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Abstract
Breast cancer is a prevalent global health concern, necessitating accurate diagnostic tools for effective
management. Diagnostic imaging plays a pivotal role in breast cancer diagnosis, staging, treatment
planning, and outcome evaluation. Radiomics is an emerging field of study in medical imaging that contains
a broad set of computational methods to extract quantitative features from radiographic images. This can be
utilized to guide diagnosis, treatment response, and prognosis in clinical settings. 

A systematic review was performed in concordance with Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines and the Cochrane Handbook for Systematic Reviews of Diagnostic
Test Accuracy. Quality was assessed using the radiomics quality score. Diagnostic sensitivity and specificity
of radiomics analysis, with 95% confidence intervals (CIs), were included for meta-analysis. The area under
the curve analysis was recorded. An extensive statistical analysis was performed following the Cochrane
guidelines. Statistical significance was determined if p-values were less than 0.05. Statistical analyses were
conducted using Review Manager (RevMan), Version 5.4.1.

A total of 31 manuscripts involving 8,773 patients were included, with 17 contributing to the meta-analysis.
The cohort comprised 56.2% malignant breast cancers and 43.8% benign breast lesions. MRI demonstrated a
sensitivity of 0.91 (95% CI: 0.89-0.92) and a specificity of 0.84 (95% CI: 0.82-0.86) in differentiating between
benign and malignant breast cancers. Mammography-based radiomic features predicted breast cancer
subtype with a sensitivity of 0.79 (95% CI: 0.76-0.82) and a specificity of 0.81 (95% CI: 0.79-0.84).
Ultrasound-based analysis yielded a sensitivity of 0.92 (95% CI: 0.90-0.94) and a specificity of 0.85 (95% CI:
0.83-0.88). Only one study reported the results of radiomic evaluation from CT, which had a sensitivity of
0.95 (95% CI: 0.88-0.99) and a specificity of 0.56 (95% CI: 0.45-0.67). 

Across different imaging modalities, radiomics exhibited robust diagnostic accuracy in differentiating
benign and malignant breast lesions. The results underscore the potential of radiomic assessment as a
minimally invasive alternative or adjunctive diagnostic tool for breast cancer. This is pioneering data that
reports on a novel diagnostic approach that is understudied and underreported. However, due to study
limitations, the complexity of this technology, and the need for future development, biopsy still remains the
current gold standard method of determining breast cancer type.
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Introduction And Background
Female breast cancer is the most commonly diagnosed cancer worldwide. It is one of the leading causes of
cancer death among women, followed by colorectal and lung cancer [1]. In 2020, breast cancer surpassed
lung cancer as the most commonly diagnosed malignancy, with an estimated 2.3 million new cases [1]. Over
the past few decades, the management of breast cancer has progressed from radical treatment to targeted
surgery with the use of more individualized therapeutic regimes [2]. In the era of precision medicine, early
cancer diagnosis can allow for prompt medical intervention and effective treatment [3]. This will prevent the
progression of disease from early to advanced stages. Consequently, this can help improve cancer prognosis
and ultimately reduce overall mortality rates.

Various imaging modalities are utilized in investigating breast cancer, including ultrasound sonography
(USS), mammography (MMG), MRI, and CT. With the increasing incidence of breast cancer diagnosed,
imaging is at the forefront of guiding clinicians in the best approaches to managing breast malignancies.

In recent years, the rise of personalized medicine and the advancement of medical imaging analysis has
encouraged the development of radiomics in the field of medicine. This exponential growth has enabled
researchers to develop the field of radiomics through high-output computing. Radiomics is an emerging
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field of study in medical imaging that contains a broad set of computational methods. It uses data
algorithms to extract quantitative features from radiographic images [4,5]. These extracted features,
commonly known as radiomic features, can be utilized to guide diagnosis, treatment response, and
prognosis in clinical settings. Radiomic analysis is built on the central hypothesis that tumor imaging
reflects the underlying biological characteristics of the tumor, which may be presented as different radiomic
values [5]. Previous studies have compared the performance of radiomics in several aspects of the diagnostic
and staging process of many cancer pathologies, including breast cancer. This included differentiating
benign and malignant breast lesions, predicting lymph node metastases from primary breast malignancies,
identifying spinal metastases from lung primaries, predicting survival of patients with high-grade gliomas,
and determining the invasiveness risk of stage 1 pulmonary adenocarcinomas. The exponential growth of
radiomic research has led to its widespread integration into clinical practice.

