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Abstract
Machine learning can predict neurosurgical diagnosis and outcomes, power imaging analysis, and perform
robotic navigation and tumor labeling. State-of-the-art models can reconstruct and generate images,
predict surgical events from video, and assist in intraoperative decision-making. In this review, we will detail
the neurosurgical applications of machine learning, ranging from simple to advanced models, and their
potential to transform patient care. As machine learning techniques, outputs, and methods become
increasingly complex, their performance is often more impactful yet increasingly difficult to evaluate. We
aim to introduce these advancements to the neurosurgical audience while suggesting major potential
roadblocks to their safe and effective translation. Unlike the previous generation of machine learning in
neurosurgery, the safe translation of recent advancements will be contingent on neurosurgeons’
involvement in model development and validation.
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Introduction And Background
Artificial intelligence (AI) utilizes computer systems to simulate human cognitive abilities. Machine learning
(ML), a domain of AI, enables algorithms to recognize patterns in large, complex datasets to produce
predictive outputs at inference time. Biomedical data has become vast and complex, thereby requiring AI to
identify clinically meaningful relationships [1]. Hospitals produce large quantities of unstructured data from
monitoring devices, imaging, and patient notes, requiring novel methods to help physicians effectively
analyze this "big data" to identify predictive relationships. Such novel ML methods applied to certain tasks
have outperformed not only classical statistical models but also clinical experts [1].

ML techniques have aided all neurosurgical domains, including early diagnosis, clinical decision-making,
patient management, drug discovery, and prognosis prediction. In the case of outcome prediction, there has
been an average accuracy of 0.945 and an average area under the curve (AUC) of 0.83, spanning across
predictions for functional, spine, neurovascular, brain tumor, and traumatic subdomains [1]. This average
performance of ML models was found to be significantly better than logistic regression models (median
absolute performance increase of 15% accuracy) [1]. While simple ML models like logistic regression
dominate most published applications to neurosurgery, this performance achievement of ML resulted from
more complex models [1]. Such complex models (e.g., deep neural networks (DNNs), convolutional neural
networks (CNNs)) have allowed for the utilization of complex input types including imaging and real-time
surgical video, and thereby the prediction of complex outputs including non-radiographic intraoperative
measurements of Cobb angle [2], cerebral artery segmentation in operative field of view [3], and augmented
reality guidance for catheter placement for external ventricular drains [4].

With the attention toward AI/ML in neurosurgery significantly increasing, the National Institutes of
Health funded 535 projects applying ML to clinical research, representing $264 million in 2017 [5]. Attitudes
in neurosurgery were open to the application of AI in neurosurgery for imaging interpretation, operative
planning, autonomous surgery, and hazard/complication prediction [6]. Despite funding, open attitudes, and
substantial research efforts, few technological applications have been integrated into patient care. While
many algorithms have achieved high predictive power for outcome predictions, few have been externally
validated across multiple sites. This is worrisome because unlike fields of autonomous driving and search
engine development in which data diversity is high, neurosurgical data used to train ML algorithms is
generally from single institutions.

In this comprehensive narrative review, our objective is to acquaint clinical practitioners, who will play a
pivotal role in the safe and efficient integration of this technology, with the nuances of ML in the context of
neurosurgery. We explore the diverse algorithms and their applications in this field, while also addressing

1 2 1 1 3 1

1 1 1

 
Open Access Review
Article  DOI: 10.7759/cureus.51963

How to cite this article
Schonfeld E, Mordekai N, Berg A, et al. (January 09, 2024) Machine Learning in Neurosurgery: Toward Complex Inputs, Actionable Predictions,
and Generalizable Translations. Cureus 16(1): e51963. DOI 10.7759/cureus.51963

https://www.cureus.com/users/573781-ethan-schonfeld
https://www.cureus.com/users/573801-nicole-mordekai
https://www.cureus.com/users/573796-alex-berg
https://www.cureus.com/users/573798-thomas-johnstone
https://www.cureus.com/users/573799-aaryan-shah
https://www.cureus.com/users/573800-vaibhavi-shah
https://www.cureus.com/users/479532-ghani-haider
https://www.cureus.com/users/425734-neelan-j-marianayagam
https://www.cureus.com/users/156731-anand-veeravagu
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


the technical challenges that may impede their effective implementation in enhancing patient care. A
particular emphasis is placed on the critical aspects of data sharing and the necessity of training models
using diverse data sets. We discuss these elements in depth, offering both technical insights and clinical
perspectives, to underscore their importance in ensuring the safe and successful adoption of ML in
neurosurgery.

