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Abstract
Use injuries, i.e., injuries caused by repetitive strain on the body, represent a serious problem in athletics
that has traditionally relied on historic datasets and human experience for prevention. Existing
methodologies have been frustratingly slow at developing higher precision prevention practices.
Technological advancements have permitted the emergence of artificial intelligence and machine learning
(ML) as promising toolsets to enhance both injury mitigation and rehabilitation protocols. This article
provides a comprehensive overview of recent advances in ML techniques as they have been applied to sports
injury prediction and prevention. A comprehensive literature review was conducted searching
PubMed/Medline, Institute of Electrical and Electronics Engineers (IEEE)/Institute of Engineering and
Technology (IET), and ScienceDirect. Ovid Discovery and Google Scholar were used to provide
additional aggregate results and a grey literature search. A focus was placed on papers published from 2017
to 2022. Algorithms of interest were limited to K-Nearest Neighbor (KNN), K-means, decision tree, random
forest, gradient boosting and AdaBoost, and neural networks. A total of 42 original research papers were
included, and their results were summarized. We conclude that given the current lack of open source,
uniform data sets, as well as a reliance on dated regression models, no strong conclusions about the real-
world efficacy of ML as it applies to sports injury prediction can be made. However, it is suggested that
addressing these two issues will allow powerful, novel ML architectures to be deployed, thus rapidly
advancing the state of this field, and providing validated clinical tools.
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Introduction And Background
Machine learning (ML) is a complex discipline broadly defined as the creation of a computer system able to
experientially learn and adapt without explicit instructions to generate predictive analytics [1,2]. As
computational resources have continued to increase, ML application and implementation in various fields
has grown, sports medicine included. The assessment, mitigation, and prevention of injury is of primary
importance as injuries are ubiquitous and may result in severe physical, emotional, and financial
consequences, especially at the professional level. To elucidate the complex factors contributing to athlete
injuries and to enable greater predictive precision, a variety of ML models have been proposed in the
literature [3-6].

As computational technologies advance, larger and more complex ML algorithms, including application of
previously theoretical techniques, are possible. It is therefore useful to periodically compile and review
literature that has been, or may be, applied to injury prediction and prevention. Additionally, though recent
literature reviews explore niche aspects of this field, limitations exist: articles are written from the
perspective of data mining and without interest in recency [5], are sports-specific [7-9], are limited in scope
[3,4,10], or are focused on team sports only [6]. We seek to provide a comprehensive overview of the state of
ML in sports injury across many sports using a broad selection of algorithms. To provide a basis for the
exploration of novel ML models and methodologies, algorithms have been categorized based on function,
limitations, and current or potential implementation to sports medicine.

Review
Methods
A comprehensive literature review was conducted. Ovid Discovery search and Google Scholar provided
compiled results from many databases. PubMed/Medline, Institute of Electrical and Electronics Engineers
(IEEE)/Institute of Engineering and Technology (IET), and ScienceDirect were accessed individually. A focus
was placed on papers published from 2017 to 2022. Algorithms were selected based on a preliminary
literature review and included K-Nearest Neighbor (KNN), K-means, decision tree, random forest, gradient
boosting and AdaBoost, and neural networks (NNs). Search terms were “algorithm name” + “sport” +
“injury” for each algorithm, e.g., “neural network” + “sport” + “injury”. An attempt was made to include
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variations in algorithm name and abbreviation. Papers concerning prediction and analysis of sports injuries
were included. Any papers that could not be accessed or were not available in English were excluded. Forty-
two original research papers and eight review articles were selected based on the criteria described. Of note,
we excluded papers primarily relying on linear or logistic regression as we feel these algorithms do not
represent the cutting edge of predictive analysis and have been addressed elsewhere in the literature. This
article was previously posted to the SportRxiv preprint server on November 16, 2022.

Results
Results of the comprehensive literature review are summarized below. Papers were sorted into these
sections based on the algorithm tested. When more than one algorithm was explored, papers were included
in the section with the most effective algorithm and in sections with algorithms that were nearly as
successful where appropriate. Due to variable study design, and often disparate aims, no attempt has been
made to directly compare or otherwise aggregate results quantitatively. Instead, we present overall trends in
the Discussion. Likewise, shortcomings or pitfalls have been addressed in the Discussion section. Note that
due to the diversity of neural network implementations, papers pertaining to neural networks have been
further subdivided.

