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Abstract
The applications of artificial intelligence (AI) in temporal bone (TB) imaging have gained significant
attention in recent years, revolutionizing the field of otolaryngology and radiology. Accurate interpretation
of imaging features of TB conditions plays a crucial role in diagnosing and treating a range of ear-related
pathologies, including middle and inner ear diseases, otosclerosis, and vestibular schwannomas. According
to multiple clinical studies published in the literature, AI-powered algorithms have demonstrated
exceptional proficiency in interpreting imaging findings, not only saving time for physicians but also
enhancing diagnostic accuracy by reducing human error. Although several challenges remain in routinely
relying on AI applications, the collaboration between AI and healthcare professionals holds the key to better
patient outcomes and significantly improved patient care. This overview delivers a comprehensive update
on the advances of AI in the field of TB imaging, summarizes recent evidence provided by clinical studies,
and discusses future insights and challenges in the widespread integration of AI in clinical practice.
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Introduction And Background
A series of recent breakthroughs in the evolution of artificial intelligence (AI) has transformed it into a
powerful tool in the field of medical diagnostics. The rapid advancements in computational capabilities,
coupled with access to massive datasets, have empowered AI to analyze extensive clinical data, including
histopathology slides, radiographic images, and other medical imaging modalities [1]. The first AI
applications in medicine date back to the 1970s, paving the way for the introduction of personalized
medicine in 1999. This milestone has led to significant advancements in prognostic, diagnostic, and
therapeutic individualization, shaping the trajectory of medical progress ever since [2,3].

The principles of AI function mainly focus on developing patterns and algorithms that empower machines
to learn and make predictions or decisions without being explicitly programmed. In recent years, AI
technologies, such as machine learning (ML) and deep learning (DL), have found application in diverse facets
of otolaryngology, spanning hearing loss, balance disorders, and investigations into skull base pathology [4].
Given the complexity of these conditions, coupled with the absence of a standardized diagnostic approach,
there arises a need for a method that can provide precise interpretation of temporal bone (TB) imaging [5].
While the issuance of diagnostic and treatment guidelines has significantly contributed to this endeavor,
their impact on daily clinical practice remains limited. Consequently, a fertile ground has emerged for the
integration of AI into clinical settings [4,5]. This study aimed to discuss the latest advancements of AI in TB
imaging, as well as to reflect on the challenges in the clinical implementation of ML in the investigation and
management of lateral skull base pathology.

Review
Methods
We conducted a comprehensive search of the literature using bibliographic databases, such as PubMed,
Scopus, and Google Scholar. The keywords used included: “artificial intelligence,” “machine
learning,” “neural networks,” “temporal bone imaging,” “image segmentation,” “middle ear
disease,” “tinnitus,” and “balance disorders.” Our aim was to encompass publications from 2018 onwards. We
retrieved and included prospective and retrospective original studies that examined the application of AI in
temporal bone imaging for this article. Narrative reviews, systematic reviews/meta-analyses, and studies
relevant to the topic but lacking sufficient data were excluded. The article selection strategy involved title
and abstract screening, followed by a full-text assessment. At least two authors independently conducted the
screening process. Any conflicts were addressed and resolved through mutual consensus among the
reviewers. Our research strategy and thought process are reflected in Figure 1. As our article is a narrative
review, the article search was not systematically approached and the flowchart does not reflect the Preferred
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Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [6].

FIGURE 1: Flowchart of narrative review of the literature.

Results and discussion
 AI Function Principles

The steps of the machine learning (ML) procedure involve data collection, data preprocessing, model
training, model evaluation, and model deployment and prediction [7]. These principles of ML function are
illustrated in Figure 2. ML can be broadly categorized into four main types: supervised learning,
unsupervised learning, semi-supervised learning, and reinforcement learning [7].
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FIGURE 2: Steps in the machine learning procedure.

Supervised Learning

Supervised learning refers to the use of labeled data in training an ML model. Labeled data consists of input
features, such as risk factors for a specific disease or patient demographics, paired with corresponding
desired outputs (labels or target variables), such as clinical manifestations or diagnoses [8]. The goal is for
the AI model to assimilate the mapping between the input features and the target variables, in order to make
accurate predictions or classifications on previously unseen data. Common algorithms used in supervised
learning include linear regression, decision trees, random forests, and neural networks [8,9].

Unsupervised Learning

Unsupervised learning addresses unlabeled data without any specific feedback or target variable. The
objective of the machine is to discover patterns and correlations within the inputted information, in order to
proceed with patient grouping [8]. Unsupervised learning algorithms can perform tasks like clustering,
dimensionality reduction, and anomaly detection [8,10]. Clustering allows the formation of natural grouping
or clusters within patients of the same dataset without any predefined labels or target variables [11]. Data
points within the same cluster are more similar to each other compared to those in different clusters.
Dimensionality reduction aims at the simplification and the transformation of high-dimensional data into a
lower-dimensional representation, by reducing the number of variables or features and thus preserving only
the essential information [12].

Semi-supervised Learning

Semi-supervised learning combines elements of both supervised and unsupervised learning, with the
dataset containing a mixture of labeled and unlabeled data [13]. It aims to leverage the smaller amount of
labeled data along with a large amount of unlabeled data, in order to improve the learning process [6,14]. By
incorporating both information types, semi-supervised learning can effectively address situations where
obtaining labeled data is limited, expensive, or time-consuming [15].

Reinforcement Learning

Reinforcement learning describes the trial-and-error training process of the AI agent to maximize a reward
signal [16]. Positive or negative feedback engages it in constant interaction with the environment and urges
it to opt for the best actions to achieve a cumulative rewarding result over time [17]. Popular reinforcement
learning algorithms include Q-Q-learning, deep Q-Q-networks (DQN), and policy gradient methods.
Applications in medicine include treatment optimization, healthcare resource allocation, and adaptive
medical device development [18].