Radiomics in breast cancer strives to improve the understanding of the histopathology and treatment of
breast tumors by extracting quantitative features from radiological images. The assessment of pre-operative
imaging provides clinical information that may prove to be a practical alternative to diagnostic core tissue
biopsy in stratifying breast cancers. Developing such methods of histopathological tumor evaluation would
avoid invasive approaches until the time of surgery. This can help reduce patient anxiety and prevent
potential complications associated with performing diagnostic core biopsies.

In this study, we aim to perform a systematic review and meta-analysis of the diagnostic accuracy of
radiomics in differentiating malignant and benign breast lesions using existing imaging modalities (MMG,
USS, CT, and MRI). Our research question utilizes the population, intervention, comparison, and outcome
(PICO) framework. Our population is patients diagnosed with breast cancer who have undergone imaging
(MRI, CT, USS, and MMG). The proposed intervention involves a radiomic analysis of radiologic images of
tumor tissue. The comparison is made between various radiomic software systems, Artificial Intelligence
(AI), Machine Learning (ML), Conventional Neural Networks (CNN), Deep Learning Techniques (DLT), and
the current gold-standard method of histopathological analysis via invasive biopsies. The primary outcome
is to evaluate the clinical utility of imaging modalities in classifying breast cancer lesions as either benign or
malignant. This evaluation will include an investigation of radiomic tumor characteristics, sensitivity,
specificity, and area under the curve (AUC) scores from receiver operating characteristic (ROC) curve
analyses. These strategies will help determine the reliability of radiomic imaging in confirming benign or
malignant pathology, as validated by histopathological evaluation.

The potential applications of radiomics in clinical research and practice are vast. It offers an alternative
approach to diagnosing breast cancer, potentially reducing the need for traditional, more invasive methods.
Such a shift could lead to a more comfortable and less painful diagnostic process, which is particularly
beneficial for patients who may already be experiencing significant anxiety.

Review
Materials and methods
A systematic review was conducted as per the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines and in accordance with the Cochrane Handbook for Systematic Reviews of
Diagnostic Test Accuracy [6,7]. Local institutional ethical approval was not required as this is a review article
of the current literature.

An electronic search of PubMed, Medline, EMBASE, and Scopus databases was performed for studies
relevant to our research question. Only studies published in English were considered for inclusion and were
not restricted based on the year of publication. All duplicate studies were removed before titles were
screened. Studies deemed appropriate had their abstracts and full texts reviewed. This search was carried
out by two independent reviewers. A third author was asked to arbitrate in case of a discrepancy between
opinions. 

Studies deemed appropriate for inclusion were those applying radiomic AI to diagnostic imaging for
differentiating benign from malignant breast lesions. These studies had to meet stringent inclusion and
exclusion criteria for selection (Table 1). The rationale behind these criteria was to ensure that data were
assessed from standard breast imaging modalities. Conventional breast imaging is highly informative in
discriminating breast cancer pathological subtypes prior to surgery and in obtaining diagnostic biopsies.
Additionally, ROC analysis plays an accepted role in providing diagnostic test accuracy, which is expressed
in terms of sensitivity, specificity, and AUC.
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Inclusion criteria Exclusion criteria

Studies with patients who have histopathologically confirmed breast cancer and its
associated subtypes

Studies reporting imaging modalities without
application of radiomics

Studies including conventional methods of breast imaging (USS, MMG, CT, MRI) Review articles and conference abstracts

Studies detailing ROC curve analysis (AUC, sensitivity and specificity)
Studies involving less than five patients in their patient
cohort

TABLE 1: Inclusion and exclusion criteria for systematic review study selection.
USS: Ultrasound sonography; MMG: Mammography; ROC: Receiver operating characteristic; AUC: Area under the curve.

