, Infectious Disease, Pulmonology
Keywords: machine learning, artificial intelligence, nuclear medicine, ultrasounds, ct scans, mri, lesion detection,
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Introduction And Background
Radiology stands out as a medical field that swiftly embraced digital technology. From the 1970s onwards,
various techniques such as computed tomography, positron emission tomography, digital mammography,
single photon emission computed tomography, magnetic resonance imaging, digital ultrasound, and
computed radiography have progressively gained significance in radiology. Initially, film copies were
employed for the scrutiny, distribution, and preservation of these digital images. However, the late 1990s
marked the inception of a transition towards a film-free, digital paradigm within radiology operations [1,2].
This shift gained momentum as retrieval, display, and transmission methods evolved, ushering in digital
information storage techniques. Notably, the picture archiving and communication system (PACS) has
entirely supplanted conventional X-ray film usage [3]. The healthcare system at large now enjoys extensive
access to X-ray images as a result of substantial investments in digital technology within the radiology
domain [4]. The advent of digital radiography has paved the way for significant strides in image-guided
surgery and radiation therapy. However, it wasn't until the emergence of teleradiology that radiology could
extend its reach on a global scale [5,6]. Teleradiology has now become the standard of care in numerous
countries, including the United States. To effectively brace themselves for the forthcoming technological
disruption brought about by artificial intelligence and machine learning (ML), radiology services have
amassed vast repositories of digital images, some of which are stored in cloud-based archives.

During the mid-1980s, researchers in the radiology field embarked on their exploration of computer-aided
diagnosis (CAD) as a tool intended to assist radiologists [7]. Subsequently, machine learning methods have
gained prominence, especially since the mid-2000s, and they have now established widespread utility in
situations demanding data categorization and analysis. The realm of machine learning (ML) has witnessed a
remarkable surge in related articles, escalating from a mere few thousand in the early 2000s to
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approximately 35,000 by 2018. Impressively, around 85% of these articles have centered on the application
of neural networks [8]. Diverse domains, including geosciences, drug development, quantum chemistry,
autonomous vehicles, computational biology, and astronomy, have harnessed the capabilities of neural
networks. Within the radiology community, several CAD tools have been developed, showcasing notable
levels of sensitivity and specificity. Nonetheless, despite these advancements, a significant portion of these
concepts have not been translated into practical clinical implementation within the radiology domain. The
advent of digital mammography and its proven efficacy has fueled optimism among medical practitioners
regarding breast cancer screening. Many clinicians are enthusiastic about incorporating CAD technology
into their clinics. Simultaneously, there exists a perspective that the introduction of these innovative
technologies may potentially render radiographers obsolete. In 2017, under the guidance of the Interagency
Working Group on Medical Imaging and the Committee on Science, the National Science and Technology
Council formulated a strategic blueprint to steer the trajectory of future imaging research and development
[9]. This document strives to anticipate transformations across four pivotal facets of medical imaging
research. Examples encompass the promotion of imaging services, streamlined patient referrals to these
services, workflow restructuring to amplify efficiency, and the propagation of best practices within medical
imaging.

Review
Service description: radiology operations
The intricate nature of radiology services significantly contributes to their current low productivity levels. A
substantial enhancement in overall productivity and efficiency is imperative. The radiology department
operates within a complex framework, involving multiple tiers of staff, diverse equipment types, and time-
critical information management. These factors collectively facilitate the delivery of therapeutic services to
referring physicians and their patients. Each day, the average radiology department performs approximately
fifty distinct types of imaging tests, spanning across various regions of the body. This diverse range of tests
is facilitated by numerous imaging modalities, such as magnetic resonance imaging, nuclear medicine,
computed tomography, positron emission tomography, ultrasound, and traditional radiography systems. A
pivotal component in this operational landscape is the radiology information system (RIS) or picture
archiving and communication system (PACS). These systems store and facilitate the sharing of digital
images, efficiently managing the acquired images [10]. Referring physicians play a vital role in initiating
imaging investigations, considering the patient's symptoms and medical history. In this intricate ecosystem,
a radiologist, a medical specialist adept in utilizing imaging techniques for diagnosing and treating diseases,
assumes a central role. Once an imaging study concludes within the imaging system, the PACS orchestrates
the compilation of all images. It subsequently generates a tailored work list for each radiologist, aligning
with the radiologist's specific area of expertise and conforming to the department's established protocols
and procedures [4] (Figure 1).
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FIGURE 1: Radiology uses dozens of imaging modalities.
Note: This image is the author's own creation.

As outlined in the study, a significant portion of a radiologist's time is dedicated to tasks such as analyzing
and interpreting images, crafting reports, and engaging in consultations with referring physicians and
patients [11]. The education of residents and fellows presents a substantial responsibility for academic
departments. The duration required for comprehending various studies can notably vary based on the
specific area under investigation. The research underscores that radiologists possess a notable proficiency in
identifying anomalies within images [12]. In recent years, the time allocated by radiologists for image
interpretation has shown a consistent upward trend. This trend corresponds to the evolving landscape of
imaging technology, which has led to an increase in the volume of images acquired for each diagnostic
investigation. For instance, spanning from 1999 to 2010, the average count of images obtained during a
computed tomography (CT) scan surged from 82 to 679. Similarly, the count of magnetic resonance imaging
scans performed witnessed an escalation from 164 in 2012 to 570 in 2015 [13]. These accumulated images
can be compared over varying time periods to assess whether a patient's health has progressed or declined.
However, this manual comparison process demands substantial effort from radiologists [14,15]. In most
cases, picture archiving and communication system (PACS) and radiology information systems (RIS) utilize
speech recognition technology to automatically generate reports once the radiologist completes the
interpretation of a study. While there are rare instances where the information might stand alone, the
generated report frequently serves as a point of reference for subsequent investigations [16]. A
comprehensive understanding of the patient's condition necessitates the integration of various diagnostic
tools, including radiological imaging, blood chemistry tests, and tissue samples. This amalgamation is
crucial in forming a holistic view of the patient's health status.

Deep learning for CXR image-based chest disease detection
Several distinct computer-aided diagnosis (CAD) systems are available, each possessing its own distinct
approach to identifying lung diseases. Timely diagnosis and intervention hold the potential to effectively
manage chest diseases, particularly when detected at an early stage. The advanced stages of diseases, such as
tuberculosis (TB), pneumonia, and COVID-19, often lead to more severe consequences. Chest X-ray (CXR)
scans can exhibit one of three primary types of abnormalities. Firstly, there are abnormalities in texture,
discernible through widespread alterations in the visual appearance and structure of the region. The second
type, referred to as aberrant form anomalies, is characterized by deviations from the usual overall
morphology. Lastly, focal abnormalities manifest as localized shifts in density within the image. This article
undertakes a comprehensive survey of recently reported deep learning (DL) approaches, categorizing them
based on the specific disease types they were developed for. The selection of diseases included in this survey
is based on the mortality and prevalence rates provided by the World Health Organization (WHO) (Figure 2).
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FIGURE 2: Deep learning for CXR image-based chest disease detection.
CXR: chest X-ray. Note: This image is the author's own creation.