KNN

In sports medicine, special sensors like accelerometers, gyroscopes, infrared sensors, and magnetometers
can be attached to athletes to collect data. Using data collected from different body parts of athletes, KNN
may analyze behaviors for athletes in unique sporting events. With this recognition model, patterns
predisposing to injury can be determined, allowing for potential injury prevention [11]. In addition to their
general use as comparison algorithms, a 2018 paper applied KNN as part of a larger model, including both K-
means and support vector machine (SVM), for injury prediction [12].

K-Means

In 2020, a study by Dingenen et al. used K-means to establish that runners with the same injuries could be
clustered into two different subgroups with a mean silhouette coefficient of 0.53 [13]. These subgroups were
used to illustrate variable kinematic causes of running-related injury. K-means was also used by Ibáñez et al.
in 2022 as a data separation technique for grouping women’s basketball players into first and second
divisions. This study effectively used K-means to analyze thresholds of deceleration, acceleration, speed,
and impact on the players and determined a difference between the first and second divisions [14]. These
so-called divisions were proposed to aid in personalization of training to prevent injuries and improve
performance. As seen in these recent articles, and likely due to its simplicity and familiarity, K-means
remains effective when applied to traditional clustering problems and may be suited to exploring injury risk
factors or player characteristics.

Support Vector Machines

For sports-specific applications, SVMs have been trained using modifiable metrics such as training load,
performance techniques, psychological and neuromuscular assessments, and non-modifiable metrics such
as anthropometric measurements, previous injury history, and genetic markers to accurately predict future
injuries [4,15]. The identification of injury risk factors such as these allows coaches and medical personnel to
modify training loads, regiments, and techniques to potentially prevent future injuries [6]. For example, a
2018 paper by Ruddy et al. used a number of ML algorithms, including SVM, to assess risk factors identified
in hamstring strain injuries [16]. In another 2018 paper by Carey et al., also exploring hamstring injury
prediction and risk factors, SVM benefited substantially from data pre-processing, although it was ultimately
outperformed by simple logistic regression [17]. Using non-physiological data, a 2017 paper predicting in-
game injuries in Major League Soccer found that SVMs were the most accurate of several tested algorithms,
including logistic regression, multilayer perceptron, and random forest [18]. However, in the recent
literature, including two 2021 papers comparing efficacy of ML algorithms, SVMs have proven less effective
than other algorithms [19,20]. Despite this, SVMs may still be valuable given their suitability for predicting
high-dimensionality data sets, especially when combined with other techniques, as in a 2022 paper by Wang
et al. predicting triple jump injury [21].

Decision Tree

Modern evolutions of the classic decision tree algorithm have been broadly applied in recent years. In 2018,
Connaboy et al. used decision trees built with chi-squared automatic interaction detection (CHAID) to
analyze factors contributing to lower extremity injury in military personnel. Using their model, the authors
identified several factors leading to increased injury risk over a 365-day period [22]. Using a classification
and regression tree (CART), Mendonça et al. investigated associations between various risk factors and
patellar tendinopathy in volleyball and basketball players [23]. A 2021 paper by Kolodziej et al. applied a
CART decision tree to predict youth soccer injuries, achieving a sensitivity of 0.73 and a specificity of 0.91
[24]. Another 2021 paper by Ruiz-Pérez et al. attempted to reproduce a 2020 model by Rommers et al., which
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used field data collected via GPS. While they favorably compared C4.5 decision trees with several modeling
approaches including KNN, SVM, and ADTree, they did not use the same algorithm as Rommers et al. and
did not achieve comparable performance (area under the receiver operating characteristic [ROC] curve, or
AUC, 0.767 vs. 0.850) [25,26]. Contrary to these relatively promising results, Rossi et al. found that decision
trees, although outperforming comparison algorithms, were not able to achieve a precision greater than 50%
when forecasting soccer injuries [27]. Decision trees undoubtedly have a place in sports injury prediction,
though their performance varies with data and model structure. Additionally, they can lack generalizability
and overfit during training, thus limiting their accuracy [28].