Retrieved manuscripts were reviewed independently by both reviewers to ensure all inclusion criteria were
met. Multiple data parameters were extracted from all selected studies, including first author name, year of
publication, study design, country, level of evidence, study title, sample size, number of patients with breast
lesions, benign lesions, malignant lesions, imaging modalities used, radiomic tumor properties evaluated,
sensitivity, specificity, AUC scores from ROC analyses and type of radiomic analysis performed. Sensitivity,
specificity, and 95% CI were directly extracted from tables and study text. The quality of each included study
was assessed using the radiomics quality score (RQS), as outlined previously by Lambin P et al. [5].

An extensive statistical analysis was conducted following the Cochrane guidelines. Data on breast lesions
were displayed using descriptive statistics. Estimations of sensitivity and specificity were calculated from the
study data. ROC analysis was utilized to determine the sensitivity and specificity of radiomic analysis in
confirming breast cancer subtypes as verified by pathology. Statistical significance was set at a P value of
less than 0.05. All statistical analyses were performed using Review Manager (RevMan), version 5.4.1.

Results
An initial electronic search resulted in a total of 421 studies. Eighty-seven duplicate studies were found and
removed. The remaining 334 studies were screened for relevance. Following the screening, 46 studies had
their full text assessed for eligibility. Thirty-one manuscripts were included in this systematic review, and 17
were included in the meta-analysis (Figure 1) [8-38]. Studies included in this systematic review were taken
from seven countries, of which 17 were from China (Table 2).
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FIGURE 1: Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) flow diagram illustrating the number of studies
screened and excluded.
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Study Study Country Imaging Modality N NB Benign Malignant

Bickelhaupt S et al. (2016) [8] PC Germany MRI 50 50 25 25

Bickelhaupt S et al. (2017) [9] RC Germany MRI 51 51 22 29

Caballo M et al. (2020) [10] RC Netherland CT 82 82 45 37

D'Amico NC et al. (2020) [11] RC Italy MRI 68 68 41 27

Drukker K et al. (2019) [12] PC US MMG 109 109 74 35

Ellmann S et al. (2020) [13] RC Germany MRI 173 176 69 107

Fusco R et al. (2020) [14] RC Italy MRI 59 59 26 33

Hu B et al. (2018) [15] RC China MRI 88 88 36 52

Jiang Z and Yin J (2020) [16] RC China MRI 192 192 93 99

Jin et al. (2020) [17] RC China MRI 55 63 37 26

Kapetas P et al. (2019) [18] PC US USS 124 124 59 65

Lee SE et al. (2018) [19] RC SK USS 840 901 715 186

Li Z et al. (2017) [20] RC China MMG 302 302 76 226

Li H et al. (2018) [21] RC China MRI 112 112 67 45

Li Y et al. (2019) [22] RC China USS 178 181 114 67

Lin et al. (2020) [23] RC China MMG 139 139 100 39

Mao N et al. (2019) [24] RC China MRI 76 80 40 40

Niu Q et al. (2018) [25] RC China MRI 56 56 33 23

Parekh VS and Jacobs MA (2020) [26] RC US MRI 138 138 41 97

Sakai A et al. (2019) [27] RC Japan MMG 24 51 20 31

Wang L et al. (2020) [28] RC China MMG 122 112 33 79

Wang L et al. (2020) [29] RC China MMG 441 441 308 127

Wei M et al. (2020) [30] RC China USS 448 448 184 264

Whitney HM et al. (2019) [31] RC US MRI 508 508 212 296

Whitney HM et al. (2020) [32] RC US MRI 3150 3150 745 2405

Yan C et al. (2022) [33] RC SK USS 296 328 205 123

Yu Q et al. (2019) [34] RC China MRI 251 274 154 120

Zhang Q et al. (2016) [35] RC China USS 117 117 75 42

Zhang Q et al. (2020) [36] RC China MRI 207 207 95 112

Zhou J et al. (2020) [37] RC China MRI 133 153 62 91

Zhao Y et al. (2020) [38] RC China MRI 184 207 119 88

TABLE 2: Summary of 31 independent studies in this systematic review.
PC: Prospective cohort; RC: Retrospective cohort; US: United States; SK: South Korea; N: Number of patients; NB: Number of breast lesions; MMG:
Mammography; USS: Ultrasound sonography.