Pneumonia detection
Radiologists often encounter a complex challenge when attempting to identify pneumonia using
CXR images. Pneumonia can exhibit similar characteristics to other illnesses or might even appear
unremarkable in certain individuals [17]. For instance, a fully connected layer Swin transformer model has
been employed to extract features from CXR images for pneumonia detection [18]. This model was trained
using data from the pediatric-CXR and ChestX-ray8 datasets, and its performance was evaluated alongside
that of deep convolutional neural network (DCNN) models. Through the implementation of image
enhancement and data augmentation techniques, the provided model's accuracy increased from 87.30% on
ChestX-ray8 to 97.20%. Another approach involves CXR image classification utilizing a deep convolutional
neural network (CNN) model enriched with attention mechanisms, focusing on two classes: normal and
pneumonia [19]. Training this model, ResNet50 with attention achieved an accuracy of 95.73% when using
images from the pediatric-CXR dataset. Using CXR images from the Radiological Society of North America
(RSNA)-pneumonia-CXR dataset, two deep convolutional neural network models (Inception-V4 and
ResNet-50) were employed for the binary classification of pneumonia patients through transfer learning [20].
During validation, accuracy reached 94.00%, with Inception-V4 surpassing ResNet-50.

In the context of pneumonia detection, the development of the 121-layer convolutional network CheXNet is
notable [21]. This network is designed to detect and localize areas of the lungs affected by pneumonia. By
fine-tuning the model, researchers replaced the last fully connected layer with a single-output layer after
training on the ChestX-ray14 dataset. CheXNet achieved an area under the curve (AUC) of 76.80%,
demonstrating its effectiveness. Another research avenue involves the use of transfer learning to create a
computer-aided diagnosis (CAD) system for binary pneumonia categorization [22]. An ensemble approach
using three separate DCNN models (GoogleNet, DenseNet-121, and ResNet-18) was employed alongside a
five-cross-validation process. Utilizing the freely available pediatric-CXR and RSNA-pneumonia-CXR
datasets, the proposed model achieved an accuracy of 98.81% on the pediatric-CXR dataset and 86.86% on
the RSNA-pneumonia-CXR dataset (Figure 3).
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FIGURE 3: Proposed mechanism of the pneumonia detection
framework.
Reproduce under the terms of the Creative Commons Attribution License from Reference [22]. Copyright 2021
PLoS ONE.

In the pursuit of classifying images as either normal or indicating pneumonia, researchers leveraged binary
classification techniques on a dataset of 5,856 chest X-ray (CXR) images sourced from the pediatric-CXR
dataset [23]. Data augmentation techniques were employed as a means of expanding the dataset. Through
these efforts, a custom convolutional neural network (CNN) was trained using the accumulated data to
accurately detect instances of pneumonia, achieving an accuracy rate of 83.38%. Further advancements in
research have aimed to distinguish between viral and non-viral pneumonia through confidence-aware
anomaly detection [24]. This investigation heavily relied on the X-viral and X-COVID-19 CXR databases. The
former contained 5,977 images showcasing viral pneumonia cases, while the latter encompassed 37,393
images illustrating non-viral pneumonia cases. Additionally, the second dataset comprised 107 images that
were not infected with COVID-19 and 106 images that were infected. JF Healthcare's telemedicine software
was deployed across 390 hospitals for both datasets. The proposed confidence-aware anomaly detection
(CAAD) model exhibited robust performance, boasting a high area under the curve (AUC) value of 87.57%.
This AUC value signifies the model's efficacy in identifying instances of viral pneumonia. The utilization of
an 18-layer deep convolutional neural network (CNN) method facilitated the categorization of CXR images
into pneumonia or normal categories [17]. This task was executed using the pediatric-CXR dataset. The
resultant model achieved an impressive sensitivity (SEN) of 99.50%, accuracy (ACC) of 94.39%, and
specificity (SPE) of 86.00%.
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In a similar vein, another study employed the pediatric-CXR dataset to train a deep convolutional neural
network (DCNN) model for extracting features and diagnosing pneumonia [25]. Various data manipulation
techniques, including resizing, flipping, and rotation, were applied to alter the dataset. The model was
subjected to testing scenarios involving dropout and augmented data. The model's performance was notably
enhanced through the integration of dropout mechanisms and augmented data, ultimately achieving an
accuracy of 90.00%. In the realm of clinical decision support systems for medical imaging, trust and
comprehension concerns prevail. This study introduces a deep learning-based diagnostic tool to detect
potentially treatable forms of common retinal diseases that could lead to blindness. Through a transfer
learning approach, this method requires significantly less data than is typically necessary to train neural
networks. The application of this approach to an optical coherence tomography image database produced
competitive findings with those derived from human experts in diagnosing diseases like age-related macular
degeneration (AMD) and diabetic macular edema (DME). Additionally, the study showcases the AI system's
potential by employing it for the diagnosis of juvenile pneumonia through chest X-ray images. This
approach holds the promise of enhancing therapeutic outcomes by expediting the identification and referral
of patients with treatable illnesses (Figure 4) [26].

FIGURE 4: Mechanism of disease diagnosis by image-based deep
learning.
Reproduced with permission from Reference [26]. Copyright 2018 Elsevier.

An accuracy (ACC) of 90.70% was achieved through the utilization of the Inception-V3 model, along with a
positive predictive value of 92.80% in identifying normal cases while assessing the likelihood of viral vs.
bacterial pneumonia. Additionally, a new deep convolutional neural network (DCNN) model was proposed
and trained using the pediatric-CXR dataset, with the aim of identifying and classifying instances of
pneumonia [27]. To address overfitting and generalization errors caused by the dataset's limited size, several
data-augmentation techniques were applied. Remarkably, the model exhibited a relatively high accuracy rate
of 93.73%.

Pulmonary nodule detection
According to the World Health Organization, lung cancer has a high mortality rate, ranking as the leading
cause of death among males and the third among females [28]. Lung nodules serve as indicators of lung
cancer, and early detection through imaging technology is crucial for effective treatment and preventing
metastasis and further complications. Multiple studies have highlighted the potential of deep learning (DL)-
based systems to assist radiologists in detecting lung nodules within diagnostic images. Among various
imaging techniques, X-ray radiographs are particularly suitable for applying DL algorithms to medical image
analysis. Notably, multi-center research has revealed that radiologists aided by DL-based convolutional
neural network (CNN) systems demonstrated an improvement of over 5% in sensitivity (SEN) when
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identifying malignant lung nodules, compared to radiologists not using such systems [29]. Upon integrating
the recommended deep convolutional neural network (DCNN) program, radiologists observed an increase in
productivity from 65.10% to 70.30%. Researchers constructed a model based on the ResNet architecture for
detecting treatable lung cancer (Figures 5a, 5b). Through a series of transformations, including cropping,
scaling, and rotation, they augmented their dataset of 17,211 CXR images to a substantial 600,000. The
model exhibited a sensitivity of 76.80% in detecting lung cancer, while the sensitivity of six radiologists
reached only 73.20% [30].