Definitions of technologies
The AI technologies in this review are described in Table 1.

Technology Definition

Artificial intelligence (AI) Simulation of problem-solving and logical thinking by computer systems to perform tasks.

Machine learning (ML) Subfield of AI that learns patterns in large data without explicit instruction that are often used to make predictions.

Deep learning (DL) Subfield of ML that uses ANNs to mimic the learning process of the human brain.

Artificial neural networks
(ANN)

Systems of artificial neurons trained to learn complex interactions within input data to optimize a cost/objective
function.

Supervised learning Subfield of ML that trains models using labeled datasets to predict labels for similar data.

Unsupervised learning Subfield of ML that learns patterns in unlabeled data that can be used to label, classify, and represent the data.

TABLE 1: Technology definitions
AI: Artificial intelligence; ML: Machine learning; ANN: Artificial neural networks

Review
Input variable types and data sources
With many ML model types and potential inputs, careful attention to input data type should help determine
model selection during development. Table 2 covers input data types that are compatible with the different
ML models. For the training of such models, Table 3 details publicly available datasets, focusing on those
most frequently used and those serving as examples of emerging dataset releases with large potential
impacts.
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 Input variables Example use case

Logistic regression
Features (i.e., clinical
features)

Prediction of outcomes following aneurysmal subarachnoid hemorrhage using clinical information,

neuroimaging features (i.e., clot size), and treatment modality information (Feghali et al., 2022) [7]

Support vector
machine (SVM)

Features (i.e., clinical
features)

Differentiation of benign and malignant pediatric brain tumors using blood markers (Khayat Kashani et

al., 2022) [8]

Artificial neural
networks (ANN)

Features (i.e., clinical
features)

Prediction of traumatic brain injury outcomes in low-resource settings from easily acquired clinical

variables (Adil et al., 2022) [9]

Convolutional neural
network (CNN)

Imaging, video,
genomics, time
series

Intraoperative microscopic tumor detection from label-free stimulated Raman scattering microscopy

(Reinecke et al., 2022) [10]

Long short–term
memory network
(LSTM)

Free text, genomics,
time series

Differentiating lumbar disc herniation and lumbar spinal stenosis using free text admission notes (Ren

et al., 2022) [11]

Transformer
Free text, imaging,
genomics, time
series

Classification and histopathological feature labeling of primary brain tumors (Li et al., 2023) [12]

Generative
adversarial network
(GAN)

Imaging Generating CT from MRI data (Ranjan et al., 2021) [13]

Foundational model Broad data
Adding realistic–looking abnormalities to synthetically generated radiology images (Chambon et al.,

2022) [14]

TABLE 2: Machine learning method types and input variables
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Dataset
Data
collection
period

Included labels
Number of
subjects

Truven Health Analytics
MarketScan research

database [15]

2010-
2018

Demographic, admission, diagnosis codes, discharge status, procedure codes, length
of stay, financial information, drug information

~273 million

National (Nationwide) Inpatient
Sample (NIS) discharge

database [16]

2012-
2022

Demographic, admission, diagnosis codes, procedure codes, financial information,
disease severity, hospital information, length of stay

~35 million

MIMIC-III [17]
2008-
2014

Demographics, clinical measurement, intervention, billing, pharmacotherapy, clinical
laboratory test, medical data

~38,000
distinct adult
patients
~53,000
admissions

VerSe [18,19]
2013-
2017

CT imaging, annotated vertebrae (segmentation mask, fracture grading)
374 CT scans,
355 patients

OpenSRH [20]  
Clinical stimulated Raman histology images, full pathologic annotations, whole slide
tumor segmentations, raw and processed optical imaging data

~300 patients
~1300 whole
slide optical
images

Parkinson's Progression

Marker Initiative (PPMI) [21]

2011-
ongoing

Demographics, admission, diagnosis codes clinical, imaging, omics, genetic, sensor,
and biomarker data

~ 1758 patients

American College of Surgeons
National Surgical Quality
Improvement Program

(NSQIP-P) [22]

2005-
ongoing

Demographic variables, preoperative risk factors, intraoperative variables, and 30-day
postoperative mortality