A total of 8,773 patients were included in this study, with the mean age at diagnosis being 49.6 years ± 11.8
(ranging from 21 to 90 years). Breast lesions were reported in 8,967 cases. Of these, 5,036 cases were
malignant breast cancers (56.2%), while 3,925 were benign (43.8%) (Table 2). Among the 21 studies that
reported the histological subtype of breast cancer, the types included were invasive ductal carcinoma (IDC),
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invasive lobular carcinoma (ILC), ductal carcinoma in situ (DCIS), lobular carcinoma in situ (LCIS),
fibroadenoma, and other benign and malignant histopathologies. IDC and fibroadenoma accounted for
29.2% and 36.7% of all cases, respectively (Table 3).
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Study
Imaging
Modality

IDC ILC DCIS LCIS
Other invasive
histology

Fibroadenoma
Other benign
histology

Bickelhaupt S et al. (2016) [8] MRI - - - - - - -

Bickelhaupt S et al. (2017) [9] MRI 26 2 1 0 0 6 16

Caballo M et al. (2020) [10] CT 19 2 6 0 10 10 35

D'Amico NC et al. (2020) [11] MRI 13 0 10 0 4 0 41

Drukker K et al. (2019) [12] MMG 29 4 0 0 2 0 0

Ellmann S et al. (2020) [13] MRI 0 0 47 13 47 19 50

Fusco R et al. (2020) [14] MRI 17 6 10 0 0 15 11

Hu B et al. (2018) [15] MRI 0 0 7 0 45 4 32

Jiang Z and Yin J (2020) [16] MRI 93 1 5 0 0 35 58

Jin YN et al. (2020) [17] MRI 20 0 5 0 1 23 14

Kapetas P et al. (2019) [18] USS 53 6 4 0 2 24 35

Lee SE et al. (2018) [19] USS 0 0 0 0 0 715 0

Li Z et al. (2017) [20] MMG 154 30 30 0 12 51 25

Li H et al. (2018) [21] MRI 32 2 7 0 4 6 61

Li Y et al. (2019) [22] USS 58 0 2 0 7 50 64

Lin F et al. (2020) [23] MMG - - - - - - -

Mao N et al. (2019) [24] MRI 27 2 10 0 1 12 28

Niu Q et al. (2018) [25] MRI - - - - - - -

Parekh VS and Jacobs MA
(2020) [26]

MRI 29 12 34 22 0 10 31

Sakai A et al. (2019) [27] MMG - - - - - - -

Wang L et al. (2020) [28] MMG 54 0 1 31 0 29 4

Wang L et al. (2020) [29] MMG - - - - - - -

Wei M et al. (2020) [30] USS - - - - - - -

Whitney HM et al. (2019) [31] MRI - - - - - - -

Whitney HM et al. (2020) [32] MRI - - - - - - -

Yan C et al. (2022) [33] USS - - - - - - -

Yu Q et al. (2019) [34] MRI 96 16 0 0 8 98 56

Zhang Q et al. (2016) [35] USS - - - - - - -

Zhang Q et al. (2020) [36] MRI 86 2 19 0 5 48 47

Zhou J et al. (2020) [37] MRI 75 0 11 0 5 15 47

Zhao Y et al. (2020) [38] MRI 119 0 0 0 0 88 0

TABLE 3: Histopathology of breast lesions in 31 individual studies.
IDC: Invasive ductal carcinoma; ILC: Invasive lobular carcinoma; DCIS: Ductal carcinoma in situ; LCIS: Lobular carcinoma in situ; MMG: Mammography;
USS: Ultrasound sonography.