FIGURE 5: (a) Shows examples of lung cancer that were overlooked by
DLM and by humans. A lung carcinoma of 1.8 cm in size was found by
DLM in the left upper lobe but was hidden by the left first costal
cartilage. (b) However, none of the human onlookers saw anything out
of the ordinary. A lung carcinoma measuring 3 cm is seen in the
retrocardiac region and the left lower lobe. Six human observers saw
the lung mass, but DLM didn't see the abnormalities.
DLM: deep learning model. Reproduced with permission from Reference [30]. Copyright 2019 Wolters Kluwer
Health. 

Researchers have harnessed deep learning (DL) techniques to automatically classify lung nodules as either
normal or pathological [31]. Through the utilization of the Japanese Society of Radiological Technology
(JSRT) dataset's 180 segmented chest X-ray (CXR) images (comprising 90 non-nodule and 90 nodule
images), a custom deep convolutional neural network (CNN) model was trained and validated. The
architecture was enhanced through data augmentation techniques to mitigate overfitting. The model
demonstrated a relatively high accuracy (ACC) of 86.67%.

Employing the ResNet-50 model, images from the JSRT dataset were categorized into "no nodule," "benign
nodule," or "malignant nodule" categories [32]. The model showcased a sensitivity (SEN) of 92.00% and a
specificity (SPE) of 86.00%. Another study employed a substantial dataset of 479,745 CXR scans from a
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hospital imaging repository [33]. Incorporating attentional feedback into a CNN, the benchmark model
achieved a precision (PRE) of 92.00%, a sensitivity (SEN) of 78.00%, an ACC of 85.00%, and an F1-score of
85.00%. In a comparative analysis, a dataset comprising 411 CXR images was employed to train a DCNN
RetinaNet model [34]. This model was tested against two radiologists to determine their efficiency in
spotting lung nodules in segmented images. Remarkably, RetinaNet's area under the curve (AUC) of 87.00%
surpassed that of both human radiologists. Further research explored the utility of DL within the picture
archiving and communication system (PACS) at the Third Hospital of Peking University. A dataset of 1,881
chest X-rays (923 diagnosed and 958 normal with pneumoconiosis) was employed for training the Inception-
V3 model with fine-tuning. The Inception-V3 model exhibited an AUC of 87.80%, outperforming the AUCs
(66.80% and 77.20%) of two human radiologists [35].

Developing a lung nodule detection system based on DenseNet architecture, researchers utilized the JSRT
dataset's CXR images after preprocessing steps such as lung region segmentation and bone suppression. The
proposed DCNN model significantly outperformed average radiologist predictions, achieving a remarkable
accuracy rate of 99.00% [36]. The impact of varying CXR image sizes (256, 448, 896, 1344, and 1792 pixels)
was evaluated using two DCNN models (RetinaNet and Mask R-CNN). A dataset consisting of 2,088 CXR
images with abnormal results (nodules or masses) and 352 without was employed. Mask R-CNN determined
that 1344 pixels provided optimal results, while RetinaNet achieved its best performance with 896 pixels.
Both models excelled in the sensitivity (SEN) test, achieving a score of 95.60% (Figure 6) [37].

FIGURE 6: Diagrams of (a) mask R-CNN with region proposal layer and
classification layer and (b) RetinaNet with feature pyramid network
(FPN).
Reproduced with permission from Reference [37]. Copyright 2020 SpringerLink.

Tuberculosis detection
The World Health Organization (WHO) has identified tuberculosis (TB) as a prominent contributor to global
mortality. Subsequent to the COVID-19 pandemic, TB has overtaken HIV/AIDS as the most significant
infectious cause of death on a global scale. In 2020, TB affected approximately 1.1 million children among
an estimated total of 10 million cases. In 2019, TB resulted in the deaths of approximately 1.4 million
individuals, and this toll is projected to rise to around 1.5 million in 2020. TB, attributed to the
Mycobacterium bacterium, is an airborne disease that spreads rapidly through respiratory means, particularly
when an individual with TB coughs or sneezes. The lungs are frequently affected by this disease [38].
Between the years 2000 and 2020, it's estimated that approximately 66 million lives could have been saved if
tuberculosis (TB) had been diagnosed at an earlier stage. Pulmonary tuberculosis can manifest in various
ways on chest X-ray (CXR) scans. The successful detection and classification of TB patients using deep
learning (DL) techniques have been demonstrated. Researchers have proposed a robust DL network named
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TBXNet to tackle this challenge and provide a solution for TB detection [39]. TBXNet comprises a total of
five two-way convolutional blocks (512, 256, 128, 64, and 32). The architecture's fusion layer combines a
pre-existing layer with the two convolution blocks, allowing it to learn new information from the pre-trained
layer. An accuracy rate of 99.17% is expected with the envisioned TBXNet. The experiments utilized two
labeled datasets: one from the Kaggle public open repository and the other, Montgomery, developed by
multiple Belarusian Department of Health institutions.

Another suggestion involves automated tuberculosis detection using the VGG16-Coord Attention model [40].
This approach involves introducing a synchronized attention mechanism into the internal structure of the
VGG-16 model. This model was one of several deep learning models assessed to determine the most accurate
model type for TB diagnosis. The other models considered were VGG-16, MobileNet-V2, Version-
Transformer, ResNet-50, and the original Version-Transformer. All models underwent further training for 90
additional epochs after the initial 30 epochs. These experiments were conducted using data from the
Shenzhen and Montgomery County, Maryland databases (Figures 7a, 7b). The careful integration of
attention mechanisms yielded positive results, evident by a 97.71% area under the curve (AUC), 92.73%
predictive accuracy, 92.73% recall accuracy, and 92.82% precision (F1). Furthermore, an entirely novel deep
convolutional neural network model for automated TB detection in CXR images has been developed [41].

FIGURE 7: (A) Chest X-ray image samples with labels from the
Shenzhen, China dataset and (B) the Montgomery County, Maryland
dataset.
Reproduce under the terms of the Creative Commons Attribution License from Reference [41]. Copyright 2022
Polish Medical Society of Radiology.

The researcher employed five pre-trained models (VGG-19, Xception, ResNet-50, VGG-16, and Inception-
V3) to assess the transfer learning strategy proposed in the study. Computed tomography images from the
Montgomery and Shenzhen databases were utilized for the investigation. Using the recommended DCNN
architecture (ConvNet), the PRE, SEN, F1-score, ACC, and AUC achieved a value of 87.0%. For the
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classification of CXR images from the Shenzhen dataset into TB or normal categories, utilized a dual-
convolutional neural network ensemble technique (GoogleNet and AlexNet). Preprocessing strategies such
as image contrast enhancement and rotation improved the ACC's performance in cases of uncertain
categorization. The employed model yielded an AUC of 99.00%, representing a statistically perfect curve
[42]. To surmount the challenges of building a system from scratch and enhance its performance, combined a
neural network with a deep convolutional model for AlexNet-like learning using transfer. This approach
utilized the Karlsruhe Institute of Technology (KIT), Montgomery, and Shenzhen datasets, achieving an ACC
of 90.30 and an AUC of 96.40 [43]. In another study, researchers constructed a DCNN model by merging two
CXR datasets [44], collecting tuberculosis and non-TB images from the Chinese city of Shenzhen and the
United States' NIH Clinical Centers. Multiple trials demonstrated the high accuracy of the DCNN model (SEN
= 72.000%, SPE = 82.000%, and AUC = 98.45%) [44]. Datasets like the Montgomery and Shenzhen ones were
chosen due to their public accessibility, and a database comprising 3,500 TB images and 3,500 normal CXR
images was compiled. Nine distinct DCNN models were pre-trained and utilized, with DenseNet-201
achieving the highest accuracy (98.60%), precision (98.57%), recall (98.56%), specificity (98.56%), F1-score
(98.56%), and recall (98.54%) when segmenting lung images [45].