~10 million

The Quality Outcomes

Database (QOD) [23]

2012-
2019

Demographic, admission, diagnosis codes, discharge status, variables specific to
lumbar and cervical pathologies

~120,000

eICU Collaborative Research

Database [24]

2014-
2015

Demographics, vital sign measurements, care plan documentation, severity of illness
measures, diagnosis information, treatment information, admission codes

~200,000

The Surveillance,
Epidemiology, and End Results

Program (SEER) [25]

2002-
Ongoing

Patient demographics, primary tumor site, tumor morphology and stage at diagnosis,
first course of treatment, and follow-up for vital status

~10 million

University of Pennsylvania
Glioblastoma Imaging,
Genomics, and Radiomics

(UPenn-GBM) [26]

2006-
2018

Clinical, demographic, and molecular information MRI, perfusion, and diffusion
derivative volumes, computationally derived and manually revised expert annotations
of tumor sub-regions, as well as quantitative imaging features corresponding to each
of these region

630 patients

Clinformatics™ DataMart [27]
2007-
2019

Clinical and demographic information, Date of service, place of service, ICD-9-CM
codes, CPT codes, provider type, drug quantity dispensed, days supplied, charges,
deductibles, and copayments

~100 million

TABLE 3: Selected publicly available databases and datasets used to develop machine learning
models for neurosurgery and medical applications
MIMIC-III: Medical Information Mart for Intensive Care-III; VerSe: Large Scale Vertebrae Segmentation Challenge; SRH: Stimulated Raman
histology; ICD: International Classification of Diseases; CM: Clinical modification; CPT: Current Procedural Terminology; eICU: Electronic intensive care
unit

Outcome prediction
Postoperative Complications

ML modeling has been applicable in predicting neurosurgical postoperative complications. van Niftrik et al.
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utilized gradient-boosting ML modeling to predict patients at risk for early complications (AUC = 0.73)
following intracranial tumor surgery [28]. Neural networks identified patients with a high risk for
cerebrospinal fluid (CSF) leaks following pituitary surgery using clinical and surgical features as input
variables, achieving high discrimination (AUC = 0.84) [29]. In spine surgery, 90-day complication following
anterior cervical discectomy and fusion has been predicted by DNN (AUC = 0.832) [30], and for both posterior
lumbar spinal fusion and adult spinal deformity surgery, specific complications were predicted by artificial
neural network (ANN) [31,32].

Quality of Life

ML modeling has been used to predict quality of life based on assessment scores, including the Oswestry
Disability Index (ODI) and the Glasgow Outcome Score (GOS). Using ANNs, predictions of GOS, which assess
the long-term necessity for rehabilitation, in patients with aneurysmal subarachnoid hemorrhage achieved
AUC of 0.85 and 0.96 based on clinical and angiogram data respectively [33]. Azimi et al. used ANNs to
predict postsurgical satisfaction over two years for patients with lumbar spinal canal stenosis undergoing
lumbar spine surgery [34]. Support vector machine (SVM) predicted postoperative ODI prior to operation for
cervical spondylotic myelopathy using preoperative ODI and symptom duration with a coefficient of
determination of 0.932 [35].

Recurrence and Mortality

Tumor recurrence has been predicted effectively by ML models. For example, early progression and
recurrence outcomes for patients with parasagittal and parafalcine meningiomas were successfully predicted
by SVM and random forest (RF), achieving AUC = 0.91 [36]. SVMs were used to predict survival for glioma,
achieving similar or higher AUC in comparison to a team of neuroradiologists [37].

Translation of ML in Neurosurgery

A comprehensive analysis of translation efforts in ML applied to neurosurgery is detailed in Table 4.

Study/device
Externally
validated

Applied
for FDA
approval

Translated
into clinic

Type of model
Training
method

Input Outcome  Model performance

Valliani et

al. [38]
Yes No No

Ensemble
learning
algorithm

Single center
Clinical features
and surgical
variables

Non-home
discharge
after
thoracolumbar
spine surgery

AUC: 0.81 (test)
AUC: 0.77 (external)

Senders et

al. [39]
Yes No No

Accelerated
failure time
model

Retrospective
dataset

Demographic,
socioeconomic,
clinical, and
radiographic
features

Prediction of
survival in
glioblastoma
patients

C-index: 0.70 (best
time-to-event model),
0.70 (best continuous
and binary model)