Random Forest

Random forest models have been applied to injury prediction with mixed success. In a study of sports-
related dental injuries in children, random forest algorithms had a slightly higher prediction accuracy when
compared to the traditional regression methods [29]. A 2020 paper sought to address inconsistency in
predictive performance by identifying key risk factors prior to training of the model. They were able to
achieve an AUC of 0.79 [30]. In a 2022 paper, a random forest model was built and achieved similar
performance with an AUC of 0.72 [31]. In an investigation of paralympic swimmers classifying participants
with and without brain injury to determine eligibility, random forests successfully classified 96% of the 51
participants [32]. Contrary to these studies, a 2021 paper found that random forests predicted ankle injuries
in young athletes with similar performance to a logistic regression (ROC 0.63 vs. 0.65, respectively) [33].
With proper application and unbiased feature selection, random forest models may be tuned to outperform
existing classification methods, though they are sensitive to variations in data sets.

Gradient Boosting and AdaBoost Neural Networks

Gradient boosting regularly outperforms baseline regression and various ML algorithms including decision
tree and SVM for certain classification problems [34-39]. Nicholson et al. found gradient boosting to be the
most effective of several algorithms in assessing elbow valgus torque and shoulder distraction force in 168
high school and college pitchers [37]. Remarkably, a 2019 study predicting skier injuries found that gradient
boosting produced a 0.25 increase in accuracy over logistic regression with an AUC of 0.76 versus 0.52 [34].
Hecksteden et al., in a 2022 prospective observation cohort study, also found that gradient boosting
performed better than comparison algorithms when forecasting non-contact time-loss injuries in 88 soccer
players [38].

Expanding beyond standard gradient boosting, a 2022 study used XGBoost (extreme gradient boosting) to
predict post-concussion injuries in 74 college football players with an accuracy of 91.9% [40]. Rommers et al.
in a 2020 paper also used XGBoost, this time predicting injuries in 734 youth soccer players with a precision
and recall of 84% and 83%, respectively. The authors were also able to classify injuries as either overuse or
acute with a precision and recall of 82% [26]. Additionally, a recent retrospective review used an XGBoost
model to explore the relationship between biomechanics and self-reported athlete injury [41]. Notably, only
one recent paper was found to use AdaBoost, a 2022 study predicting injury in CrossFit practitioners.
AdaBoost was found to perform better overall than comparison algorithms with an AUC of 77.93% [36].

A 2018 study by López-Valenciano et al. found that a modified boosting algorithm called SMOTEBoost
(synthetic minority oversampling technique) was able to predict musculoskeletal injuries in 132 football and
handball players with an AUC of 0.747, a true positive rate of 65.9%, and a true negative rate of 79.1% [35].
Another similar algorithm called SmooteBoostM1 was used to predict hamstring injuries in professional
soccer players, producing a model with an AUC of 0.837 [42]. Overall, gradient boosting, including the
earlier AdaBoost and other modified boosting algorithms, represents a pronounced upgrade over classic
logistic regression as well as ML algorithms such as decision tree, KNN, SVM, and multilayer perceptron
when applied to the limited-class classification problem presented by predicting sports injury.

Convolutional Neural Networks

Kautz et al., in their 2017 work, used a convolutional neural network (CNN) to analyze wearable sensor data
and allow for automated player monitoring in beach volleyball players. Compared to algorithms including
SVM, KNN, Gaussian, and decision tree, the CNN provided significantly increased classification accuracy
[43]. Pappalardo et al. developed a CNN to analyze multivariate time series extracted from electronic
performance and tracking systems worn by professional soccer players. Their approach allowed for
automated feature extraction, an advantage over more traditional time series analysis. Additionally, they
were able to develop an injury forecaster that was explainable, which is a necessity for a deployable, real-
world model [44]. Similarly, Chen et al. describe a process of converting time series data acquired from
player-worn sensors to two-dimensional images for analysis using a CNN. Notably, they validate using only
acceleration data from a single sensor and were able to achieve acceptable levels of accuracy in classification
[11]. Song et al. in their 2020 study developed an optimized-CNN to predict and assess injuries in volleyball
players. Using multidimensional sports data, they found that their algorithm was more accurate than
comparison algorithms. Additionally, they described a framework for cloud-based deployment and
integration with Internet of Things [45]. Ma and Pang in a 2019 paper also proposed a CNN for analysis of
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sports data using a real-time cloud-based system and Internet of Things [46]. Ghazi et al. in a 2021 paper
described the use of CNN to estimate peak maximal principal strain in traumatic head injuries. Using data
from the National Football League, they were able to achieve >90% accuracy in the prediction of concussion
versus non-concussion [47].

