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Abstract
Even though many of the approved drugs still have high systemic toxicity due to a lack of tumor selectivity
and present pharmacokinetic drawbacks, like low water solubility, that negatively influence the drug
circulation time and bioavailability, the anti-cancer study has produced commendable results in recent
years. The stability tests carried out under stressful exposure to high temperatures, hydrolytic media, or
light sources during their development or under moderate settings have shown the vulnerability of anti-
cancer medications to various factors. Because of this, the development of degradation products is
considered hospital waste in pharmaceutical formulations and the environment. Until now, various
formulations have been created for attaining tissue-specific therapeutic targeting, lowering harmful side
effects, and enhancing drug stability. To boost the specificity, efficiency, and durability of active molecules
that are targeted in cancer therapy the invention of prodrugs is the potential approach. The latest study
illustrates that the solubility, pharmacokinetics, cellular uptake, and stability of chemotherapy drugs can be
improved through the incorporation of them into vesicular systems, such as polymeric micelles or
cyclodextrins, or via nanocarriers containing chemotherapeutics linked to monoclonal antibodies. In this
review article, we provide an overview of the most recent advances in the field of designing very stable
prodrugs or nanosystems that are powerful anti-cancer medications and their actions on the body.
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Introduction And Background
One of the most frightening illnesses of the 20th century is malignancy; it is still increasing and becoming
more common in the 21st century. Every other person has a lifelong risk of developing this malignancy,
shocking among all the present affairs [1]. Cancer is a complex series of diseases that develop one after
another, accumulating over time to produce a field of cells capable of unregulated growth, and these
unregulated cells resist the body's normal mechanisms for cell death. "Karkinoma" is a Greek phrase
originating from the term Cancer, depicting projections resembling appendages [2]. Various genetic and
epigenetic alterations and chemical carcinogens brought on by repeated exposure to different types of
cancer-causing agents such as smoked tobacco, ultraviolet light, persistent injury to tissues of the body, and
some virus-causing infections are primarily responsible for the origin, advancement, and growth of this
deadly malignant ailment [3-5]. These malignancies' target of wrecking is human tissues that are being
enlisted and to little range change into pathological creatures or the elementary unit of the tumors [6]. The
term "chemotherapy" is attributed to Nobel prize-winning German physician Paul Ehrlich who researched
and studied the application of drugs to cure infectious diseases. He was also one of the first scientists to
explore the potential of several drugs for disease prevention using animal experiments. The use of arsenic is
said to have started in the early 1900s. Surgery and radiotherapy were the two main methods for treating
cancer in the 1960s [7]. The objective of this article is to provide information regarding novel
chemotherapeutic agents with respect to cancer.

Review
Search methodology
The search was done in different databases like Pubmed, Google Scholar, and Scopus using key terms for
novel chemotherapy in the treatment of cancer. Related articles over the last 15 years were searched, which
included full text, reviews, book articles, website reports, and online published reports. About 78 articles
were obtained. After screening for duplicate, suitability, inclusion, and exclusion criteria on the basis of the
quality of the article, a total of 38 articles were shortlisted and included in the final review.

Current scenario for the need for chemotherapy
World Health Organization (WHO) made statistical data which bespeaks the immediate necessity for
improved cancer restorative choices with better efficacy and fewer side effects [8]. The WHO's statistical data
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showed a hurried need for enhanced cancer therapeutic options with increased efficiency and few adverse
effects [9]. Malignant cells are extremely difficult to treat selectively with traditional chemotherapeutic
medicines since they arise from the body's healthy cells [10]. Mechanisms are usually modified by
carcinogens and could halt or exaggerate some of the normal human physiological processes [11]. Active
chemotherapy treatments have been associated with a significant increase in the toxicities driven on by the
body's non-cancerous tissues, particularly those in the skin, spleen, liver, and other important organs. Due
to their tendency to only impact tumor cells and their low level of toxicity, the application of
chemotherapeutic drugs found in cancer cell-targeted nanoparticles has risen. But for these nanoparticles to
use their therapeutic effect on the target cells, they must overcome limitations such as biological barriers
and the microenvironment surrounding the tumor [3,12]. One major negative aspect associated with
conventional cancer chemotherapy is the possibility of overdose toxicity brought on by cytotoxic drug
exposure to the non-tumor cells. To date, molecularly targeted drugs like monoclonal antibodies and specific
kinase inhibitors have successfully treated patients by getting around this constraint. Increasing
effectiveness using an antibody-drug conjugate (ADC) is the cleverer way and decreases systemic side
effects. ADCs use antibodies to deliver a strong cytotoxic chemical to tumor cells in a targeted manner,
greatly increasing the therapeutic index of chemotherapeutic drugs [13].