Liu et al. [40] Yes No No Decision tree Retrospective

Demographic,
clinical, and
aneurysm-specific
features as well as
Glasgow Coma
Score

Long-term
outcomes
after poor-
grade
aneurysmal
subarachnoid
hemorrhage

AUC: 0.88 (test)
AUC: 0.94 (external)

Staartjes et

al. [41]
Yes No No

Logistic
generalized
additive model

Multicenter
retrospective
database

Clinical features
and labs

Functional
impairment
after
intracranial
tumor surgery

AUC: 0.72 (test),
AUC: 0.72 (external)

Viz

Aneurysm [42]
Yes Yes Yes Neural network Unknown CTA imaging

Detection and
analysis of
cerebral
aneurysms

93.8% sensitivity
94.2% specificity
(external)

Doses of
harmful
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Carra et

al. [43]
Yes No No Random forest

Prospective
and
retrospective
databases

ICP and MAP
signals

intracranial
pressure in
patients with
severe
traumatic
brain injury

AUC: 0.94 (external)

Aidoc
BriefCase-
CSF

triage [44]

Yes Yes Yes Neural network Unknown CTA images
Detection of
cervical spine
fractures

(external) Sensitivity -
54.9 Specificity - 94.1

Rapid LVO

1.0 [45]
Yes Yes Yes

Density
threshold-
based
traditional
machine
learning

Unknown CTA images

Detection of
anterior
circulation
LVOs

Sensitivity - 96.0
Specificity - 98.0

Imaging
biometrics
(IB) Neuro-

Oncology [46]

Yes Yes Yes
Artificial
Intelligence

Unknown CTA images
Distinguishing
glioblastoma
progression

Classification of
survival in GBM
sensitivity - 80.0
Specificity - 63.0

Staartjes et

al. [47]
Yes No No

Logistic
regression

Retrospective
multicenter
database

Clinical features
and surgical
variables 

Prediction of
mid-term
outcomes
after lumbar
spinal fusion

Functional
Impairment AUC:0.75
(test) AUC:0.67
(external) Back pain
AUC: 0.71 (test)
AUC:0.72 (external)
Leg Pain AUC: 0.72
(test) AUC: 0.64
(external)

Thanellas et

al. [48]
Yes No No

Convolutional
neural network

Retrospective
single-center
dataset

CTA images

Identification
and
localization of
subarachnoid
hemorrhage
on CT scans

Development:
Sensitivity 87.4% and
specificity 95.3%
External: sensitivity
99.3% and specificity
63.2%

Teng et

al. [49]
Yes No No

Logistic
regression

Retrospective
multicenter
database

Clinical features
lab values and
imaging

Predicting
high-grade
intracranial
meningioma

Development: AUC:
0.99 AUC: 0.75
(internal) AUC: 0.842
(external)

Vitrea CT
Brain

Perfusion [50]

Yes Yes Yes
Convolutional
neural network

Unknown CTA images
Detection of
intracranial
aneurysms

Sensitivity - 90.9-96.3
Specificity - 100.0

Ma et al. [51] Yes No No Neural network 
Retrospective
multicenter
database

MRI images
Prediction of
intramedullary
glioma grade

AUC: 0.8431

Biswas et

al. [52]
Yes No No Neural network

Retrospective
single-center
database

Predictor variables
(demographic and
lab)

Predicting
chronic
subdural
hematoma
referral
outcome

AUC: 0.951 (test)
AUC: 0.896 (external)

Fang et

al. [53]
Yes No No

Convolutional
neural network

Retrospective
single-center
database

Demographic,
clinical, and
imaging variables

Glasgow
Outcome
Scale

AUC (test): 0.93 AUC
(external): 93.69

Karhade et

al. [54]
Yes No No

Logistic
regression

Retrospective
multicenter
database

Clinical labs and
tumor-specific
variables

Six-week
mortality in
spinal
metastasis

AUC (test): 0.84 AUC
(external): 0.81
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cases

Crabb et

al. [55]
Yes No No

Logistic
regression,
random forest,
support vector
machine, and
ensemble
learning
algorithm

Public
database

Age, BMI, clinical
variables, and
preoperative lab
tests

Prediction of
unplanned 30-
day
readmissions
after pituitary
adenoma
resection

AUC (external): 0.76

Warman et

al. [56]
Yes No No

Ensemble
learning
algorithm

Prospective
single center
dataset and
public
dataset

Patient
demographics,
presenting vital
signs, mechanism
of injury, initial
Glasgow Coma
Scale (GCS)