In a different approach, researchers devised a system employing multiple pre-trained deep convolutional
neural network models from the ImageNet dataset. An ensemble technique based on the type-1 Sugeno
fuzzy integral was used to determine an average prediction. This method outperformed classification tasks,
achieving an ACC of 99.75% using state-of-the-art methods. All the mentioned studies relied on the CXR
database [46]. Utilizing the Montgomery and Shenzhen datasets, a study introduced a deep learning method
for classifying CXR images as normal or TB. The model employed a convolutional neural network with deep
layers, featuring three independent optimizers. Among them, Adam achieved an impressive ACC of 82.09%.
Additionally, CXR images were classified as normal or TB using a pre-trained DenseNet system [47]. In
another study, the images were sourced from the Shenzhen and Montgomery databases. By merging
DenseNet-121 with an enhanced transfer learning technique and the Shenzhen dataset, the model achieved
AUCs of 99.00% and 84.00%, respectively [48]. Using an ensemble learning strategy that incorporated
various pre-trained deep convolutional neural network models as feature extractors, researchers were able to
determine the presence of tuberculosis in CXR images. The evaluation was carried out on accessible datasets
from both the Montgomery and Shenzhen databases, with the highest ACC achieved by any model being
80.00%. Moreover, four distinct DCNN models were employed for TB classification, including ResNet-50,
VGG-16, GoogleNet, and VGG-19. The research utilized data from public sources in both Montgomery and
Shenzhen. The VGG-16 demonstrated superior performance compared to the other three models, with an
ACC of 86.74% and an AUC of 92.00% [49]. To address the complexities of data distribution, a class
decomposition approach to transfer learning was implemented that enhanced the efficiency of models pre-
trained on ImageNet. DCNN models, such as AlexNet, GoogleNet, and ResNet, were employed with and
without class decomposition [50]. Another study achieved an ACC of 99.80% on the public JSRT dataset [51].

Detection of COVID-19
In late 2019, COVID-19 emerged in Wuhan, China, and due to its rapid spread and severe impact on
humanity, the World Health Organization designated it as a pandemic in early 2020. The detection of
COVID-19 in humans often requires a series of costly and time-consuming clinical investigations. Despite
this challenge, CXR images have been used to positively identify COVID-19. The death toll from this
pandemic has already reached millions, leaving humanity vulnerable to its lingering effects. Deep learning
(DL) techniques have been employed to detect and monitor COVID-19-related lung injury through CXR
images. Initially, the absence of CXR images for positive cases posed challenges to utilizing DL algorithms
for COVID-19 identification and classification during the early stages of the epidemic. To encourage the use
of CXR records containing pandemic cases, these records were made publicly accessible, enabling the
scientific community to study the virus and devise strategies to curb its spread. Experiments employing
various DL approaches and models demonstrated multi-class classification accuracy ranging from 89.01% to
98.00%. For two- and three-class classifications, accuracy reached levels of 90.00% to 99.01%. In a study
proposing a deep convolutional neural network model for automated detection of CXR images with COVID-
19, a model consisting of five convolutional blocks was introduced [52]. The ReLU activation function was
used in each layer of these blocks, and overfitting was mitigated by incorporating a dropout layer between
the third and fourth blocks. The model employed a configuration with two fully connected layers (FCLs) and
employed dropout and initial fully linked layers. The latter utilized a softmax classifier. This framework
achieved a flawless F1-score, a sensitivity (SEN) of 96.00%, and a precision (PRE) of 96.00%. The dataset
analyzed comprised 10,293 CXR scans, including 2,874 with COVID-19, 4,200 with pneumonia, and 3,218
categorized as normal. The data was sourced from the COVID Chest repository on Kaggle and an X-ray
dataset [53].

Researchers also developed a DL method for diagnosing COVID-19 using widely available CXR images. The
Inception-V4 model was utilized as a trained transfer learner, allowing for automatic detection of COVID-19
in CXR images. This study utilized data from two distinct chest X-ray datasets: Pediatric-CXR (containing
images from 1,000 healthy children) and COVID-19 (504 images from patients with the virus). The proposed
approach achieved an overall accuracy (ACC) of 99.63% in identifying COVID-19 infection [54]. In the effort
to distinguish between typical and COVID-19 CXR images, a DL model named CovMnet was developed, as
depicted in Figure 8 [55]. The architecture of CovMnet comprises three layers: ReLU activation, convolution,
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and MaxPooling. Following the final convolutional layer, the output passes through four dense layers, an
activation layer, and a Dropout layer before being flattened and fitted into the neurons of the architecture.
Experiments were conducted to assess four variations of the proposed CovMnet model, with the aim of
determining the optimal settings. These experiments involved extracting deep features from a dataset and
hyperparameter tuning for both convolutional neural networks and full-stack training. The CovMnet model
demonstrated an impressive accuracy (ACC) of 97.30%.

FIGURE 8: Schematic assembly of the proposed CovMnet model.
Reproduce with permission from Reference [55]. Copyright 2022 SpringerLink.

The pediatric-CXR dataset was consistently utilized in various CXR image-based research studies. In a study,
three methods were employed to identify COVID-19 cases. Two of these methods involved refining models
through deep feature extraction and transfer learning, while the third method introduced an entirely new
deep convolutional neural network model. For this investigation, the researchers accessed 180 COVID-19
CXR images and 200 normal CXR images from the chest X-ray for chronic obstructive venous disease and
pediatric-CXR databases. Each image was annotated by specialists, and data augmentation techniques were
utilized in both fine-tuning and full-stack training. Among five pre-trained models optimized for deep
feature extraction (ResNet-101, VGG-19, ResNet-50, VGG-16, and ResNet-18), ResNet-50 demonstrated the
highest accuracy rates for sensitivity (SEN) at 94.0%, overall accuracy (ACC) at 95.79%, and specificity (SPE)
at 97.5% [56]. Another study employed a three-part process to identify pneumonia and COVID. In the first
step, CXR image analysis was used to confirm pneumonia. The second step focused on distinguishing
between pneumonia and COVID-19 cases. In the final phase, the locations of COVID-19 sightings were
pinpointed. This research drew from two extensive chest X-ray datasets, ChestX-ray14 and COVID,
encompassing CT and MR images of the chest from various sources. In this context, the VGG-16 model
achieved an average accuracy (ACC) of 97.00% [57]. A DL model for COVID-19 patient recognition was
trained using a CT scan and 400 CXR images, including 500 typical COVID-19 cases. The hyperparameters of
eight distinct DL models were fine-tuned. Among them, NasNetMobile demonstrated the highest accuracy
(93.94%) among the tested models [58].