Long Short-Term Memory Neural Networks

While long short-term memory (LSTM) nodes are primarily used for time series analysis, they may be
combined with other algorithms to provide an advantage in prediction and classification problems because
of their unique nature. In 2021, Meng et al. combined CNN with LSTM to allow for reliable analysis of two-
dimensional data by the LSTM nodes. Using images of professional athletes, they were able to achieve 97.0%
classification accuracy for risk stratification broken into no risk, low risk, medium risk, and high risk of
injury. The model achieved a sensitivity of 95.70% and a specificity of 97.54% [19]. A combined architecture
model such as this may ultimately yield more accurate algorithms.

Deep Gaussian Covariance Neural Networks

A 2022 paper by Rahlf et al. outlined a prospective study protocol using a deep Gaussian covariance network
to analyze the relationship between internal and external factors contributing to runner injury. Recruitment
for this study was ongoing at the time of publication [48]. This promises to provide real-world data on
predictive performance of a neural network.

Radial Basis Function Neural Networks

In a 2021 study, Xiang applied a radial basis function (RBF)-based neural network to injury predictions. They
stratified injury risk and validated using questionnaires sent to expert coaches [49]. Another 2021 paper
proposed a similar RBF-based neural network to predict sports injuries. Injury risk was stratified into low
risk, at risk, and high risk [50]. Notably, the author looked to determine which factors may contribute most to
injury risk. Despite their novel premise, both papers lack robust validation or large data sets and are largely
methodological.

Fuzzy and Grey Neural Network

A 2021 paper by Wang and Yang described the use of a fuzzy neural network to evaluate the degree of injury
in sports. They found that the fuzzy neural network outperformed Bayesian and Lagrange models. However,
this was a theoretical proposal using simulated data [51]. Another 2021 paper by Zhang et al. proposed a grey
neural network that inputs the results of n-grey models into a neural network for final prediction. This too
was a theoretical algorithm tested and validated with simulation data [52]. Despite their lack of real-world
application, both papers present intriguing possibilities for integrating fuzzy and grey theory as a method of
dealing with the inherent variability in sports injury data.

Table 1 summarizes key strengths and weaknesses based on the surveyed literature, along with the number
of articles investigating each algorithm. Further details are provided in the Discussion section.
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Algorithm
Number
of
studies

Strengths Weaknesses References

K-nearest
neighbor

2 Simple to implement, unsupervised.
Sample size and data set size limitations, may be less accurate
than other techniques, struggles with high-dimensionality data.

[11,12]

K-means 2
Simple to implement, unsupervised,
useful for blind feature extraction and
data exploration.

Better suited to initial data exploration than final classification
when compared to other algorithms.

[13,14]

Support vector
machines

9
Commonly integrated into ensemble
models, increasing accuracy, able to
handle high-dimensionality data.

Mixed success reported in the literature. [4,6,15-21]

Decision tree 7
Reasonable accuracy combined with
transparent decision making.

Struggles with high-dimensionality data. [22-28]

Random forest 5
More accurate than decision trees while
retaining high transparency.

Struggles with high-dimensionality data. [29-33]

Gradient
boosting and
AdaBoost

9

Significantly improved accuracy when
compared to random forest or decision
trees, able to better handle high-
dimensionality data.

Less transparent than random forest or decision trees and more
complicated to implement.