Some newer drugs for different types of cancer treatment
Trastuzumab Deruxtecan (Approved by FDA on August 5, 2022)

Emanate from the evidence that is accessible at the current: A newer-generation ADC that assures almost all
the requirements is trastuzumab deruxtecan (DS-8201a) medicament. The hardback freightage in DS-8201a
is highly overpowering. It also has a huge drug-to-antibody ratio, is tumor-respective, is homogeneous, has
a firm linker-payload in the circulation of the body, splinter, and has a low tectonic half-life cytotoxic agent
that may exert an observer effect. DS-8201a may render a favorable cure with outstanding prospects for
managing human epidermal growth factor receptor 2 (HER2) intimating malignancies in clinical scenarios
according to its presymptomatic features. In a HER2-positive gastric cancer NCI-N87 model, DS-8201a
demonstrated a HER2 expression-dependent cell growth-inhibitory effect and promoted tumor regression
with a single dosage at more than 1 mg/kg. DS-8201a's anti-HER2 binding and antibody-dependent cellular
cytotoxicity (ADCC) activity were equivalent to that of an unconjugated anti-HER2 antibody. DS-8201a
exemplified suitable safety outlooks in a phase I trial, potential therapeutic efficacy, and a broad therapeutic
index [13].

A subsequent-generation medication named trastuzumab deruxtecan (DS-8201a): ADC relies on the earlier
accessible verification that fulfills those requirements. The latest warhead in DS-8201a is inadequate,
tumor-specific, cleavable, and has an extremely high drug-to-antibody ratio. In addition, it is a lethal agent
with an extremely short in vivo circulatory half-life that has a chance to have a benign effect. DS-8201a may
be a victorious treatment with a substantial guarantee for handling HER2-expressing malignant tumors in
clinical settings based on its preclinical characteristics. In the phase I trial, DS-8201a exhibited adequate
safety profiles, potential productiveness for therapy, and a huge therapeutic index. The breast sufferer with
positive HER2 malignancy who had formerly taken treatment demonstrated long-lasting anti-cancer effects
with trastuzumab deruxtecan. Interstitial pulmonary disease was seen in a minority of people, along with
nausea and myelosuppression, prompting strict scrutiny and awareness of pulmonary symptoms [14].

Treatment of breast cancer with trastuzumab deruxtecan versus trastuzumab emtansine: In collation with
trastuzumab emtansine, trastuzumab deruxtecan is linked with a reduced likelihood of disease progression
or fatalities among individuals who have positive HER2 cancer of the breast who had formerly received
trastuzumab along with a taxane treatment. It was discovered that those using trastuzumab deruxtecan were
more vulnerable to developing interstitial lung disease and pneumonitis [15].

Bevacizumab (Approved by FDA on October 11, 2006)

The VEGF-A-selecting monoclonal antibody bevacizumab (Avastin®), which was first sanctioned as an
angiogenesis blocker and was also one of the untimely focused pharmaceuticals, was made approachable for
clinical usage more than 15 years ago. Bevacizumab, the earliest of a newer class of anti-cancer drugs,
remains to give an extensive range of anti-angiogenetic therapy. In addition to cancer of the breast and
non-small-cell lung cancer, its indicators now include renal cell carcinoma, cancer of the ovaries, cervix
cancer, and glioblastoma. It was initially accepted for treating metastatic colorectal cancer when amalgamed
with chemotherapy [16]. More than 15 years prior, the VEGF-A-selected monoclonal antibody (Avastin®),
one of the earliest targeted medications, was made accessible for clinical use. It was initially rubber-stamped
as an angiogenesis inhibitor. The first of an entirely novel family of anti-cancer medicines, bevacizumab,
still pursues to offer the widest range of anti-angiogenic therapy. Its guidance now also includes brain
tumors, renal cell carcinoma, cancer of the ovary, cervix cancer, and metastatic cancer of breast and non-
small-cell lung cancer. When used with chemotherapy, it was initially authorized to manage colorectal
cancer [17].