Deep learning (DL) constitutes a multilayer data processing algorithm using neural networks. DL, along with
other AI features has manifested substantial progress in medical imaging recognition tasks [19]. The
application of AI in daily clinical practice promises to relieve clinicians’ overburdened work schedules, by
minimizing their manual input while facilitating their decision-making process [20,21]. AI applications in
radiology are predominantly based on either supervised or unsupervised learning, with the latter having
received an increased amount of attention over recent years [20].

AI in temporal bone automated image segmentation
TB imaging, using computed tomography (CT) or magnetic resonance imaging (MRI) scans, plays a crucial
role in providing otologists with a holistic perception of the patient’s unique anatomical features. Due to the
intrinsic complexity of TB anatomy and its variations, identification of underlying pathology and pre-
operative planning is often challenging [22]. Three-dimensional (3D) imaging techniques have been
introduced as an addition to the widely used two-dimensional depictions (2D), in order to facilitate the
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mapping and analysis of the respective anatomy [22].

Apart from 3D reconstructions from 2D image slices, additional technologies that serve different purposes in
the field of TB imaging are also in use. Convolutional neural networks (CNN) are classes of artificial deep
neural networks applied to the analysis of visual imaging. CNNs are employed to detect and classify specific
lesions, like acoustic neuromas or cholesteatomas. The AI system can identify subtle abnormalities and flag
potentially concerning areas for further evaluation by healthcare professionals [23]. In terms of diagnosis,
computer-aided diagnosis (CAD) systems encompass a wider range of technologies and approaches beyond
CNNs. They are software systems designed to assist in the process of medical diagnosis, mainly by
differentiating between various ear conditions [22]. Radiomics and texture analysis techniques are
responsible for characterizing tissue properties and abnormal changes by extracting quantitative features
from image slices. This aids in early disease detection and monitoring treatment responses. In the operative
room, the surgeon's field of view may be enriched by AI-powered augmented reality systems, which use
radiological images to extract data and overlay critical information. The next link in the chain, medical
reports, can benefit from natural language processing (NLP) algorithms, which provide concise summaries
for clinicians to review, thus assisting in the documentation process [20].

The most effective assessment method of an AI model’s performance is cross-validation - a dataset fold is
chosen as the validation set and the remaining as the training set. The process is repeated multiple times,
each time using a different fold as the validation set [24]. Another technique is holdout validation, where the
dataset is split into two parts; the training set and the test set. The latter is serving as a proxy for new,
unseen data that the model will encounter in real-world conditions [25]. Dice similarity coefficients (DCSs)
and Hausdorff distances constitute some of the more commonly used CNN efficiency-metric scales to
juxtapose it with the traditional, manual methods [26]. The closer the DSCs and Hausdorff distances are to 1
and 0 mm, respectively, the more similar the AI-performed segmentation to the manual technique [27].

U-Net

U-Net is currently the most popular CNN for precise pixel-level segmentation. The name stems from the
shape of the network’s architecture resembling the letter "U" when visualized graphically. It consists of an
encoder path and a corresponding decoder path, with skip connections in between [28]. Its ability to
produce optimal results while handling limited training data has earned its place as the method of choice in
multiple clinical studies [29]. Vaidyanathan et al. used a training dataset of 944 MRI volumes and a
validation set of 99 MRI volumes [30]. They aimed to evaluate the 3D U-Net and apply it as a deep-learning
tool for inner ear anatomical segmentation. The test Dice similarity coefficient (DSC) scores for the
validation cohort vs. the test cohort were 0.86 and 0.82, respectively; the true positive rates were 97.7 and
91.50 and the false discovery rates were 21.8 and 14.8. Among the limitations of the study, the lack of an
optimal manual segmentation method was noted, as well as the inability of the model to generalize 5 out of
177 cases, despite the highly marked DCS scores. Overall, it was concluded that the 3D U-Net model is
equivalent to the manual technique and it is a dependable and effective approach for inner ear segmentation
[30]. Wu et al. suggested a novel 3D U-Net model for the automated segmentation of the semicircular canal,
in an attempt to empower a better understanding of the vestibular anatomy [31]. Thirty-nine CT scans were
collected and manually annotated by highly skilled physicians. A satisfactory result was noted in most
samples, reaching a Dice coefficient (DC) greater than 90% (mean DC: 92.5%) [31]. A study conducted by
Heutink et al. used 123 high-resolution CT volumes for automatic segmentation and pre-operative
measurement of the cochlea for customized implant planning [32]. Compared to manual annotation, DC was
0.90±0.03 and the average Hausdorff distance was 0.32±0.07 [32]. Hussain et al. trained a 2D U-Net model for
inner ear segmentation in micro-CT volumes and found a DC of 0.90 and a Hausdorff distance of 0.74 mm
[33].

Materialise Mimics

Materialise Mimics (Leuven, Belgium: Materialise NV) is a medical engineering software with key features,
such as 3D image segmentation, 3D model reconstruction, and virtual surgical planning. A recent study by
Ke et al. in 2023, applied Mimics software for the delineation and reconstruction of the used structures [22].
They included 80 CT scans interpreting temporal bone structures, 40 in adults and 40 in children. A further
sample of 60 annotated CT scans was appointed as the training set. In most structures, no statistically
significant difference was identified between the two age groups. The adult and the pediatric set
demonstrated a range of DC values from 0.714 to 0.912 and 0.658 to 0.915, respectively. The average
symmetric surface distance (ASSD) was less than 0.24 and 0.18 mm for 11 structures in the adult and
children groups, respectively. Overall, the segmentation performance was rated as satisfactory and reliable
[22].