In this analysis, 19 studies, constituting 61.3% of the total, reported data on the radiomic classification of
breast cancer pathology using ML. Nine studies, representing 29%, utilized AI, while two studies employed
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deep learning techniques, and one study used a conventional neural network (Table 4).

Study
Imaging
Modality

Brand
Radiomic
used

Radiomic
software used

RQS

Bickelhaupt S et al.
(2016) [8]

MRI 1.5T Philip Ingenia
Machine
Learning

FMRIB, MiTK 20

Bickelhaupt S et al.
(2017) [9]

MRI 1.5T MR Aera
Machine
Learning

Matlab 17

Caballo M et al. (2020)
[10]

CT N/R
Machine
Learning

N/R 19

D'Amico NC et al. (2020)
[11]

MRI 1.5T Philip
Machine
Learning

ITK 18

Drukker K et al. (2019)
[12]

MMG Senographe 2000D system
Machine
Learning

N/R 22

Ellmann S et al. (2020)
[13]

MRI 1.5T/3.0T Magnetom Avanto/Aera, Verio/Skyra
Machine
Learning

RStudio 3.4.1 17

Fusco R et al. (2020) [14] MRI 1.5 T Magnetom Symphony
Machine
Learning

Matlab R2007a 17

Hu B et al. (2018) [15] MRI 3T MagnetomVerio
Artificial
Intelligence

A.K. software 15

Jiang Z and Yin J (2020)
[16]

MRI 3T Signa HDxt
Machine
Learning

MATLAB 18

Jin YN et al. (2020) [17] MRI 3T GE Discovery 750
Artificial
Intelligence

MADC, MaZda 16

Kapetas P et al. (2019)
[18]

USS Siemens Acuson S3000 US
Artificial
Intelligence

VueBox 22

Lee SE et al. (2018) [19] USS iU22, HDI 5000
Artificial
Intelligence

Matlab 17

Li Z et al. (2017) [20] MMG
Hologic Selenia, GE Senographe Essential,
Siemens Mammomat Inspiration

Machine
Learning

Omni-Kinetics
Version 2.1

16

Li H et al. (2018) [21] MRI N/R
Artificial
Intelligence

N/R 18

Li Y et al. (2019) [22] USS Resona 7 US system
Artificial
Intelligence

MATLAB R2016a 18

Lin F et al. (2020) [23] MMG Senographe DS Senobright
Artificial
Intelligence

N/R 20

Mao N et al. (2019) [24] MRI 3T MR750
Machine
Learning

Omini-Kinetic 17

Niu Q et al. (2018) [25] MRI 3T MR750
Machine
Learning

Omni-Kinetic 17

Parekh VS and Jacobs
MA (2020) [26]

MRI 3T Philip
Machine
Learning

Matlab 16

Sakai A et al. (2019) [27] MMG AMULET Innovality
Machine
Learning

N/R 16

Wang L et al. (2020) [28] MMG N/R
Artificial
Intelligence

AK 21

Wang L et al. (2020) [29] MMG Selenia Dimensions mammography
Neural
Networks

DenseNet 18

Wei M et al. (2020) [30] USS PHILIPS iu22, PHILIPS iu Elite
Machine

N/R 18
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Learning

Whitney HM et al. (2019)
[31]

MRI 3T Philip
Machine
Learning

ROCkit 19

Whitney HM et al. (2020)
[32]

MRI Philip, GE Discovery 750
Machine
Learning

ROCkit 18

Yan C et al. (2022) [33] USS SuperSonic Imagine
Machine
Learning

MATLAB R2010a 18

Yu Q et al. (2019) [34] MRI 3T Philips Achieva
Machine
Learning

N/R 17

Zhang Q et al. (2016) [35] USS Hitachi HI VISION Preirus
Machine
Learning

N/R 17

Zhang Q et al. (2020) [36] MRI 3T Ingenia
Artificial
Intelligence

Omni-Kinetic 18

Zhou J et al. (2020) [37] MRI 3T GE SIGNA HDx
Deep
Learning

ResNet50 22

Zhao Y et al. (2020) [38] MRI 1.5 T Achieva
Deep
Learning

KERAS 19

TABLE 4: Radiomics and relevant imaging data of 31 independent studies included in this
systematic review.
MMG: Mammogram; US: Ultrasound; GE: General Electric; T: Tesla; N/R: Not reported; RQS: Radiomic Quality Score.