[34-41]

Convolutional
neural
networks

6
Increased accuracy, able to handle high-
dimensionality data.

Lacks transparency ("black-box"), difficult to implement and
computationally expensive, requires a large data set, ideally
suited to pose estimation, which has not been applied
extensively in the literature.

[11,43-47]

Long short-
term memory-
based neural
networks

1
Accurate and able to handle high-
dimensionality data, excellent for time
series data.

Lacks transparency ("black-box"), difficult to implement and
computationally expensive, requires a large data set, may not
be suited to all data sets.

[19]

Deep Gaussian
covariance
networks

1
Leverages neural networks to train
parameters for Gaussian covariance
functions.

Lacks strong real world validation in the literature, suffers from
the same general drawbacks as other neural networks.

[48]

Radial basis
function

2
May provide improved accuracy,
relatively simple architecture.

Lacks strong real world validation in the literature, suffers from
the same general drawbacks as other neural networks

[49,50]

Fuzzy and grey
neural
networks

2
Potential solution to handling high
degrees of uncertainty and variability
inherent to sports data.

Lacks strong real world validation in the literature, suffers from
the same general drawbacks as other neural networks

[51,52]

TABLE 1: Summary of findings
Strengths and weaknesses of each algorithm have been presented, along with the number of papers included in this survey. Note that some studies have
been counted in more than one category.

Discussion
K-nearest neighbor has some practical limitations to the sample sizes it can efficiently analyze. However, its
simplicity and versatility are clear. Integration of special sensors allowing for more precise data collection
has improved KNN injury recognition models and increased their ability to identify factors that contribute to
injury. Enhanced identification of predictive injury features at the resolution of an individual athlete allows
coaches and medical personnel to alter training methods to avoid the identified injury risk. However, KNN
has been relegated to the role of comparison algorithm in many of the papers discussed in this article. This
should not dissuade future researchers from considering it for use, though.

Another simple algorithm, K-means lends itself well to feature extraction. Based on the recent work in the
literature, K-means can be used to classify biokinetic data. Alternatively, K-means can effectively be used to
predict future high-performing players. However, a more interesting application may be found in the
preprocessing of data. K-means clustering may be applied to data sets early in the exploration phase, rather
than as a final predictive algorithm. In any case, K-means should be considered when possible.
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Support vector machines can be used to both predict the occurrence of an injury and elucidate the risk
factors that contribute to injury. However, in the recent literature, SVM-based models have met with mixed
success. Even so, SVMs should be considered when predicting sports injury events, especially when dealing
with high-dimensionality data. Notably, the best performing SVM models are built as ensemble models,
combining the advantages of several algorithms.

Decision trees may also be suitable in medical decision making as they provide reasonable classification
accuracy combined with simple representation of gathered knowledge. More importantly, they provide a
remarkably transparent decision-making process, allowing deep exploration of features. And, due to this
transparency, the decision-making process can be easily validated by an expert that greatly enhances its
utility in situations containing high uncertainty. Random forest models increase predictive accuracy
compared to decision trees at the expense of reduced transparency. Additionally, they may struggle when
data contains high dimensionality, though condensing may provide adequate abatement. Even with the
stated limitations, both decision tree and random forest models have performed reasonably well in specific
situations and their application should be considered.

Gradient boosting and AdaBoost represent significant improvements in predictive capabilities over classic
regression as well as the decision trees on which they are based. They are easier to implement and are more
transparent than neural networks while possessing a capacity for large feature sets. Additionally, they are
particularly useful when applied in the context of injury prediction where classification can be limited to a
binary choice. In cases where transparency is less critical than predictive accuracy, gradient boosting
provides a balance between complexity and performance.

While gradient boosting provides various advantages over simpler models, neural networks tend to be the
most accurate and powerful ML algorithms currently available. This performance comes at the price of
increased complexity, training time, data requirements, and computational resources. Despite these
drawbacks, papers rank CNNs, recurrent neural networks (RNNs), and other NN architectures favorably
against comparison algorithms. However, there is a lack of robust real-world validation largely due to the
lack of readily available large data sets. Researchers are also using player-mounted sensors to collect raw
time series data. While this is a valid approach to data collection, it fails to make use of the powerful image
recognition and pose-estimation potential of CNNs and limits player enthusiasm for data collection in real-
world scenarios. There is a clear route to explore more novel approaches to data collection and structuring,
as well as to develop robust studies using real-world data. Any given model architecture or combination of
architectures could be applied to any given properly tuned data set. This knowledge alone is of little
practical value; however, it demonstrates the need for larger sets of real-world data to further triage
algorithm utility between situations. Even with the stated limitations, if the data and computational
resources are available, neural networks should be heavily considered.