Other Software

A non-exhaustive list of different software for 3D image segmentation includes the following: AH-Net,
ResNet, YOLACT, W‐Net, and 3D cGANs. Neves et al. used a dataset of 24 post-CT and 252 pre-CT volumes
and performed a comparison between following three different CNN models: AH-Net, U-Net, and ResNet
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[23]. The DC for AH-Net was 0.91, 0.85, and 0.75 for inner ear structures, facial nerve, and ossicles,
respectively. The average Hausdorff distance was 0.25, 0.21, 0.24, and 0.45 mm. Notably, the study achieved
a ninetyfold reduction in CT scan segmentation time, thus highlighting the potential of automated models
in relieving physicians from time-consuming procedures. However, the imaging identification does not
highlight the importance of distinguishing different anatomical regions and surgical instruments in real-
time, while operating [23]. The study by Choi et al. used YOLACT system for real-time segmentation intra-
operatively [34]. A total of 5,319 frames from 70 mastoidectomy videos were collected. An accuracy rate of
91.2% and 56.5% was achieved in detecting surgical tools and anatomic regions, respectively. DSC was
48.2% for anatomical segmentation and average frames per second were 32.3. The results were estimated as
gratifying, with strong development prospects [34]. Table 1 provides a summary of original studies
describing AI applications on automated TB image segmentation.

Studies Study description Dataset

AI type

and/or

software

Validation

method

Data

augmentation

Manual

methods

used

Key outcomes

Ke et al.

2023 [22]

Automatic segmentation of temporal bone

anatomy in adult and pediatric CT scans

80 CT

volumes
CNN/Mimics

Cross-

validation
Yes Yes

Adult: DC 0.714-0.912, ASSD <0.24 mm,

pediatric: DC 0.658-0.915, ASSD <0.18 mm

Margeta et

al. 2022 [35]

A web-based automated image

processing research platform in pre-

operative temporal bone CT images,

combining deep learning and Bayesian

inference approaches

60 subjects CNN/Nautilus
Cross-

validation
Yes Yes

Nautilus demonstrates segmentation

performances in the range of previously

presented academic results

Neves et al.

2021 [23]

Automated segmentation of temporal

bone CT images using CNN

150 CT

volumes

CNN/AH-Net,

U-Net, ResNet

Cross-

validation
Yes Yes

DC: inner ear 0.91; ossicles 0.85; facial nerve

0.75; sigmoid sinus 0.86. Average Hausdorff

distance: 0.25, 0.21, 0.24 and 0.45 mm,

respectively

Lv et al.

2021 [36]

Multi-objective segmentation of temporal

bone CT images (including the cochlear

labyrinth, ossicular chain, and facial

nerve) using CNN

30 CT

volumes
CNN/W‐Net

Cross-

validation
Yes Yes

DSC: 0.90, 0.85, and 0.77 for the cochlear

labyrinth, ossicular chain, and facial nerve,

respectively

Wang J et

al. 2021 [37]

Proposing a deep learning model for

automated segmentation of critical

structures in temporal bone CT scans

39 CT

volumes
CNN/W-Net

Cross-

validation
Yes Yes

DC and ASSD mean values: normal group -

0.703 and 0.250 mm facial nerve; 0.910 and

0.081 mm for labyrinth; 0.855 and 0.107 mm for

ossicles, abnormal group -0.506 and 1.049 mm

for malformed facial nerve; 0.775 and 0.298 mm

for deformed labyrinth; 0.698 and 1.385 mm for

aberrant ossicles, respectively

Vaidynathan

et al. 2021

[30]

Fully automated segmentation of inner ear

on MRI using deep learning

1121 MRI

volumes

CNN/3D U-

Net
Holdout Yes Yes

Mean DSC: 0.8790, true positive rate: 91.5%,

false discovery, and false negative rates: 14.8%

and 8.49%, respectively

Nikan et al.

2021 [38]

PWD-3DNet (deep learning) for fully

automated segmentation of multiple

temporal bone structures on CT scans

39

cadaveric

TB

speciments

CNN/PWD-

3DNet
Multiple Yes No

DS and Hausdorff distance: average 86% and

0.755 mm, respectively

Hussain et

al. 2021 [33]

Auto-context CNN for automatic

segmentation of inner ear on CT-scan

17 micro-

CT

volumes

CNN/2D U-

Net + 3D

component

Cross-

validation
No Yes DC 0.90, Hausdorff distance 0.74 mm

Choi et al.

2021 [34]

CNN for video recognition and anatomic

detections/segmentation in simple

mastoidectomy

5,319

extracted

frames

CNN/YOLACT Holdout No Yes

Mean detection accuracies of surgical tools and

anatomic regions: 91.2% and 56.5%,

respectively; mean DSC 48.2%; mean

frames/second 32.3

Wu et al.

2021 [31]

A3D U-Net with attention mechanism for

automatic semicircular canal

segmentation of CT scans

39 CT

volumes

CNN/3D U-

Net
Holdout N/S Yes Mean DC 92.5%

Ahmadi et

al. 2021 [39]

Combination of micro-CT/MRI

developments and modern neuroimaging

technology: development of a novel in-

vivo atlas and template of the human

MRI from

63 subjects

Modern

neuroimaging

technology

Holdout Yes Yes
Publishing a comprehensive list of inner ear

landmarks for distance measurements
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inner ear

Jeevakala et

al. 2020 [40]

Automatic method for internal auditory

canal and nerves detection and

segmentation

50 patients

CNN/Mask R-

CNN, ResNet-

50 model

Holdout No Yes

Mean IoU of ResNet-50 and ResNet-101: 0.79

and 0.74, respectively; DS using region growing,

PSO and U-Net method: 92%, 94%, and 96%,

respectively

Li et al.