Mirvetuximab Soravtansine-Gynx (Approved by FDA on November 14, 2022)
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The efficacious tubulin-targeting maytansinoid termed DM4 is amalgamed with a folate receptor (FR)-
binding antibody to form the mirvetuximab soravtansine (MIRV) combination. MIRV and the investigator's
sorted chemotherapy regime were contrasted in the case of plat-resistant epithelial cancer of the ovary
(EOC) in a randomized, open-label, FORWARD I investigation of PHASE 3. Compared to chemotherapy,
MIRV did not notably improve progression-free survival (PFS) in the sufferers with platinum-resistant EOC.
Especially in patients who had elevated FR expression, secondary endpoints typically preferred MIRV.
Compared to chemotherapy, MIRV demonstrated a more distinct and feasible safety profile [18].

Niraparib (Approved by FDA on March 27, 2017)

Niraparib, presently used to treat ovarian cancer patients, is an oral PARP 1/2 poly (adenosine diphosphate
(ADP)-ribose polymerase) drug that has demonstrated therapeutic efficacy. Anyways the existence or lack of
gBRCA (breast cancer gene) variations or the position of homologous recombination deficiency (HRD),
patients with platinum-sensitive recurrences who received niraparib showed considerably prolonged middle
intervals of development-free survival than those who got a dummy medication with relatively moderate
bone marrow damage [19]. Niraparib is being used to treat some newly diagnosed advanced ovary neoplasm
patients. Despite the existence or the lack of BRCA mutations, it has been established that the drug niraparib
has been linked to significantly longer survival without progression among individuals with persistent
ovarian cancer after platinum-based treatment. It has been proved that niraparib, which initially suppresses
the activity of PARP, substantially improves survival without progression in patients with advanced cancer
[20].

Olaparib (Approved by FDA on December 19, 2014)

Only a fraction of people with metastatic cancer of the pancreas appear to have bequeathed BRCA1 or
BRCA2 mutations. Olaparib, a poly adenosine diphosphate-ribose polymerase blocker, has been shown to
have anti-cancer properties in this cohort. With continuous olaparib in contrast to placebo, illness-free
longevity was increased in those with advancing pancreatic neoplasm and a genetic BRCA characteristic
[21]. Olaparib raised the percentage of people with hereditary BRCA1 and BRCA2 mutations (BRCAm) and
regional breast cancer (mBC) who survived without recurrence when compared to therapy of the doctor's
choice (TPC) in the OlympiAD research study. The expected concluding overall survival statistical research
and highlighting of the most severe unfavorable events (AEs) in disposition are demonstrated today to
understand the tolerability of olaparib [22]. The relationship between ovarian cancer treatment and
cerebellopontine angle tumor size is illustrated in Figure 1 [23].
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FIGURE 1: Changes in cerebellopontine angle tumor volume over time
and their relationship to therapy for ovarian cancer.
The tumor was slowly growing until April 2017, but MRI after the initiation of carboplatin and docetaxel
chemotherapy showed a decrease in tumor size, and the tumor continued to shrink during further olaparib
chemotherapy.

#: carboplatin and paclitaxel; †: carboplatin and docetaxel; ‡: olararib

Black arrow: resection of the abdominal tumor; white arrow: ovarian cancer recurrence

This image is taken from an open access journal.