Another research effort aimed to differentiate COVID-19 from pneumonia using a deep convolutional neural
network model [59]. Researchers examined various image collections, including data from COVID-19 and the
Pediatric-CXR pediatric X-ray dataset available on Kaggle [60]. Five models (Inception, VGG-19, MobileNet-
V4, Inception, and ResNet-v2) were trained using transfer learning parameters. MobileNet-V2 exhibited
superior performance with an accuracy of 96.78%, sensitivity of 98.66%, and precision of 96.46%. Lastly, in a
study involving a DenseNet-121 DCNN model, 21,165 images from datasets such as Radiology Collaborated
to Develop the RSNA International COVID-19 Open Radiology Database (RICORD), radiography for COVID-
19, CXR in children, and BIMCV-COVID-19+ were used for training [61]. Applying the proposed model to the
binary classification of COVID-19 cases using HE and geometric data augmentation approaches resulted in
an ACC of 97%. A deep convolutional neural network model was suggested for pandemic recognition [62].
The training dataset encompassed nine types of pneumonia depicted in photos sourced from the COVID-19
chest X-ray public dataset, which includes 316 CXR images [63]. To counter overfitting, data augmentation
techniques were employed. The suggested model attained an ACC of 96.00% [64]. In a study, the performance
of 13 distinct DCNN models (Shuffle Net, Inception, ResNet-V2, AlexNet, Resnet-18, Resnet-50, Inception-
V3, Densenet-201, MobileNet-V2, VGG-19, VGG-16, Resnet-101, Xception, and GoogleNet) was examined.
Out of these models, VGG-19 and COVIDx CXR-3 produced the highest ACC (99.81%) when tested on a
dataset containing 700 images, with 350 of them being COVID-19 cases and 350 normal cases [65]. For
disease classification, a rational binary and multi-disease grouping approach was proposed. An optimal
DCNN model, EfficientNet-B5, was trained on nine datasets, and the pediatric-CXR dataset combined with
the COVIDx repository contributed over 3200 CXR images to the research [66]. The utilization of gradient-
weighted class activation mapping (Grad-CAM) helped simplify the interpretation of heatmaps.
EfficientNet-B5 achieved an AUC of 98.00% for binary classification of COVID-19 cases and 97.00% for
multi-classification involving pneumonia, COVID-19, and normal cases [67]. A method for automated
COVID-19 identification, employing COVIDX-Net technology, was proposed. The framework supported
seven unique DCNN designs (DenseNet-201, Xception, InceptionResNet-V2, VGG-19, Inception-V3, ResNet-
2, and MobileNet-V2) and was trained using the COVID chest X-ray dataset. F1 scores of 89.00% and 91.00%
were achieved by the VGG-19 and DenseNet models for normal and COVID-19 cases, respectively [68]. A
study employed data augmentation and classification for CXR images, categorizing them into four classes:
lung opacity, pneumonia, COVID-19, and normal. EfficientNet-B1 outperformed its counterparts with an
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ACC of 96.13% [69]. A study included a total of 21,165 CXR images from datasets including radiography for
BIMCV-COVID19+, RSNA pneumonia CXR, COVID-19, and pediatric CXR. This involved a custom ResNet
model utilizing multi-head self-attention for categorizing CXR images into pneumonia, COVID-19, and
normal categories. The study employed a gray-level co-occurrence matrix (GLCM) technique to extract
textured details from CXR images. The analysis utilized COVIDx CXR-3 software and a dataset consisting of
5173 individual CXR images, achieving an ACC of 95.52 and a PRE of 96.02 [70].

Multiple disease detection
It is possible for a patient to concurrently experience multiple diseases, significantly elevating the risks to
their life. Given the overlapping symptoms of various illnesses, diagnosing multiple pathologies through
CXR images can be a challenge for radiologists. In such cases, further research and testing might be
necessary. Several deep learning (DL) systems have been devised, employing diverse strategies to address
this complexity. In an effort to differentiate between pulmonary nodules and cardiomegaly disorders in CXR
images, a study introduced a customized DenseNet-121 model. They utilized images from the CheXpert
dataset for this study. The model demonstrated an AUC of 73,000% for detecting lung nodules and 92,000%
for detecting cardiomegaly [71]. A DL approach was employed that merged data extracted by a deep
convolutional neural network model with low-level characteristics to identify cardiomegaly,
normal/abnormal conditions, and pleural effusion. Their dataset comprised 193 chest X-rays from Sheba
Medical Center, preprocessed using the described methods. The results indicated an AUC of 93,000% for
pleural effusion, 89,000% for cardiomegaly, and 9,000% for normal/abnormal classification [72].

In the realm of identifying abnormalities in chest radiographs, the GoogleNet model was used to classify
chest images based on the presence of abnormalities such as consolidation, normal tissue, cardiomegaly,
pneumothorax, pleural effusion, and pulmonary edema. AUC scores for GoogleNet's models were 86.80%,
96.20%, 86.10%, 96.40%, and 96.40% for edema, pleural effusion, pneumothorax, normal, cardiomegaly, and
consolidation, respectively [73]. This research illustrates the successful training of DCNN models on limited
medical datasets without compromising performance. A study utilized a weak-supervised approach for
classifying and detecting eight chest disorders from the ChestX-ray8 dataset, achieving an AUC of 80.30% for
detecting significant anomalies [74]. Using the ChestX-ray8 dataset, a DenseNet model was employed to
extract disease characteristics and demonstrated a relatively high area under the curve (AUC) of 79.80% [75].
Employing the DenseNet-121 model and data from ChestX-ray14, a study achieved state-of-the-art results
with an average AUC of 84.11% for classifying the 14 diseases in the dataset [21]. To classify CXR images into
normal, lung disease, and heart illness categories, an ensemble learning strategy was proposed by
combining photos from the VinDr-CXR and CheXpert databases. This strategy, along with data
augmentation, achieved an average AUC of 94.89% [76]. A cascading neural network was used to classify the
14 illnesses from the ChestX-ray14 dataset. The presented model achieved performance levels comparable to
state-of-the-art methods, with an average AUC of 79.50% [77]. To identify 14 chest diseases from CXR
images, an AMDenseNet model with an attention mechanism was suggested. Their DenseNet-121-based
models outperformed prior research in terms of average AUC [77,78].

A comprehensive approach utilizing transfer learning was used to categorize CXR images into normal,
pneumonia, and pneumothorax categories. EfficientNet-V2M achieved impressive results with an average
ACC of 82.15%, SEN of 81.40%, and SPE of 91.65% [79]. Similarly, an average ACC of 82.20% was obtained
across four classes (normal, TB, pneumonia, and pneumothorax) using a model on a dataset from Cheonan
Soonchunhyang University Hospital [80]. Another study employed multiple models based on binary
relevance for identifying chest diseases in the CheXpert dataset. The Xception DCNN model, in combination
with the Adam optimizer, achieved superior results, yielding an overall mean AUC of 94.90% across all
disorders [81]. For a summary of CXR-based detection of various chest diseases and the employed models,
Table 1.

S.
no

Dataset Results Diseases Model References

1 Pediatric-CXRs
ACC = 97.20%,
ACC = 87.30%

Pneumonia
Full-layer connected
Swin transformer

[18]

2
Using CheXpert, we gathered a total of 2440 images:
2088 with nodule and 352 normal.

SEN = 95.60% Lung nodule
Overlay RetinaNet
with R-CNN.