Overall, nine included studies reported the value of radiomic properties from MRI in estimating breast
cancer pathology subtype. Evaluation of radiomic features on MRI in differentiating malignant and benign
cancer had a sensitivity of 0.91 (95% CI: 0.89-0.92] and specificity of 0.84 (95% CI: 0.82-0.86) (Figure 2).
Deep learning techniques augment and improve the sensitivity to 0.97 (95% CI: 0.95-0.99) compared to both
AI and ML, which had a sensitivity of 0.85 (95% CI: 0.80-0.90) and 0.90 (95% CI: 0.88-0.92), respectively.
However, deep learning techniques exhibited a lower specificity of 0.80 (95% CI: 0.75-0.84) compared to AI,
which had a specificity of 0.87 (95% CI: 0.82-0.91), and ML, with a specificity of 0.86 (95% CI: 0.83-0.88)
(Figure 3).
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FIGURE 2: The diagnostic test accuracy of radiomic features in MRI
imaging for differentiating between benign and malignant breast cancer.
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FIGURE 3: The comparison of diagnostic test accuracy of radiomic
features in MRI imaging among Artificial Intelligence, Machine Learning,
and Deep Learning techniques.

Overall, four included studies reported on the value of radiomic features from mammographic imaging in
predicting the subtype of breast cancer. The evaluation of these radiomic features in mammography for
differentiating between malignant and benign cancers demonstrated a sensitivity of 0.79 (95% CI: 0.76-0.82)
and a specificity of 0.81 (95% CI: 0.79-0.84) (Figure 4).
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FIGURE 4: The diagnostic test accuracy of radiomic features in
mammography for differentiating between malignant and benign breast
cancer.

Overall, three included studies reported the value of radiomic features derived from ultrasound imaging in
predicting the pathology of breast cancer. The appraisal of these radiomic features on ultrasound for
differentiating malignant from benign breast cancer demonstrated a sensitivity of 0.92 (95% CI: 0.90-0.94)
and a specificity of 0.85 (95% CI: 0.83-0.88) (Figure 5).

2023 Oh et al. Cureus 15(11): e49015. DOI 10.7759/cureus.49015 12 of 17

https://assets.cureus.com/uploads/figure/file/724848/lightbox_4037411075fe11ee81e2036e3207bf58-image-4-enhanced-final.png
javascript:void(0)


FIGURE 5: The diagnostic test accuracy of radiomic features in
ultrasound sonography for distinguishing between malignant and
benign breast cancer.

Only one study, by Caballo M et al., reported the results of radiomic evaluation using CT, which
demonstrated a sensitivity of 0.95 (95% CI: 0.88-0.99) and a specificity of 0.56 (95% CI: 0.45-0.67).

Discussion
Current systematic reviews and meta-analyses in the literature present comparable diagnostic test accuracy
in differentiating benign and malignant breast lesions using radiomic analysis compared to diagnostic core
biopsy. This study portrays a strong detectability of radiogenomic analysis in the stratification of breast
cancer into benign and malignant groups. Preoperative radiomic data from over 8,000 female patients
diagnosed with breast cancer was utilized in the study. This is the first of its kind in the radio-oncologic
literature.