Predicting in-
hospital
mortality after
traumatic
brain injury

AUC (test): 0.91 AUC
(external): 0.89

Habets et

al. [57]
Yes No No

Logistic
regression

Retrospective
single center

Patient
demographic data,
disease-specific
data, clinical
performance
scores, and
neuropsychological
scores

Prediction of
motor
response after
deep brain
stimulation

AUC (test): 0.79 AUC
(external) 0.79

TABLE 4: Analysis of translation efforts
AUC: Area under the curve; CTA: Computed tomography angiography; ICP: Intracranial pressure; MAP: Mean arterial pressure; CSF: Cerebrospinal fluid;
LVO: Large vessel occlusion; IB: Imaging biometrics; GBM: Glioblastoma; CT: Computerized tomography; MRI: Magnetic resonance imaging; BMI: Body
mass index

Intraoperative and robotic applications
ML approaches underpin many of the robotic functions that currently drive improvements in patient
outcomes in neurosurgery. With these techniques, neurosurgeons retain accuracy over the course of long,
technically complex operations, where minuscule reductions in operative times, patient length of stay,
revision surgeries, and morbidity translate to large amounts of value added [58]. Spinal robots have
improved pedicle screw placement accuracy (odds ratio (OR) 0.44 compared to freehand; OR 0.50 compared
to CT navigation) and optimal screw placement [59,60], while intracranial automation has increased the
speed and accuracy that leads to deep brain stimulation and stereoelectroencephalography are placed [61].
The exciting capabilities of neurosurgical robotics augmented with ML are image registration for
intraoperative neuronavigation and surgical task automation, enhancing operative planning, efficiency, and
accuracy.

Neuronavigation

Neuronavigation, the application of technology to localize lesions within the skull or vertebral column, has
drastically impacted workflow within various neurosurgical subdisciplines, driving improvements in
outcomes from epilepsy surgery to spinal fusion. AI systems have served important roles in traditional
neuro-navigation systems, using infrared, electromagnetism, and ultrasonography methods to track
position. Currently, novel ML methods are being developed to enhance these traditional systems. A key
challenge in intraoperative neuronavigation is high-fidelity image registration, or the action of updating
preoperative imaging to reflect real-time changes in the surgical field, while creating navigation plans. For
example, resection of a large tumor can significantly alter the patient’s anatomy, such that the preoperative
imaging used to create the navigation plan is no longer accurate [62]. Intra-operative registration updates
the navigation plan to reflect the amount of tumor removed and the shift of normal tissue toward the
resection cavity. Several models have been proposed to optimize registration; Han et. al. have developed an
unsupervised, dual-channel deep learning (DL) network that updates preoperative magnetic resonance
imaging (MRI) with intraoperative computerized tomography (CT) [63]. Such registration techniques can
improve current robot navigation systems, enhancing the speed and accuracy of neurosurgical operations.

Subtask Automation
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While neurosurgical procedures require a skilled surgeon, some tasks may be automated, enabling attention
to critical areas. During an awake craniotomy, a neurosurgical robot could automatically stimulate a critical
area of the eloquent cortex, sensing when the operator has performed the delicate part of the operation.
Padoy and Hager have demonstrated such surgeon-robot interactions with Hidden Markov models; they
enabled a da Vinci surgical system (Intuitive Surgical, Sunnyvale, United States) to recognize when a
surgeon had inserted a suture needle, automatically pull the needle through, and seamlessly transfer control
back to the surgeon for the next bite [64]. Similarly, Hu et al. indicated that the RAVEN II Surgical Robot
could semi-autonomously perform brain tumor ablation via modeling and implementation of a behavior tree
framework [65]. Robotics augmented with ML algorithms can further automate surgical trajectory planning
as demonstrated by the minimally invasive RAVEN II Surgical Robot that can plan efficient trajectories to
approach and resect residual brain tumor at its margins following debulking [66]. Regarding a stereotactic
brain biopsy, neurosurgeons using computer-assisted route planning software were able to create shorter
trajectories that were more orthogonal to the skull and carried a lower risk of injuring vasculature as
compared to manually planned routes [67].