[37]

3
Extracted from the pediatric-CXR dataset, 648 CXR
pictures

ACC = 97.40% COVID-19
Our own personal
convolutional neural
network (CovMnet)

[55]

4 JSRT
SEN = 98.00%,
ACC = 99.80%,
SPE = 99.00%

Tuberculosis,
tumor

Class decomposition-
based deep
convolutional neural
network model
(ResNet)

[50]
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5 RSNA-pneumonia-CXR ACC = 94.00% Pneumonia
Insight-V4 using
learned transfer

[20]

6
Peking University Third Hospital PACS had 1881 chest
x-rays (958 normal, 923 pneumoconiosis).

AUC = 87.80% Pneumoconiosis Improved inception-V3 [35]

7 Montgomery and Shenzhen
PRE = 88.00%,
AUC = 87.00%,
SEN = 87.00%

Tuberculosis
A freshly trained
ConvNet model

[41]

8 400 Pediatric-CXRs ACC = 93.94% COVID-19 NasNetMobile [58]

9
X-viral (5977 viral pneumonia and 37,393 images of
pneumonia that are not caused by viruses) and X-
COVID-19 (106 COVID-19, 107 normal) datasets.

AUC = 83.61%
SEN = 71.70%

COVID-19
Anomaly detection
model with confidence

[82]

10
17,211 CXRs for training (600,000 pictures) tests, and
10,285 people (1,483 diagnosed with lung cancer).

AUC = 73.20%,
SEN = 76.80%

Lung cancer
Two different ResNet
models, ResNet-50
and ResNet-101

[30]

11
Pictures from Montgomery, a Kaggle repository and a
Belarusian Ministry of Health dataset

ACC = 99.17% Tuberculosis
A specialized TBXNet
DCNN model

[39]

12
Radiography for pandemic, BRISK, RICORD for
COVID-19+ and CXR in children

ACC = 97.00% COVID-19 DenseNet-121 [61]

13 Pediatric-CXR ACC = 83.38% Pneumonia
A CNN model with and
without extra data is
compared

[23]

14
JSRT segmented CXR pictures (90 non-nodule and
nodule images).

AUC = 86.67% Lung nodule

Built-to-order deep
convolutional neural
network with extra
data

[31]

15 Shenzhen and Indiana
SEN = 72.00%,
SPE = 82.00%,
AUC = 98.45%

Tuberculosis
The InceptionV3
learning transfer
module

[44]

16 CXR-3 COVIDx
The F1 score is
91.00%

COVID-19 VGG-19 [68]

17
Custom dataset containing 5173 COVIDx CXR-3
pictures.

ACC = 95.52%,
PRE = 96.02%

COVID-19

A specialized deep
convolutional neural
network (MHSA-
ResNet)

[70]

TABLE 1: CXR-based detection of various diseases.
CXR: chest X-ray, ACC: accuracy, SEN: sensitivity, SPE: specificity, PRE: precision, MHSA: multihead self-attention network, BRISK: binary robust
invariant scalable key-points, RICORD: Radiology Collaborated to Develop the RSNA International COVID-19 Open Radiology Database,
RSNA: Radiological Society of North America, JSRT: Japanese Society of Radiological Technology. 

Advancements to MRI
MRI offers several advantages compared to standard CT and PET/CT scans, including the ability to avoid the
use of a radioactive contrast agent during PET/CT scans [83]. The diagnostic utility of MRI in lung cancer
diagnosis has grown thanks to advancements in MRI techniques. One notable fast MRI sequence is known as
turbo-spin echo (TSE), which has the potential to detect malignant nodules at a rate comparable to
multidetector computed tomography (MDCT) [84]. TSE is resilient to environmental factors like air and lung
tissue susceptibility. The raw magnetic resonance data (k-space) was processed using the "mirror-image"
characteristics of the half-Fourier single-shot TSE sequence, resulting in significant improvements in scan
speeds [85]. To enhance soft-tissue visualization and local tumor progression detection, TSE-assisted short-
tau inversion recovery sequences have been utilized to attenuate lipid-related signals. These sequences can
enhance the contrast of pulmonary lesions without requiring prolonged breath-holding periods. However,
instances of substantial blood flow over the lungs can still lead to flow artifacts in these sequences,
particularly when cardiac gating is insufficient, even when a second recovery sequence is employed [86]. In
addition to TSE-based sequences, other studies have found value in radio-frequency spoiled 3D gradient
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recall echo sequences such as volumetric interpolated breath-hold examinations. This type of sequence has
shown reduced motion artifacts, although it might miss very small lesions [87].

The lung parenchyma's short T2* duration (1-2 ms at 1.5 T) presents challenges in MRI imaging. To
overcome this limitation, specific technical capabilities are required, such as ultra-short echo (UTE) times
and balanced steady-state free precession (bSSFP). Ultra-short echo (UTE) techniques employ very low echo
times and k-space radial sampling to enhance signals from tissues with exceptionally short T2/T2*
relaxation times, like cortical bone and lung parenchyma. Balanced steady-state free precession employs
"balanced" gradients and very short repetition times (TR) to maintain a nearly constant "steady-state" signal
by preventing magnetization from relaxing and dephasing throughout a TR repeat [88]. In relation to making
definitive malignancy diagnoses with MRI, a literature review on magnetic resonance data, bSSFP, and UTE
was conducted. The authors explored potential roles for MRI in the future, ranging from having no role at all
to playing a role depending on future assessments of its diagnostic efficacy and cost-effectiveness,
potentially alongside or instead of CT. While they found the technology promising, they couldn't definitively
conclude that MRI led to improved patient outcomes [89]. Notwithstanding these limitations, the superior
soft tissue contrast and ability to detect local invasion of surrounding tissues make MRI the preferred
imaging modality for staging lesions near the mediastinum, vertebral body, and chest wall [90,91].
Innovative sequencing and encoding techniques have the potential to enable the capture of images during
free breathing, eliminating the quality loss caused by motion artifacts. While radial and spiral acquisitions
can effectively reduce ghosting and motion-related artifacts, they are less efficient compared to standard
Cartesian k-space acquisition, as they extend the acquisition time and introduce streak artifacts. A study on
compliance and noncompliance demonstrated the feasibility of performing free breathing and intermediate
anatomical evaluations [91]. In real-world performance comparisons, StarVIBE outperformed the gold-
standard dynamic contrast-enhanced (DCE) MRI [91]. Whole-body MRI has historically been limited in its
ability to effectively detect potential metastatic diseases due to significant motion-related challenges.
However, a comprehensive assessment of its utility extends beyond the scope of this study [92].
Nevertheless, recent findings suggest that advancements in technology have made whole-body MRI a more
viable option for early staging [93].