2020 [41]

3D Deep Supervised Densely Network for

temporal bone segmentation of CT scans

64 CT

volumes

CNN/3D-DSD

Net
Holdout Yes Yes

Average DSC: 77.18%, average ASD: 0.20 mm,

and average AVD: 0.43 mm

Heutink et

al. 2020 [32]

Multi-scale deep learning for cochlea

localization, segmentation, and analysis

on CT scans

123 CT

volumes

CNN/U- Net-

like
Holdout Yes Yes

Average DC 0.90, BF score of 0.95, average

Hausdorff distance 3.05 and 0.32 against

manual method

Wang et al.

2019 [42]

3D generative adversarial nets for metal

artifact reduction for cochlea segmentation

in CT images

24 post-CT

and 252

pre-CT

volumes

CNN Holdout Yes No
3D superior to MSSIM; 3D architecture superior

to 2D

TABLE 1: Studies describing the use of AI in temporal bone image segmentation.
TB: temporal bone; Net: network; CNN: convolutional neural networks; DC: Dice coefficient; ASSD: average symmetric surface distance; AH-Net:
anisotropic hybrid network; ResNet: residual neural network; DSC: Dice similarity coefficient; PWD: patch-wise densely connected; YOLACT: You Only
Look At CoefficienTs; DSD: deep supervised densely; MSSIM: mean structural similarity index; IoU: intersection over union; PSO: particle swarm
optimization; BF: Bayes factors; N/S: not specified

AI in middle ear disease
Chronic Otitis Media With or Without Cholesteatoma

AI’s role in the management of chronic otitis media (COM) has been well-established, including image
analysis, automated diagnosis, surgical planning, treatment recommendations, monitoring, and
prognostication [43,44]. Multiple software programs, including CNN, VGG-16, and MobileNetV2, have been
used for the detection of COM [45-58]. Studies involving AI technologies in middle ear diseases are
presented in Table 2.

Studies Study description Dataset
AI type and/or

software

Validation

method

Data

augmentation

Manual

methods

used

Key outcomes

Tseng et

al. 2023

[45]

CNN for diagnosis of cholesteatoma
834 otoscopic

images

CNN/DenseNet201,

NASNetLarge,

MobileNet-v2

Holdout Yes Yes

Accuracies for

differentiating

cholesteatoma from -

normal 83.8-98.5%;

abnormal non-

cholesteatoma 75.6-

90.1%; non-

cholesteatoma 87.0-

90.4%

Ayral et

al. 2023

[46]

AI in differential diagnosis of chronic otitis

media with and without cholesteatoma    

300 CT

images

CNN/ResNet-50,

MobileNet-v2
Holdout No No

Overall accuracy rate:

93.33% ResNet-50;

86.67% MobilNet-v2.

Diagnostic accuracy

rates: ≥90% ResNet-50;

≥80% MobileNet-v2

Hasan et

al. 2023

[47]

A computer vision algorithm for

classification of mastoid process

pneumatization on temporal bone CT

scans

784 CT

images
CNN Holdout Yes Yes

Overall accuracy 0.954,

sensitivity 0.860,

specificity 0.989, positive

predictive value 0.973,

negative predictive value

0.935, false positive rate

0.006

Average accuracy of
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Takahashi

et al. 2022

[48]

AI in pre-operative prediction for mastoid

extension in pars flaccida cholesteatoma

using high-resolution CT scans

164 patients CNN/MobileNet-v2
Cross-

validation
Yes Yes

ensemble prediction

model 81.14% (sensitivity

84.95%, specificity

77.33%) vs. manual

73.41% (sensitivity

83.17%; specificity

64.13%)

Eroğlu et

al. 2022

[49]

AI in differential diagnosis of chronic otitis

media with and without cholesteatoma
200 patients

CNN/AlexNet,

GoogLeNet,

DenseNet-201  

Holdout No Yes

Accuracy rate 95.4%

(correctly predicted 2952

out of 3093 CT images,

141 incorrectly predicted)

Chen et

al. 2022

[50]

Smartphone-based AI for detection and

diagnosis of middle ear diseases

2820 eardrum

images

CNN/VGG16,

VGG19, Xception,

Inception-v3,

NASNetLarge,

ResNet-50  

Holdout Yes Yes

Detection accuracy for

binary outcomes: 98%,

recognition accuracy:

97.6% vs. detection

accuracy from general

physicians, resident

doctors, and

otolaryngology

specialists: 36%, 80%,

90%, respectively

Duan et

al. 2022

[51]

AI in diagnosis of temporal bone

diseases, including cholesteatoma and

Langerhans cell histiocytosis

119 patients CNN/VGG16_BN Holdout Yes Yes

Physician vs. AI:

accuracy (cholesteatoma)

0.99 vs. 0.89,

(Langerhans cell

histiocytosis) 0.99 vs.

0.97, (middle ear

inflammation) 0.99 vs.

0.89

Wang et

al. 2022

[52]

Deep-learning method for the diagnosis

of different chronic middle ear diseases,

including middle ear cholesteatoma and

chronic suppurative otitis media

973 ears
CNN/Mask R-CNN,

VGG-16

Cross-

validation
Yes Yes

Average precision 90.1%,

recall 85.4%, F1 score

87.2%

Byun et

al. 2022

[53]

Assesses the performance of the

teachable machine for TM lesion

diagnosis

3024 TM

images

Machine

learning/teachable

machine

Holdout Yes No

Overall accuracy of the

classification of the 80

representative tympanic

membrane images:

78.75%, hit rates for

normal, OME, COM, and

cholesteatoma: 95.0%,

70.0%, 90.0%, 60.0%,

respectively

Tan et al.