To illustrate one final observation, it is worth examining a recent systematic review by Bullock et al. The
review in question presented 30 studies applying ML to sports injury prediction. Notable in their selection
criteria was the inclusion of logistic and Poisson regression, both valid but dated approaches to predictive
analysis, as well as the exclusion of novel methodologies for modeling. In fact, 22 of the 30 papers included
logistic regression, and 2 of the remaining 8 used Poisson regression [3]. We believe this succinctly illustrates
a major bottleneck in the application of ML to sports medicine. A significant number of quality studies are
failing to make full use of modern, powerful ML algorithms. Instead, they rely on well-studied but
potentially inadequate regression techniques, in addition to falling prey to some other pitfalls discussed
earlier. Recent research that does attempt to move past these relatively simple models often fails to produce
reliable, generalizable results. Additionally, these papers are often of limited value to those looking for
practical applications of ML. Despite these drawbacks, we feel that it is unreasonable to dismiss the
usefulness or real-world applicability of ML based on decidedly outdated methodologies.

Limitations

Many of the articles examining neural networks proposed a novel algorithm but validated on a small,
artificial data set. Without transparent, real-world data or clear explanations of the proposed data collection
and preparation, they do not provide concrete information on algorithm efficacy. Additionally, while most
articles detail the equations used, many do not explicitly present the model structure, nor do they provide
code.

Problems with data and algorithm transparency are not limited to neural network-focused papers. Many of
the other papers discussed in this review rely on small or artificial data sets. Additionally, there is a lack of
consistent validation techniques and a large potential for mishandling of data. Notably, there exists a
persistent problem with multicollinearity in physiological data sets that was rarely addressed in the
literature.

Inter-article variability in algorithm efficacy may also prevent strong conclusions from being drawn based on
this report. It is difficult to compare the absolute performance of algorithms presented in two or
more papers unless they are tested in the same way on identical data sets. Most papers do not provide the
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requisite information to make such direct comparisons.

Conclusions
The continued implementation of machine learning to sports injury prediction faces several
challenges. There exists a lack of uniform data sets related to sports injury, resulting in an inability to easily
test and validate novel approaches to modeling. Furthermore, that data is being collected inefficiently,
particularly with respect to the use of cumbersome player-worn sensors. Model performance is difficult to
compare due to the individualized nature of ML model architectures and a lack of transparent reporting
regarding algorithm construction. In some cases, outdated or inappropriate models are being applied for the
sake of ease of implementation. Logistic regression is often considered an ML algorithm due to its ability to
produce a categorical output, but it is not adaptive like other ML techniques and is consistently
outperformed by modern ML algorithms. Surprisingly, logistic regression models continue to be used as a
prediction tool, often with poor performance. Many injury prediction studies rely entirely on these older
techniques, resulting in the conclusion that ML is of little clinical use.

One potential solution to the aforementioned issues is the creation of open-source, uniform data sets that
can be tailored to the strengths of targeted algorithms. The vast amounts of data available to sports teams
and sports casting agencies, notably, high-quality video footage, could be used to generate large databases
for the training of pose-estimation-based CNNs. This would provide researchers with a large, reliable,
uniform data set with which to train and validate. It would also eliminate the need to collect data using
unreliable athlete-worn sensors. An additional benefit of pose-estimation-based prediction is the
generalizability that will likely result, allowing pre-trained networks to be tuned to multiple sports with
relative ease. Despite the outlined challenges, significant potential exists within this space. By thoughtfully
selecting algorithms and by building adequate data sets, researchers will be able to explore more novel
approaches and continue to push the boundaries of ML capability in improving sports medicine outcomes.
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