Lung functional imaging
The lung has become a focal point for an increasing number of functional MRI sequences, originally
developed for studying other diseases. One such method is diffusion-weighted imaging (DWI), which can
differentiate hypercellular regions (tumors) from areas with increased diffusivity by detecting signal
attenuation resulting from the restricted diffusion of water. The apparent diffusion coefficient is a measure
used in DWI to quantify diffusion [94]. In the complex clinical context of lung cancer with atelectatic lung,
DWI surpasses CT and PET/CT [95]. Unlike CT, DWI has the potential to identify lymph node involvement,
intratumor vasculature, and effusions. However, DWI might exhibit geometric distortions due to variations
in lung susceptibility between tissue and air interfaces, necessitating more advanced technical solutions
[96]. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) offers functional insight into
blood flow and vascular permeability, shedding light on tumor vascularity patterns [96]. While successfully
applied to disease sites like prostate tumor staging [97] and primary brain tumors [97-99]. DCE-MRI initially
faced challenges in lung imaging due to breathing-induced image degradation [100]. Presently, the transfer
constant from DCE-MRI and the apparent diffusion coefficient from the intravoxel incoherent motion DWI
model are employed in clinical practice to distinguish between lung cancers and isolated pulmonary nodules
[101]. When comparing DCE-MRI to PET-CT for lung cancer, the standardized uptake value is related to the
standard deviation of the middle peak [102]. Both DWI and DCE-MRI may suffer from poor spatial
resolution, especially in the presence of breathing and heart rate variability. However, these issues can be
mitigated through respiratory/cardiac gating and faster temporal imaging [96,100].

Nuclear medicine imaging
Traditional nuclear medicine imaging often relies on planar imaging techniques, but the utilization of
continuous (cine) imaging can have a significant impact on indications such as lymphatic flow assessment.
In conventional gamma cameras, one or more NaI(Tl) crystals are employed to detect gamma rays emitted
from the radio-tracer inside the patient's body. During a single photon emission computed tomography
(SPECT) scan, the patient is surrounded to capture multiple two-dimensional images (projections).
Subsequently, a tomographic reconstruction technique is applied to these projections to create a spatial
model. The combination of SPECT with planar imaging can enhance diagnostic accuracy and disease
severity assessment [103,104]. However, SPECT alone may not provide precise localization. To address this
limitation, a hybrid imaging modality called single photon emission computed tomography/computed
tomography (SPECT/CT) has been introduced [105]. In SPECT/CT, CT is used for attenuation correction and
precise anatomical localization. This combination enhances the reliability of imaging results compared to
planar imaging [106]. SPECT/CT has demonstrated superiority over planar scintigraphy or standalone SPECT
[107,108] in various established indications and emerging applications. To minimize radiation exposure, CT
can be used in a low-dose mode for diagnostic purposes. The effective radiation dose from the CT component
of a SPECT/CT examination can vary from 0.6 mSv to 2.6 mSv, depending on the scanned body area
[109,110]. For context, the average annual background radiation exposure in the United States is around 3.1
mSv, and a typical chest CT scan delivers about 7 mSv of radiation dose [111].
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Molecular imaging acts as a bridge between anatomical and molecular data by combining various imaging
techniques such as SPECT, PET, MRI, ultrasound, and optical imaging, along with specific imaging probes (as
shown in Table 2). Tagged probes with molecular specificity enable the exploration of specific aspects of
cellular pathology [112]. Currently, molecular imaging using SPECT and PET is in use in clinical practice.
While SPECT has lower resolution compared to PET, it has the capability to simultaneously scan multiple
molecular probes using different radiotracers. Ongoing research is focusing on developing new PET
techniques that can image multiple radio-pharmaceuticals simultaneously, although further advancements
are necessary [113]. Recent pre-clinical studies have explored alternative techniques, including optical
imaging with fluorescent probes and contrast-enhanced molecular ultrasound. Molecular imaging has the
potential to reveal subtle information that could lead to more precisely targeted therapies. Figure 9
illustrates the diverse applications of nuclear medicine in detecting various diseases.

FIGURE 9: Nuclear medicine used for the detection of various diseases.
SPECT: single photon emission computed tomography, CT: computed tomography, PET: positron emission
tomography.
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S.
no

Modality Radiotracers Advantages Description Indications/examples References

1

PET (positron
emission
tomography
PET/CT)

18FDG—nonspecific
multiple newer
tracers

Higher resolution than
SPECT. Newer tracer-
targeted molecular
imaging. Metabolism
evaluation (FDG).

Usually with CT for lesion
localization and attenuation
correction.

Oncologic imaging.
Infection/inflammation
(sarcoidosis, FUO,
cardiac).

[114]

2 Gamma camera

Gamma-emitters
(81Tl, 131I, 123I,
99mTc, 111In, etc.).

Unlike CT and
radiography, functional
imaging provides
functional data.

Planar imaging, flow/cine.

The gold standard of
nuclear medicine,
radiology covers a wide
range of medical
conditions.

[115]

3 MRI (PET/MR)

Tracer PET
superparamagnetic
iron oxide (USPIO)
particles are very tiny
in size.

 
Magnetic resonance
imaging used in conjunction
with PET

Imaging for cancer,
particularly for common
forms including prostate
cancer, cervix, and liver
cancer.

[116]

4

Single-photon
emission computed
tomography (also
known as SPECT or
SPECT/CT)

Planar imaging is
easily augmented
with gamma-emitting
radionuclides as
required.

Compared to planar
imaging, this method of
lesion localization is
more accurate and
precise.

Formats in many planes are
feasible. A tomographic
reconstruction method
yields three-dimensional
information.

Localization of the
parathyroid glands,
myocardial perfusion
imaging, and a VQ scan.

[117]

5 Optical Imaging
Fluorophores and
quantum dots.
Luciferase enzyme.

Limited depth
Fluorescence,
bioluminescence

Pre-clinical [118]

TABLE 2: Combination of nuclear medicine and other techniques.
FDG: fluorodeoxyglucose, FUO: fever of unknown origin, VQ: ventilation-perfusion.

Vascular infections
Patients who fall under the category of "possible infectious endocarditis" according to the Duke criteria,
particularly when there is significant echocardiographic data that contradicts clinical suspicion, are the
most suitable candidates for a labeled leukocyte scan aimed at identifying infectious endocarditis [119,120].
Radiolabeled white blood cell SPECT/CT is more effective in identifying infectious foci and implanted
prosthetic valve infections compared to FDG PET/CT [121]. FDG PET/CT, on the other hand, is valuable in
detecting septic emboli and determining the source of infection outside the heart [122]. For cases where
mycotic aneurysms are not easily distinguishable through CT or MR imaging, a 111In white blood cell (WBC)
or FDG PET/CT scan can aid in diagnosis and locating other disease sites in individuals with such
abnormalities [123]. Labeled white blood cell imaging demonstrates high sensitivity when applied to
vascular grafts and can be used to detect, locate, and quantify infection. However, early postoperative
evaluation remains a challenge [124,125]. A positive result on a postoperative scan might indicate either
infection or healthy graft endothelialization. White blood cell scintigraphy, especially when combined with
SPECT/CT technology, is a tool that can assess the presence of infection in cardiac implantable electronic
devices (CIED) [126]. Despite evidence suggesting that WBC SPECT/CT and FDG PET/CT scans could aid in
diagnosing CIED infection, these tests were not recommended by the European Society of Cardiology in
their 2015 recommendations [127,128].

Aspiration
The diagnostic aids for a salivary 99mTc sulfur colloid scan with 99mTc-diethylenetriamine pentaacetate
(DTPA) demonstrate higher sensitivity compared to fluoroscopic procedures. It's noteworthy that video
fluoroscopic swallowing assessment can fail to detect aspiration in around 30% of patients, especially in
instances involving saliva aspiration [129,130].