2021 [54]

Analyzes the clinical performance of

otolaryngologists in diagnosing fenestral

otosclerosis (OS) and develops a deep

learning model for OS diagnosis

134,574 CT

slices
LNN Holdout Yes Yes

Area under the curve

(AUC): 99.5%

Wang et

al. 2020

[55]

Deep learning in diagnosis of COM: CT

scan-based

672 CT

images

CNN/Inception-v2

(Mountain View,

CA: Google LLC)

Cross-

validation
Yes Yes

Physicians vs. deep

learning: sensitivity 83.3%

vs. 81.1, specificity:

91.4% vs. 88.8

Khan et

al. 2020

[56]

CNN in detection of tympanic membrane

and middle ear infection from oto-

endoscopic images

2484

otoendoscopic

images

CNN/ResNet,

VGGNet,

GoogLeNet,

DenseNet,

Multiple Yes Yes

Physicians average

accuracy: 74% vs. AI:

87%

Tran et al.

2018 [57]
AI for diagnosis of pediatric OM

1230

otoscopic

images

Automatic algorithm
Cross-

validation
No Yes

Max classification

accuracy 91.41% (OME

vs. AOM)

Fujima et AlexNet, VGGNet,

Diagnostic accuracies:

0.89, 0.72, 0.81, 0.86,
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al. 2021

[58]

AI for interpretation of temporal bone CT

images in patients with otosclerosis

198 CT

images

GoogLeNet,

ResNet

Holdout Yes Yes and 0.86 for the

radiologist, AlexNet,

VGGNet, GoogLeNet,

and ResNet, respectively

TABLE 2: Studies involving AI technologies in middle ear disease.
HRCT: high-resolution CT; Net: network; CNN: convolutional neural networks; LNN: logical neural network; TM: tympanic membrane; AOM: acute otitis
media; OM: otitis media; COM: chronic otitis media; OME: otitis media with effusion; ResNet: residual neural network; VGG: Visual Geometry Group;
NASNet: neural architecture search network; AUC: area under the curve; N/S: not specified

In 2022, Eroğlu et al. conducted a three-group study with 100 participants in each [49]. The first group
consisted of patients who had chronic otitis media with cholesteatoma (CHO), the second group consisted of
patients with chronic otitis media without cholesteatoma (COM), and the third group consisted of
participants without disease (control group). The CHO group underwent tympanoplasty with or without
further mastoid exploration. Four physicians blindly created a homogenous dataset with 8-10 CT images of
each participant. Results were initially retrieved using three pre-trained architectures, AlexNet, GoogLeNet,
and DenseNet-201. After presenting the input images to the deep neural network, feature maps were
created, leading to data classification as the final step. The performance of the software was evaluated using
holdout validation, splitting the group of images into two parts, the training and the testing set. The highest
accuracy rate was reported in AlexNet (99.44% in the CHO group), followed by DenseNet-201 (91.76%) and
GoogLeNet (84.65%). These outcomes supported that deep learning networks can considerably assist
physicians by increasing their diagnostic effectiveness and contributing to the improvement of the
treatment course and outcomes of each patient. The limitation of this study was the small sample of
participants [49]. A similarly designed study was published by Ayral et al. in 2023, assessing the effectiveness
of ResNet-50 and MobileNet-v2 models [46]. The two architectures achieved an overall accuracy rate of
93.3% and 86.7%, respectively. The diagnostic accuracy rates for the ResNet-50 and MobileNet-v2 models
were 100% and 95% for the CHO patients, 90% and 85% for the COM patients, and 90% and 80% for controls,
respectively [46].

Wang et al. described a deep learning model called “Middle Ear Structure Identification Classifier” (MESIC)
[52]. This technology was aimed to facilitate the diagnosis of chronic middle ear conditions, including
chronic suppurative otitis media and cholesteatoma disease. The study used a dataset of 973 ears, created by
an otolaryngologist. Each CT scan was manually labeled as middle ear cholesteatoma (MEC), chronic
suppurative otitis media (CSOM), or normal. Mask R-CNN was used to automatically interpret CT scan
findings. Data classification was mainly performed by VGG-16. The network’s performance was validated
using average precision, recall, and F1-score. Results were 90.1%, 85.4%, and 87.2% for each of the three
factors, respectively. Thus, it was demonstrated that MESIC is a cost-effective and efficient means to
identify and differentiate between CSOM and MEC [52].

Otosclerosis

Neural networks and particularly deep learning models, seem to be valuable tools in the early diagnosis of
fenestral otosclerosis. AI networks allow clinicians to make early diagnoses of otosclerosis, by differentiating
its characteristic features in imaging from normal anatomical structures (e.g., abnormal bony thickening and
sclerosis around the oval window) [59].

Fujima et al. in 2021 were the first to use different deep-learning models to interpret temporal bone CT
images of individuals with otosclerosis [58]. AlexNet, VGGNet, GoogLeNet, and ResNet were the
architectures used. One hundred and ninety-eight CT images were interpreted both by the AI models and a
trained radiologist. The architectures’ performance was evaluated via the holdout method, with the training
set comprising 140 CT scans and the test set of 58. The diagnostic accuracies for the radiologist, AlexNet,
VGGNet, GoogLeNet, and ResNet were 0.89, 0.72, 0.81, 0.86, and 0.86, respectively. As a result, the study
failed to demonstrate a significant inferiority of the AI models in comparison to the radiologist’s
performance [58]. In 2021, Tan et al. examined the application of LNN in the diagnosis of fenestral
otosclerosis (OS) using temporal bone HRCT scans [54]. A total of 31,744 CT slices obtained from 144
patients were used as the neural network’s test set. The VGG-19 software served as the backbone of the
neural network model. Adam optimizer was used to reduce the bounding box refinement of the LNN model
and prevent classification losses. The LNN performance was subsequently compared to the diagnoses
reported by seven physicians. The study showed that the sensitivity (96.4%) and specificity (98.9%)
presented by the LNN model exceeded the sensitivity and specificity of the physicians [54].