Non-robotic Intra-operative Applications

ML has non-robotic intraoperative uses that may improve neurosurgical practice. Wong et al. developed an
unsupervised ML model that used microelectrode recording inputs to functionally localize and visualize the
subthalamic nucleus (STN) during deep brain stimulation (DBS) procedures [68]. Valsky et. al reported their
successfully trained Hidden Markov model that identifies when a DBS lead improperly exited the ventral
STN [69]. It is also possible to predict postoperative motor improvement in Parkinson’s disease following
DBS by applying an RF to intraoperative microelectrode recording data [70]. Beyond functional
neurosurgery, Jermyn et. al showed that an RF classifier could be applied to intraoperative Raman
spectroscopy data during grade 2-4 glioma resection, identifying more invasive cells with an accuracy of 92%
while a surgeon with a bright-field microscope and MRI could identify the same cancer cells with 73%
accuracy [71]. More recently, intraoperative high-resolution magic angle spinning nuclear magnetic
resonance was used in conjunction with an RF to differentiate tumor cells from healthy controls with a
median AUC of 85.6% and area under the precision-recall curve (AUPR) of 93.4, while also being able to
distinguish between benign and malignant samples with a median AUC of 87.1% and AUPR of 96.1% [72].
Ritschel et al. showed that SVMs trained on contrast-enhanced ultrasound image data can accurately detect
the resection margins of glioblastoma [73]. Li et al. developed an approach where a CNN with a long short-
term memory architecture was applied to probe-based confocal laser endomicroscopy images to successfully
differentiate between glioblastoma and meningioma [74].

Overall, clinically useful applications of ML to neurosurgical robotics and intraoperative decisions are
steadily increasing. While ML has benefited domains like DBS lead implantation, neuronavigation, pedicle
screw placement, and tumor boundary classification, further innovation is on the horizon.

Diagnostic and imaging applications of ML in neurosurgery
ML can assist in the diagnosis and classification of major neurosurgical conditions. For epilepsy detection,
CNNs have achieved performances of >96% accuracy using electroencephalography (EEG) data [75],
extending to real-time seizure prediction [76]. Using CT angiography images for intracranial aneurysm
detection, CNNs achieved an accuracy of 0.886 on independent internal validation. Aneurysms in the
anterior communicating artery, anterior cerebral artery, vertebrobasilar artery, and middle cerebral
artery were best predicted, with poor performance for tiny aneurysms (<3 mm) [77]. For the spine, ML has
been used to diagnose fracture from CT [78] (accuracy 0.932), to detect foraminal stenosis using generative
adversarial networks (GANs) for semantic segmentation [79] (mean average precision 0.837), and to diagnose
osteoarthritis by DL from medical record data without any imaging [80] (accuracy 0.768). The use of ML for
neurosurgical diagnostics is focused on tumor classification both pre and perioperatively. Such ML
applications have predicted meningioma grade [81] (AUC 0.8895), non-invasive tissue classification by SVM
from Hyperspectral Imaging [82], intraoperative tumor classification by DNA methylation
profile [83] (accuracy 89%), and preoperative tumor classification by CNN from MRI-only data [84] (accuracy
0.9656).

Medical data including medical records, imaging (CT, MRI, EEG, hyperspectral imaging), and intraoperative
tissue, serve as inputs to ML models for the diagnosis of neurosurgical conditions. However, ML and feature
selection algorithms allow for radiomics: the discovery and development of clinically explainable radiologic
features that are useful for prediction. For traumatic brain injury prediction and lesion classification,
features including shape, intensity, and texture biomarkers were isolated and used independently,
demonstrating the validity of these as radio markers for lesion classification [85]. For Gamma Knife
radiosurgery, ML was used to discover features to predict surgical effectiveness, finding higher zone
percentage as a radiomarker for achieving local tumor control in brain metastasis [86]. Feature-based ANNs
were used to discover radio-markers for preoperative tumor differentiation between skull base chordoma
and chondrosarcoma for preoperative planning, extracting the potential radiomarkers from preoperative MRI
imaging, and by using only seven of these identified radiomarkers achieved an AUC of 0.93 [87].