Extramedullary hematopoiesis
The differentiation of this condition from other paraspinal lesions can be achieved through the utilization of
99mTc sulfur colloid. Pulmonary extramedullary hematopoiesis encompasses the respiratory system,
including the lungs, chest cavity, and occasionally the pulmonary artery. Hence, this approach could
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potentially offer advantages in managing such cases [131].

Splenosis
Scintigraphic imaging is a common approach when there are indications of thoracic splenosis, a condition
that can arise following a splenic injury. Among individuals with splenosis, 75% exhibit multiple nodules on
their pleura, whereas the remaining 25% present just one nodule. Notably, patients often endure a wait of
more than 21 years before receiving a diagnosis [132]. Scintigraphy can facilitate diagnosis using various

techniques, such as 99mTc-labeled sulfur colloid, 99mTc-labeled heat-damaged erythrocytes, or 111In-
labeled platelet diagnostics (theranostics).

67Gallium
The current pneumonic plague, attributed to Pneumocystis jirovecii, and nearly all other lung-related

ailments can be ruled out with a negative scan. In cases of immunocompromised patients, 67Gallium
scintigraphy becomes a valuable tool for identifying opportunistic infections in both the lungs and
mediastinum. Conditions marked by granulomatous inflammation, like sarcoidosis and tuberculosis, can be

diagnosed or monitored using 67Ga [133,134]. The test is effective in detecting toxic effects on the lungs
caused by drugs [135]; it is particularly preferred for leukopenic patients over white blood cell scans.

Notably, compared to labeled leukocytes, 67Ga provides a more precise diagnosis for disc and osteomyelitis.

Furthermore, a 67Ga scan aids in the diagnosis of conditions such as adenocarcinoma, Kaposi sarcoma, and

histiocytosis lymphoma, unlike squamous cell carcinoma. Nonspecific pulmonary absorption of 67Ga is
associated with various viral and inflammatory disorders. However, due to lengthy testing times, significant
potential for errors, substantial radiation exposure, and the availability of alternative options, the

importance of 67Ga scintigraphy in clinical practice has waned [110,136].

Labeled leukocytes in pulmonary infections
Depending on the specific clinical scenario and desired leukocyte localization, the utilization of 111In-

Oxone (also known as 99mTc-HMPAOxime) can effectively label a patient's white blood cells. White blood
cell (WBC) imaging serves as a valuable tool in identifying patients with fever, positive blood cultures, and
granulocytosis, as recommended by the Society of Nuclear Medicine and Molecular Imaging, to infer acute
inflammation or infection at specific sites [137,138]. According to recommendations from the European
Association of Nuclear Medicine, labeled white blood cell scintigraphy can be employed for diagnosing
occult lung infections, postoperative abscesses, endocarditis, infections associated with vascular devices,
infected central venous catheters, and determining the severity of these conditions [139]. However, there are
certain limitations associated with scintigraphy using radiolabeled WBCs. These include the necessity for
manual blood handling during radiopharmaceutical preparation, longer procedure times in comparison to
techniques with lesser spatial resolution like 18F-2-deoxyglucose PET/CT, and the potential for inconclusive
results due to sequestration of injured leukocytes in the lungs. In cases of diffuse uptake, particularly in
patients with cardiac or renal failure, lung infection or inflammation could be the underlying cause,
potentially obscuring specific areas of lung disease [140]. Diffuse uptake patterns might indicate conditions
such as sepsis, septic shock, or atypical lung infections like Pneumocystis jirovecii. Similar clinical
presentations are seen in acute respiratory distress syndrome (ARDS), eosinophilic syndromes, graft-versus-
host disease, and lung damage induced by drugs or radiation. Focal uptake on delayed images might be
lobar/segmental or non-anatomical in distribution. Segmental or lobar uptake suggests pneumonia, while

non-anatomical uptake areas indicate technical errors [137,141]. Although 99mTc-HMPAO and 111In-oxine
exhibit high specificity for neutrophils, their affinity for eosinophils can lead to false positive results in
conditions characterized by eosinophilic infiltration [142]. For assessing the efficacy of chronic obstructive
pulmonary disease treatment, lung neutrophil inflammation can be quantified using labeled neutrophils
[143].

Pneumonia computed tomography-scan
The significance of CT scans in pneumonia diagnosis has garnered increased attention, particularly in
emergency departments. A study noticed that out of 319 patients who arrived at the emergency room
suspected of having community-acquired pneumonia (CAP), 100 of them experienced an improved
prognosis due to early CT scans. In 80% of cases (25% of the total), the final classification by the adjudication
committee aligned with the updated CAP probability, factoring in all collected information, including
follow-up data. This resulted in a net improvement of reclassification accuracy by 60 out of 319 cases (19%).
In most instances, the appropriate correction involved decreasing the likelihood of a pneumonia diagnosis
[135]. Another study examined 200 elderly patients, of which 54 individuals (27%) had their pneumonia risk
influenced by a low-dose CT scan. In 65% of these cases (17.5%), an adjudication committee, blinded to the
low-dose computed tomography (LDCT) scan findings, deemed the changes in pneumonia likelihood level as
appropriate. Among 200 patients, only 16 experienced a positive change in their overall classification.
Notably, patients initially misclassified as having pneumonia but later reclassified as not having the
condition showed the highest success rate. CT scans have the potential to reduce the occurrence of incorrect
pneumonia diagnoses [137]. These studies also emphasize the utility of CT scanning in both clinical and
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emergency care settings. While conventional chest radiographs typically expose patients to radiation levels
of 0.05-0.03 mSv, with average annual background radiation levels around 4 mSv, low-dose CT scans can be
completed in as little as 10 minutes. Furthermore, nearly a third of patients showed additional radiological
abnormalities, with lung nodules occurring in about 10% of cases. While these findings can aid in
identifying and treating previously undetected diseases, they also pose the risk of being excessive,
particularly for the older population.

Conclusions
The article critically assessed deep learning CAD techniques for chest-based illness diagnosis utilizing MRI,
CXR, nuclear medicine, and CT scans. CADe/CADx systems and deep learning developments were briefly
covered. Chest sickness was found by comparing MRI, CXR, nuclear medicine, and CT. Our extensive
analysis demonstrates that deep learning has been used in pulmonary nodule technology many times. This
place is hard. The difficulties were thoroughly addressed, and research options were explored.
Interpretability, overfitting, and poorly annotated datasets are concerns. CAD research centers using deep
learning. Deep learning and understanding research is vital. A CAD system that describes outcomes helps
radiologists diagnose. Models for multi-modal tumor detection, classification, segmentation, and more will
be created using deep learning algorithms and study photos. This method provides complete diagnostic
information for patient assessment and treatment. Data analytics-driven AI like machine and deep learning
will help radiology. Data analytics-driven learning may speed radiology imaging scan chest diagnosis,
research finds. Early chest-based illness detection improves treatment, prevention, and mortality. Obtaining
fresh data is tough, but a growing dataset that allows thorough diagnosis and recognizes diagnostic limits is
crucial. All diagnosis elements must be covered by a high-quality dataset with distinct properties for unified
detection, classification, and segmentation.
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