Langerhans Cell Histiocytosis

AI’s capabilities in medical image analysis and pattern recognition can be leveraged into a widened
spectrum of diseases, including rarer entities, such as Langerhans cell histiocytosis (LCH). The incidence of
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LCH varies from one or two per million in adults and one to eight per million in children. Otologic
manifestations are present in about 40% of LCH patients [60,61].

Possible AI applications in TB LCH diagnosis were discussed by Duan et al. in 2022 [51]. In the patient
dataset comprising a total of 119 patients, TB LCH was histologically proven in 41 individuals. CT images
were classified by the VGG16_BN neural network model, an architecture with approximately 138 million
network parameters. The network uses a convolutional layer, two interconnected layers, and a soft
maximum output. The efficiency of VGG16_BN was ensured by applying various image processing
techniques. The model’s performance was subsequently compared to a clinician’s methods. The results
reported a receiving operating characteristic of 0.99 vs. 0.98, accuracy of 0.99 vs. 0.97, and specificity of 0.99
vs. 0.97. LCH is often difficult to assess and reaching a diagnosis can be delayed due to its rarity.
Approaching TB LCH with the contribution of artificial networks is a very important step in improving the
clinical outcomes of patients with this rare condition [51].

AI in tinnitus and balance disorders
Intriguing novel approaches in classifying imaging findings for tinnitus and vertigo patients have been
described in the literature. Table 3 summarizes key studies describing AI applications on patients with
tinnitus and/or balance disorders. Among the main targets of interest are Meniere’s disease and benign
paroxysmal positional vertigo.

Studies Study description Dataset
AI type and/or
software

Validation
method

Data
augmentation

Manual
methods
used

Key outcomes

Li et al.
2022
[62]

Novel approach in
classifying actionable
radiology reports of tinnitus
patients 

5864
CT
reports

CNN, MLP, Bi-
LSTM, hybrid
Bi-LSTM-CNN

Holdout No Yes

BERT AUC-0.868, F1-0.760
compared with that of the
Word2vec-based models
AUC-0.767, F1-0.733 on
validation data

Park et
al. 2021
[63]

Deep learning in
measuring endolymphatic
hydrops ratios in MRIs of
patients with Ménière
disease

MRI of
124
subjects

Neural
networks/3into3
Inception, 3into
U-Net 

Cross-
validation

Yes Yes

Physicians vs. INHEARIT-
v2 system: average
intraclass correlation
coefficient for all cases
0.941; average intraclass
correlation coefficient of the
vestibules 0.968, and that of
the cochleae 0.914

TABLE 3: Studies covering AI applications in tinnitus and balance disorders.
CNN: convolutional neural networks; BERT: bidirectional encoder representations from transformer; AUC: area under the curve; MLP: multi-layer
perception network; LSTM: long short-term memory model; INHEARIT: inner-ear hydrops estimation via artificial intelligence; N/S: not specified

The study of Li et al. aimed to propose the use of a novel tool in actionable radiology reports classification in
individuals with tinnitus [62]. This approach uses bidirectional encoder representations derived from BERT-
based software. The interpretation of 5864 CT scans was initially conducted by two radiologists and then
compared to a deep-learning neural network’s performance. In comparison to the Word2vec-based models,
the BERT-based model showed a superior result (AUC: 0.868, F1: 0.760) [62].

Investigating a novel tool in the diagnostics of Meniere’s disease, Park et al. proposed the use of 3into3
Inception and 3into U-Net networks to analyze endolymphatic hydrops (EH) ratios via MRI [63]. The two
models were integrated into the newly developed INHEARIT-v2 architecture. The study enrolled 124
participants. The performance values for the 3into Inception and 3into U-Net networks were 0.743 and
0.811, respectively. Comparing the results of the trained physicians to the INHEARIT-v2 performance, a high
correlation was found between the EH ratio values measured by the automated system and the experts [63].

AI in vestibular schwannoma
Currently, the diagnosis, stratification of radiotherapy dosage, and follow-up measurements of vestibular
schwannoma require delineation by manually reviewing MRI images [64]. Even though this process can be
successfully undertaken by well-trained experts, it is undeniably tedious and time-consuming. As a result,
there is a considerable effort underway to introduce AI learning algorithms in order to automate tumor
contouring. Table 4 includes original studies applying AI software to the diagnosis and clinical management
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of vestibular schwannoma.

Studies Study description Dataset
AI type
and/or
software

Validation
method

Data
augmentation

Manual
methods
used

Key outcomes

Abouzari
et al.
2020
[65]

Use of artificial neural network to
predict vestibular schwannoma
recurrence

789 VS patients ANN Holdout No No

Superior
performance of
ANN compared to
the regression
model (AUC: 0.79;
p: 0.001). Higher
sensitivity (61%)
and specificity
(81%). Correctly
classified 70% of
cases

Shapey
et al.
2021
[66]

Segmentation of MRI images in
vestibular schwannoma patients
through an open annotated dataset
and baseline algorithm

484 MR images
CNN/2.5
D U-Net

Holdout No Yes

Average DC of
94.5% for T1
images and 90.7%
for T2 images

Lee et
al. 2020
[67]

CNN in analyzing multi-parametric
MR images of VS patients

516 patients
CNN/2-
pathway
3D U-Net

Cross-
validation

No Yes

Mean DC of
0.90±0.05 for the
2-pathway model
VS 0.87±0.07 for
the single-pathway
model