A myriad of studies focused on the use of radiomics in tumor analysis were identified. Most of these studies
were published in the last three years, making them relevant in modern literature. Data from this analysis
demonstrates the potential of radiogenomic analysis of diagnostic imaging in identifying benign and
malignant breast lesions, with an AUC of over 80%. Generally, the work-up of newly presenting breast
lesions involves the standard 'triple assessment' approach. This includes clinical examination, imaging, and
biopsy of any identified lesions [39-41]. This is the foundation of preoperative assessment and work-up of
symptomatic breast patients. Diagnosis and ultimate management strategy of breast lesions rely heavily on
their histopathology and genetic profile. This can be increasingly onerous. A multidisciplinary review of
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data retrieved from a standard triple assessment allows for more personalized treatment. The current gold
standard core tissue biopsy utilizes an invasive approach to acquire preoperative diagnostic tissue [42]. This
approach is limited due to the heterogeneous nature of tumors and due to continuous mutation [43, 44].
Radiomics employs a non-invasive and reproducible process of extracting quantitative tumor features from
radiological imaging. This allows for a more streamlined single assessment and evaluation approach for each
tumor [45]. As a result, radiomics can be viewed as a novel method of diagnosis for breast cancer patients.

According to this study, it can be extrapolated that the application of radiomics in MRI is a reliable predictor
in determining the histopathological type of a breast lesion. MRI has a high sensitivity in diagnosing
invasive breast cancer [46-49]. Breast MRI is widely used for high-risk screening, monitoring patients on
neoadjuvant chemotherapy, and for local staging. However, its widespread use can lead to false positive
results and, ultimately, overdiagnosis [50,51]. Radiomics can circumvent these limitations. Regarding
radiomic methods, deep learning techniques boost and enhance the sensitivity compared to AI and ML [8-
27]. In regards to the type of breast lesion, our analysis substantiates the use of deep learning and CNN.
These have been thought of as sophisticated networks as opposed to more basic AI methods. CNN serves as
an automated method of backpropagation utilizing multiple building blocks to adaptively learn spatial
hierarchies of features [52]. These building blocks include convolution, pooling, and fully connected data
processing layers [52]. Due to the complexity of layered data points presented by MRI, CNN would prove to
be beneficial. Conversely, deep neural networks are vulnerable to adversarial examples. The implication of
this susceptibility is crucial, yet unknown, in medical imaging [53]. Adversarial examples are carefully chosen
inputs that cause the network to change output without a visible change to a human, with artificial
networks having a different means of seeing and predicting [53]. Its implication in medical imaging is
relevant since the clinical application of deep learning requires robustness before it can be used in patients
as opposed to relatively trivial non-medical tasks.

MMG is the conventional diagnostic imaging modality in breast cancer screening programs worldwide. It has
sensitivity and specificity rates of over 85% [54]. Early detection of breast cancer reduces mortality rates,
improves prognosis, and reduces overall disease burden. In this analysis, the performance of radiomics in
MMG offers a positive result. The addition of radiomic analysis to diagnostic MMG can be seen as a more
reliable screening tool with the potential to expedite breast cancer stratification.

Furthermore, compared to MRI, this analysis has intriguingly identified radiomic assessment in USS as a
strong predictor in characterizing benign and malignant breast lesions. Breast density and age are important
factors in determining the accuracy of USS [55]. Notably, USS has been found to be more accurate than MMG
in symptomatic women under the age of 45 [55]. The integration of radiomics into diagnostic USS could
further enhance the speed of diagnosis and treatment decision-making. This advancement holds the
potential to accelerate the development of personalized management plans for this particular demographic.

Radiomic analysis could play a significant role in detecting invasive micropapillary breast cancers (IMPC).
This is a rare subtype that is often discussed for its potency for lymphovascular invasion and difficulty in
accurate imaging estimation. The mammographic appearance of IMPC is frequently nonspecific, with 66.7%
often misclassified as IDCs or DCIS. Mammographic assessment tends to consistently underestimate disease
size, with reported false-negative rates as high as 12% for IMPC patients. Additionally, USS often fails to
capture the true depth of IMPC tumor invasion, resulting in a substantial false-negative rate of up to 47%.
However, when identified, the actual extent is reported to be underestimated in 81% of cases. While MRIs
prove most effective in distinguishing IMPC, there is still a notable probability of finding non-mass
enhancement lesions. Despite MRI's superiority, there remains a likelihood of missing lesions, particularly
diffuse multifocal lesions with extensive DCIS. In light of these challenges, radiomic analysis emerges as
pivotal in distinguishing IMPCs. ML and AI models can be trained to help better identify IMPCs from USS,
mammograms, and MRIs, ultimately offering valuable support for more accurate diagnoses [56].