Rucaparib Tamsylate (Approved by FDA on May 15, 2020)

Rucaparib recently obtained the US FDA's major leap therapy classification for managing growing ovarian
cancer among individuals with more than two previous treatments. BRCA modifications, platinum fragility,
and cycles of plat-based therapy. Many PARP inhibitors, notably olaparib, and talazoparib, have companion
diagnostic (CDx) screening for specific treatment. Their manufacturing is comparable to that of rucaparib.
The CDx test, possible PARP inhibitor combination treatment, PARP inhibitor trials in clinical settings, and
anticipated resistance mechanisms are all covered in this article. The study covers CDx testing, potential
PARP inhibitors combo therapy, clinical trials with medications that inhibit PARP, and expected resistance
mechanisms [24].

Nivolumab (Approved by FDA on March 4, 2022)

In most individuals with gastro-oesophageal adenocarcinoma that fails to show the HER2, standard first-line
therapy results in disease progression and deaths within a year [1-4]. According to the randomized, global
CheckMate 649 phase 3 study, nivolumab, including chemotherapy, improved complete survival to
treatment at 12-month follow-up in patients with gastro-oesophageal, gastric, or oesophageal
adenocarcinoma. Through distinct but supportive modes of activity, nivolumab and the CTLA-4 inhibitor
ipilimumab promote the development of de novo anti-tumor T-cell responses and the recovery of anti-
cancer T-cell activity, respectively. In severely previously treated patients with advanced cancer of gastro-
oesophageal junction, treatment with 1 mg kg-1 nivolumab and 3 mg kg-1 ipilimumab indicated considerable
anti-tumor effectiveness with an achievable safety profile [25].

Tumor microenvironment (TME): An issue worth monitoring and information to be vigilant about. In the
past, radiotherapy and surgery were the only ways to limit tumor growth. Are no longer present from the
past. The molecular characteristics associated with malignancies appear to be the cornerstone of any therapy
in the complex scenario that is now unfolding. Here, we give an overview of the many cancer treatments
available. The vital importance of certain commonly used cancer treatments, including surgery, radiation,
chemotherapy, and hormone therapy, is now well-understood in terms of their efficacy mechanisms. The
importance of systemic therapy is then highlighted by a summary of the most current and upcoming
medications in the era of targeted therapy, including novel antibodies, small compounds, anti-angiogenic,
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and viral therapy. The identification of novel biomarkers is briefly known. As mentioned, cancer stromal
cells actively support the development of malignant cells by secreting paracrine signals. In patients with
rectal cancer in clinical stages II to III, neoadjuvant chemoradiotherapy decreased the risk of a localized
recurrence. Still, it also postponed the commencement of the best course of action. We compared the
outcomes of intermittent versus continuous chemotherapy and radiation treatment when the preoperative
drugs fluorouracil, leucovorin, and oxaliplatin (FOLFOX)/bevacizumab were administered [26-28].
Mesenchymal stem cells are integrated, cytokines are generated, growth factor binding increases, and
stromal cell dysfunction all contribute to the replenishment and proliferation of cancer cells [29-31].

Impact of TME on tumor density, metastasis, and invasion: These TM traits produce physical barriers that
stop medications from entering the body and result in resistance [32].

Targeting the cellular TME using nanoparticles
The nature and functioning of the TME are directly related to the growth and spread of cancers. TME
modulation techniques have received a lot of attention recently in cancer immunotherapy. The short
medication retention period in TME has hampered the therapeutic effects of immunotherapeutic medicines,
notwithstanding their early success. Compared to normal distribution methods, nanoparticles with
distinctive physical characteristics and complicated designs can pierce the TME more successfully and
convey its crucial constituent. In this work, we briefly discuss the TME's replacements, including dendritic
tissue, phagocytes, fibroblasts, tumor vasculature, tumor-draining lymph nodes, and hypoxic conditions,
before investigating several nanoparticles that target these components and their potential in the therapy
of cancers. In addition to more traditional medical techniques like chemotherapy and radiation,
nanoparticles can be used. Because different cancer kinds and people vary, the nanoplatforms' distribution
technique might not be effective for all malignancies. The creation of more individualized nanoplatforms
will be facilitated by understanding the alterations in TME at different phases of cancer progression [33].