Lee et
al. 2021
[68]

AI applications in longitudinal
imaging analysis of vestibular
schwannoma following radiosurgery

861 VS patients (1290
MR examinations)

CNN/U-
Net (dual
pathway
and single
pathway
model)

Cross-
validation

No Yes

RVD between AI
and manual
measurements:
+1.74%, -0.31%, -
0.44%, -0.19%, -
0.01%, and
+0.26% at each
follow‐up point

Neve et
al. 2022
[69]

Fully automated 3D vestibular
schwannoma segmentation with and
without gadolinium-based contrast
material

MRIs from 214
patients

CNN/3D
U-Net

Cross-
validation

No Yes

Mean S2S distance
of less than 0.6 mm
for the T1-weighted
model. T2-
weighted images
with a mean S2S
distance of less
than 0.6 mm. The
tool was similar to
human
delineations in 85-
92% of cases

Lee et
al. 2023
[70]

Lesion delineation framework for
vestibular schwannoma,
meningioma, and brain metastasis
for gamma knife radiosurgery using
stereotactic magnetic resonance
images

506 VS patients,
1,069 meningioma
patients, 574 BM
patients with BM who
had been treated
using GKRS

CNN/3 D
U-Net

Holdout No Yes

DC of 0.91±0.05
vs. 0.90±0.06, and
0.82±0.23 vs.
0.78±0.34 (2
parametric vs.
single parametric
model for VS and
BM respectively).
DC of 0.83±0.17
vs. 0.84±0.22 (for
meningioma,
respectively).

TABLE 4: Studies applying AI software to the diagnosis and clinical management of vestibular
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TABLE 4: Studies applying AI software to the diagnosis and clinical management of vestibular
schwannoma.
VS: vestibular schwannoma; ANN: artificial neural network; AUC: area under the curve; MR: magnetic resonance; MRI: magnetic resonance imaging;
CNN: convolutional neural network; DC: dice coefficient; S2S: surface-to-surface; BM: brain metastasis; GKRS: Gamma Knife radiosurgery; RVD: related
volume difference; N/S: not specified

The study of Lee et al. aimed to develop an algorithm to automate imaging analysis of vestibular
schwannoma following radiosurgery [68]. An end-to-end deep-learning scheme with an automated pre-
processing pipeline was developed and consequently applied to a series of 1290 MR examinations that
included T1-weighted contrast-enhanced (T1WC) and T2-weighted (T2W) parametric magnetic resonance
(MR) images. The images were derived from a sample of 861 consecutive patients who underwent Gamma
Knife radiosurgery (GKRS) between 1993 and 2008. The AI measurements were then compared to the clinical
measurements done manually by expert radiologists. The relative volume difference (RVD) between the
former and latter was +1.74%, -0.31%, -0.44%, -0.19%, -0.01%, and +0.26% at subsequent follow-up points.
The performance of the models was evaluated using the Dice coefficient. The study concluded that the
proposed AI model could be applied in the follow-up of Gamma knife radiosurgery for vestibular
schwannoma [68].

Yang et al. utilized a two-level machine-learning model to predict the long-term outcome and transient
pseudo-progression after GKRS [71]. Three hundred thirty-six patients were included in the study. The
evaluation of long-term outcomes was based on five radiomic features describing the variation of T2W
intensity and inhomogeneity of contrast enhancement in the tumor. The prediction of long-term outcomes
achieved an accuracy of 88.4%. The prediction of transient pseudoprogression, based on another five
radiomic features associated with the inhomogeneous hypointensity pattern of contrast enhancement and
the variation of T2W intensity, achieved an accuracy of 85.0% [71].

In 2021, Shapey et al. described the use of a previously developed novel AI framework based on a 2.5D CNN
with the aim to utilize the difference between in-plane and through-plane resolutions encountered in
typical imaging protocols [66]. The automatic segmentation results were compared to the results of manual
segmentations using the DS, average symmetric surface distance (ASSD), and relative volume error (RVE),
achieving excellent results. The dataset consisted of 484 MR images collected from 242 consecutive patients
undergoing Gamma Knife stereotactic radiosurgery (GKSR). The dataset included segmentations and
contours used in treatment planning, dose details, and co-registration assessed by radiologists. Compared to
the manual methods, the CNN yielded average DCS of 99.9±0.2% for T1 images and 97.6±2.2% for T2 images,
with all DCS higher than 88%. An automatic segmentation algorithm trained on the dataset demonstrated
high agreement with an average DS of 94.5±2.2% for T1 images and 90.7±3.6% for T2 images, comparable to
inter-observer variability between clinical annotators (average DS of 93.82±3.08%). The study showcased the
superiority of the 2.5D U-Net implementation over other baseline neural networks, yielding improvements
in DS of more than 3% [66].

Another CNN application on automated vestibular schwannoma segmentation using contrast-enhanced T1-
and T2-weighted MRI scans was presented by Neve et al. in 2022 [69]. The CNN achieved a mean surface-to-
surface (S2S) distance of less than 0.6 mm for both whole tumor and intrameatal/extrameatal tumor parts in
the independent test sets. The Dice index and Hausdorff distance were reported as 0.92 and 2.1 mm,
respectively, for T1-weighted images, and 0.87 and 1.5 mm, respectively, for T2-weighted images in the
independent test set. The observer study indicated a similarity between the automated tool and human
delineations in 85-92% of cases. This automated segmentation method may hold the potential to aid clinical
diagnosis and treatment planning in vestibular schwannoma cases [69].