State-of-the-art applications: GANs and federated learning
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Generative Adversarial Networks

The applications of ML to diagnostics in neurosurgery extend beyond disease prediction, innovating the
imaging methods themselves. Using GANs, MRI conversion to CT has been demonstrated in the brain [88-
90] and spine [91]. A GAN generates images by training two DL models at the same time: one to generate
synthetic images and another to discriminate between real and synthetic images, both competing with each
other to simultaneously improve. Synthetic CT scans have demonstrated the ability to validate the
downstream application of dosimetric determination for stereotactic brain radiotherapy [92], allowing for the
potential conversion of MRI/CT workflow to MRI-only workflows for diagnostics and radiosurgical planning.
GANs applied to positron emission tomography imaging improved spatial resolution [93] and dose
reduction [94]. Lastly, GANs have allowed for the consideration of multiple imaging modalities, improving
Alzheimer’s disease diagnosis by synthetically constructing missing imaging information and using a
downstream CNN to combine the real and synthetic information to predict the diagnosis [95] (AUC > 0.87).

Federated Learning

A fundamental barrier in ML applications to neurosurgery is the lack of available "big data," mainly due to
the cost of storage and the preservation of patient privacy. This preservation prohibits the sharing of
medical data across institutions, restricting the ability to build large datasets necessary to train DL models
and restricting algorithms to learn from data at one institution [96]. This “domain shift” in turn results in
internally validated algorithms failing to generalize and externally validate [97]. One solution, synthetic
learning, is to share synthetic data that represents the clinical information of patient data but preserves its
privacy; efforts have begun to use GANs to generate synthetic data and to allow sharing across institutions.
This approach has been proven to be unbiased and downstream models trained on the synthetic data have
achieved high performance on brain tumors [98], nuclei segmentation [98], and spine radiograph
abnormality classification [99]. The current most popular method to preserve data privacy while allowing for
the training of complex networks across institutions is termed federated learning (FL). In FL, private data
never leaves an institution. Instead, a basic ML model is trained on the institution's data, and statistics from
the updated model are sent back to a central system. The aggregation of these results across many
institutions may send an updated model that better represents patient populations, fine-tuned by the
specific institutions before application. Such FL schemes in neurosurgery have demonstrated success,
outperforming locally trained models, in intracerebral hemorrhage detection on CT scans [100] (AUC
0.9487) and automatic tumor boundary detection for glioblastoma [101]. The main restriction of FL is in rare
data environments, where the initial single institution models cannot learn meaningful information. Future
work must develop technical solutions to this problem as many applications of ML in neurosurgery have
limited patient volume.

Large Language Models

ChatGPT, a large language model (LLM) trained by OpenAI, has demonstrated the ability to pass
neurosurgical boards. Similarly trained LLMs, such as NYUTRON, have been shown to achieve high
performance for common neurosurgical outcome prediction tasks such as readmission prediction. At this
cutting edge of ML in neurosurgery, motivated by the increasingly "black box" construction of these models
and their training, it becomes essential to investigate training strategy, bias analysis, and hallucinations of
the models (Table 5).
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Paper/model Input variables Training data source
Performance
measurement

Hallucinations
mentioned

Common
hallucinations

Translated
Bias
investigated

NYUTRON
[102,103]

Text in clinical records NYU EHR records

Mortality
prediction,
Comorbidity index,
readmission
prediction

No No No Age, race

GPT-4
ChatGPT
and Bard
[104]

The 149-question
self-assessment
neurosurgery
examination
indications
examination

Both supervised and
unsupervised learning
techniques on a large
corpus of Internet text
data

Score on
neurosurgical
examination

Yes

Incorrect
image Analysis
in test
questions

No N/A

TABLE 5: Large language models in neurosurgery
NYU: New York University; EHR: Electronic health records; GPT: Generative pre-trained transformer

Conclusions
While ML is already impacting patient care, most of the developments discussed in this review have not
been translated at a large scale. A primary issue is that these algorithms lack generalizability. While efforts
toward standardization in AI research reporting are commendable and have led to significant improvements,
the unique challenges in neurosurgery, such as differences in patient cohorts, pathology and outcome
definitions, and imaging modality generation differences, highlight the need for tailored approaches to
standardization in this field. Data sharing and technical solutions including FL should help transition to "big
data" and with that, the increase of ML assistance in direct patient care in neurosurgery. As both algorithms
and cases become more complex, incorporating inputs of imaging, video, and genomics, it is essential that
neurosurgeons consider the technical elements of the proposed methods. As large language models and
ChatGPT begin to be translated to neurosurgery, the translation of these models should be clinician-led and
necessitate clinical metrics to carefully validate these tools while developing them to improve the quality of
care.
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