Nanotherepy in cancer diagnosis
Early identification is crucial to the continuous battle against cancer and effective therapy. However, due to
the intrinsic limits of conventional cancer diagnostic methods, it is now more difficult to identify cancer
early. Nanotechnology has been investigated for detecting extracellular cancer biomarkers and cancer cells
and in vivo imaging due to its high sensitivity, specificity, and multiplexed measurement capabilities. The
most recent advancements in cancer diagnosis using nanotechnology are summarised in this article. In
addition, the difficulties of converting diagnostic techniques based on nanotechnology to clinical
applications are explored [34]. Mysterious company in the tumor cancer's microbiome and the
microenvironment. Even though it has been established that the intestinal microbiome is a key biomarker
and regulator of cancer development and therapeutic response, less is known about the role of the
microbiome in cancer in other body sites. Recent research has shown that the local microbiota significantly
influences the TME in various cancer types, particularly those that develop in mucosal locations such as the
gastrointestinal tract, skin, or lungs [35].

Some newer modalities in cancer treatment
Chimeric Antigen Receptor T cell (CAR-T Cell) Therapy

The latest indented-edge treatment alternative for cancer is the chimeric antigen receptor T cell (CAR-T
cell) method of healing therapy. Despite the actuality that treatment with CAR-T cells has exemplified
pivotal clinical responses with few subdivisions of B cell leukemia or lymphoma, the therapeutic efficacy of
CAR-T cells in hostile solid tumors and hematological malignancies is contrived by several ultimatums.
Effective CAR-T cell therapy is hurdled by grave toxicities, which can be lethal, poor anti-tumor venture,
antigen bolt, much less trafficking, and minimal tumor assault. In addition, interactions among the host and
tumor milieu notably impact CAR-T cell activity. Furthermore, qualified individuals have to expand and
execute these therapies. To defeat major obstacles, novel plans, policies, and techniques are to be developed
CAR-T cells with increased anti-tumor efficacy and decreased toxicity are needed [36].

Advances in CAR-T Cell Therapy

Whenever put to use in treating hematological tumors, it is more relevant to focus on certain neoplasm
varieties; CAR-T cell treatment has emerged with striking advantageous effects inimical to cancer. Merging
autologous CAR-T cells presents many drawbacks due to different problematic things like high values,
extensive production delays, and limited cell sources. A meticulous advancement that could help to combat
the majority of these affairs is the development of a ubiquitous CAR-T (UCAR-T) cell treatment [37].

Current Progress in CAR-T Cell Therapy

In doing treatment of various hematological cancers, CAR-T cells have accomplished wonderful clinical
victories. Later, the FDA sanctioned two CAR-T cell-based therapeutics, Kymriah (tisagenlecleucel) together
with Yescarta (axicabtagene ciloleucel), which is now being used in the US to treat B cell acute lymphoblastic

2023 Lohiya et al. Cureus 15(9): e45474. DOI 10.7759/cureus.45474 5 of 7

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


leukemia (B-ALL) and diffuse large B-cell lymphoma (DLBCL), also. Solid malignant tumors remain
strenuous to cure with CAR-T cell treatment, despite rectification in treating hematological tumors. Most of
the study in this field has been dedicated to enhancing CAR-T cells and minimizing the detrimental impact
of the cancer microenvironment on solid tumors. It has a main pivot on better understanding the existing
and time to come of CAR-T cell-based treatments for different solid tumors [38].

Conclusions
The greater incidence, death rates, and recurrence rates for various kinds of malignancy denote that
conventional therapy is not enough when done alone or in combination. In a prominent area, there is an
opportunity to further assess it. In congruence with reports, the role played by TM in either raising the
growth of the cell or hindering the capacity of anti-cancer medications to be effective is among the leading
causes of poor chemoprevention. Newer outlooks on dealing with different types of tumors have been
studied by the most recent advances in cancer treatment. These changes have led to a greater cognizance of
the molecular components that cause neoplasm. Though some of the earlier therapies are still beneficial,
they, of course, have certain drawbacks. For instance, although radiation and surgery are advantageous, they
only tackle a single concentrated tumor place. Chemotherapy has extremely hazardous side effects but can
treat tumors that have spread throughout the body. The defiance of reality may not be the only therapy
available today. All of these are still in use and most likely will be used for a time to come, even in the future.
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