Lee et al. in 2023 focused on target delineation in GKRS for smaller intra-cranial tumors using deep
learning-based algorithms [70]. Stereotactic MR images from 506 patients with vestibular schwannoma (VS),
1,069 patients with meningioma, and 574 patients with brain metastases (BM) undergoing GKRS were
collected. The developed algorithm utilized a three-dimensional patching-based training strategy and dual-
pathway architecture to handle inconsistent field-of-views and anisotropic voxel sizes. For VS and BM, the
model trained using two-parametric MR images outperformed the model trained using single-parametric
images, showing median Dice coefficients of 0.91 (two-parametric) vs. 0.90 (single-parametric) for VS and
0.82 (two-parametric) vs. 0.78 (single-parametric) for BM. For meningioma, the dual-pathway model was
dominated by single-parametric images, achieving median Dice coefficients of 0.83 (dual-pathway) vs. 0.84
(single-parametric). Combining three data sets for training led to comparable or even higher testing median
DCS for all three diseases using two-parametric input: VS (0.91), meningioma (0.83), and BM (0.84). The
proposed deep learning-based segmentation scheme demonstrated successful application in intra-cranial
tumor segmentation for GKRS planning, effectively leveraging stereotactic MR image volumes [70].

In 2020, Lee et al. compared the manual delineation of VS imaging to a deep learning method utilizing a
two-pathway U-Net model involving different convolution kernel sizes to extract in-plane and through-
plane features of anisotropic MR images [67]. The dataset consisted of multi-parametric MR images
collected from 516 VS patients. Additionally, the researchers used multi-parametric MR images with
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different contrasts for training to effectively segment tumors with both solid and cystic parts. The automatic
segmentation results showed that the two-pathway model outperformed the single-pathway model in terms
of DS (0.90±0.05 vs. 0.87±0.07) using T1W, T1WC, and T2W anisotropic MR images. Furthermore, the two-
pathway models trained using bi-parametric (T1WC and T2W) and tri-parametric (T1W, T2W, and T1WC)
images showed improved segmentation of non-homogeneous tumor parts compared to the model trained
using single-parametric (T1WC) images, with Dice scores of 0.89±0.05 and 0.90±0.05, respectively, larger
than 0.88±0.06. The proposed two-pathway U-Net model proved to be superior to the single-pathway model
for VS segmentation using anisotropic MR images, while the multi-parametric models effectively enhanced
segmentation by distinguishing between solid and cystic tumor components [67].

Limitations and ethical dilemmas
Despite the promising advancements in AI applications for TB imaging, there are notable limitations and
ethical considerations that warrant careful attention. Acknowledging these areas of struggle is important for
a balanced and responsible deployment of AI in interpreting TB imaging.

First of all, AI algorithms require large and diverse datasets to learn effectively. In the case of TB imaging, if
the dataset is small, obtaining high-quality annotated images may be challenging, leading to potential biases
or reduced performance. Limited exposure to training data might also complicate the identification of
uncommon anatomical variations or unusual pathologies. The high quality of the training datasets is also
very important to maintain, as it will prevent the algorithm from being biased. Furthermore, as long as the
medical field evolves rapidly, AI systems need mechanisms to continually learn, adapt, and update based on
new information [3].

It is also important to ensure the attainment of multiple ethical parameters when applying AI in medical
practice. To begin with, sharing medical records and images with AI algorithms raises concerns about data
confidentiality and security. Although the formation of large datasets is necessary, there is currently no
common system between institutions, that could ensure the safety of the transferred data. Additionally, it is
crucial for patients to be informed about how AI is being used in their healthcare and to provide consent for
AI-driven diagnostics or treatments. Another ethical consideration touches on issues of accountability and
liability, as we are in need of clear guidelines on who will be appointed responsible in case the AI system
makes a wrong diagnosis or recommendation. Concerns about equal access to AI-driven applications in
healthcare are also raised, as patients from lower socioeconomic backgrounds may not be favored from such
expensive or source-intensive treatments. Finally, it is necessary to maintain an effective, fruitful, and
healthy collaboration between physicians and AI technologies, in order to ensure that AI does not replace
human competency and decision-making [3,4].

Future outlook
As AI technologies continue to advance, their future implications are multi-faceted and extend across
various aspects of clinical care. AI helps manage the overwhelming volume of medical data by monitoring
large patient datasets. it aids in organizing patient records, streamlining administrative tasks, and improving
the overall efficiency of healthcare operations. Furthermore, AI systems are poised to become essential tools
for diagnosing medical conditions accurately and rapidly. Future AI models are expected to analyze even
more complex medical data, including images, lab results, and patient histories. They can also contribute to
personalized treatments by considering factors like genetics and treatment outcomes from similar cases.
Applications of AI are also expected to advance in the field of telehealth and remote monitoring. With the
help of wearable devices and sensors, telehealth platforms integrated with AI intervene promptly and
provide remote consultations, reducing hospital readmissions. Finally, AI offers variable contributions to
medical training by enhancing hands-on experiences, improving skill acquisition, and preparing healthcare
professionals for real-world scenarios. This can be achieved, among others, by AI-powered simulations and
virtual reality platforms, interactive anatomical models, and real-time feedback.

Conclusions
Compared to previous years, there has been a notable surge in the number of studies incorporating AI
algorithms and deep learning architectures in temporal bone imaging. This growing trend indicates the
increasing recognition of AI's potential to enhance diagnostic accuracy, improve surgical planning, and
optimize patient care in Otolaryngology. However, AI technological advances need to be approached with
caution, as its current limitations and challenges cannot be overlooked.

It is also important to note that while AI applications are implemented to assist healthcare professionals,
they are not meant to replace human expertise. Instead, AI acts as a supportive tool, providing insights and
facilitating the diagnostic procedure. As the technology continues to advance, we can expect AI to further
improve and expand its applications, supporting the transformation of traditional medical practices.
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