It was hypothesized that radiomic breast cancer analysis is a minimally invasive approach that accurately
categorizes breast lesions into operative and non-operative cohorts. The following study supports the
following statement by proving that radiomics is a novel method that has the potential to rapidly and
efficiently label differing breast lesions into benign and malignant groups. In the interim, we acknowledge
that this technology is still new, requires refinement, and that this review comes with a significant number
of limitations. We conclude that this should not supersede the current gold standard of performing
diagnostic core biopsies despite early promising results of performing radiomic analyses.

One of the study's main limitations is that the correlation of extracted individual radiomic features from the
studies into pathology was insubstantial. Radiomic features are not included nor addressed, even though
there was the potential for crucial differences to be introduced into the results if they had been addressed.
This resulted in the reliance on meta-analysis techniques solely to provide insight into radiomics and its role
in differentiating benign from malignant breast lesions. Radiomics encompasses a spectrum of AI methods.
This includes ML, CNN, and deep learning techniques, with variance in data reproducibility based on the
method employed in individual papers. However, this analysis utilized the umbrella term 'radiomics' to
appraise all these methods despite the abovementioned variance. Moreover, the study encompasses various
imaging modalities, including MRI, mammography, ultrasound, and CT. A wide variation in sample sizes
amongst included studies was also noted. The variation in imaging techniques and sample sizes might

2023 Oh et al. Cureus 15(11): e49015. DOI 10.7759/cureus.49015 14 of 17

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


introduce heterogeneity in the data, which can ultimately impact the validity of the results. Additionally, the
majority of the studies included were from China. The limited geographical diversity amongst selected
papers could limit the generalizability of the findings to a more diverse population. In such cases, we could
have adopted bootstrapping or cross-validate parts of the data to circumvent this limitation. Furthermore,
the selected studies present a wide variety of sample sizes, with most studies relying on small sample sizes.
Larger multicenter data is needed in further studies to improve our evaluation. In addition, this study is
further limited by the fact that only a few studies had prospective designs.

Despite breast USS being the standard imaging protocol in evaluating patients with suspicious breast
masses, only three studies looked at using USS radiomics to delineate benign and malignant breast lesions.
USS, compared to modalities such as MRI, has an essential role in routine patient work-up and could
potentially serve as a more clinically pragmatic and relevant source of radiomic quantitative and qualitative
data. However, the use of USS is operator-dependent, whereas MRI often provides false positive findings.
This can ultimately lead to performing unnecessary biopsies.

In current practice, implementing radiomic software and hardware remains an arduous process due to its
innate complexity. In order to overcome these challenges practically, investment from large multinational
companies and government entities is necessary.

Conclusions
Data from this systematic review and meta-analysis support the use of radiomic analyses of preoperative
diagnostic imaging in differentiating benign from malignant breast lesions. However, this approach is
limited by the fact that the sensitivity and specificity rates of radiomics rarely surpass 95%. This indicates
that improvements in existing radiomic techniques are required before they can be implemented as a robust
adjunct to current diagnostic modalities.

Additionally, this analysis supports using deep learning and CNN methods as the most favorable techniques
for performing a radiomic analysis. Tissue biopsies are the current gold standard in breast cancer
diagnostics. These are limited through its lack of representativeness of the tumor as an entirety. This
restricts the process of ascertaining a thorough understanding of tumor behavior and, subsequently,
treatment response.

As the paradigm shifts towards precision medicine and personalized cancer therapeutics, future radio-
oncological research may develop radiomic techniques capable of predicting disease. As a result, there is
scope for more effective and less toxic therapies to be developed and employed, providing a tremendous
benefit to cancer patients.

In conclusion, radiomics has the potential to offer a significant contribution towards the diagnostic work-up
of breast lesions. This review contributes interesting and pioneering data to current literature and clinical
practice. It highlights a novel, minimally invasive adjunct to current breast cancer diagnostics that is
understudied and underreported and has the potential to change future practice.
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