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Abstract
Cancer screening techniques aim to detect premalignant lesions and enable early intervention to delay the
onset of cancer while keeping incidence constant. Technology advancements have led to the development of
powerful tools such as microfluidic technology, artificial intelligence, machine learning algorithms, and
electrochemical biosensors to aid in early cancer detection. Non-invasive cancer screening methods like
virtual colonoscopy and endoscopic ultrasonography have also been developed to provide comprehensive
pictures of organs and detect cancer early. This review article provides an overview of recent advances in
cancer screening in microfluidic technology, artificial intelligence, and biomarkers through a narrative
literature search. Microfluidic devices enable easy handling of sub-microliter volumes and have become a
promising tool for cancer detection, drug screening, and modeling angiogenesis and metastasis in cancer
research. Machine learning and artificial intelligence have shown high accuracy in oncology-related
diagnostic imaging, reducing the manual steps in lesion detection and providing standardized and accurate
results, with potential for global standardization in areas like colon polyps, breast cancer, and primary and
metastatic brain cancer. A biomarker-based cancer diagnosis is promising for early detection and effective
therapy, and electrochemical biosensors integrated with nanoparticles offer multiplexing and amplification
capabilities. Understanding these advanced technologies' basics, achievements, and challenges is crucial for
advancing their use in oncology.
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Introduction And Background
Cancer is second to heart disease as the leading cause of death in the United States [1]. Cancer screening is a
technique for preventing cancer at an early stage. According to Centers for Disease Control and Prevention
(CDC) data, in 2019 total of 1,752,735 new cases of cancer were reported, with 599,589 deaths in the United
States. It is important to note that the incident data of 2019 is the most recent data available. The good news
is that screening may help detect certain cancers, including colon, lung, cervical, and breast cancer, which
can help to slow down or even halt the progression of the illness [1]. Screening is a technique for a secondary
level of prevention that aims to decrease cancer mortality while maintaining the incident rate constant.
Given a significant lag time in the malignant transition, screening presents an opportunity to detect
premalignant lesions, engage in early intervention in the carcinogenic process, and delay the onset of
cancer [2].

Advances in cancer screening technologies and methods have been made possible by the rapid progress of
science and technology. For example, Microfluidic technology allows the manipulation of fluids on a micron
scale, making it a powerful tool for diagnosing cancer [3]. Similarly, Artificial Intelligence and machine
learning algorithms have been applied to medical data, enabling faster and more accurate identification of
cancer risk factors and early cancer detection [4]. Electrochemical biosensors, which can be divided into
immunosensors, apt sensors, enzymatic biosensors, and nucleic acid biosensors, are preferred due to their
sensitivity, specificity, affordability, and potential for miniaturization in cancer biomarker detection [5].

The development of non-invasive cancer screening methods has significantly advanced cancer screening.
For example, to obtain comprehensive pictures of the colon and enable the early identification of colon
cancer, a non-invasive procedure called virtual colonoscopy is used [6]. Similar to MRIs, endoscopic
ultrasonography employs sound waves to provide fine-grained pictures of inside organs like the pancreas,
making it possible to detect pancreatic cancer early [7].

This review article will provide an overview of the recent advances in cancer screening, including the
development of microfluidic technology, artificial intelligence, and biomarkers. We will discuss the benefits
and limitations of these advances and their potential impact on cancer prevention and management. This
review aims to provide a comprehensive summary of the current state of cancer screening and to highlight
the ongoing research and future directions in this important area of cancer care.
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Review
Methodology
This is a narrative review where the authors have conducted extensive literature searches using online
databases such as Google Scholar, PubMed, Sci-Hub, Elsevier, and others to gather information from
previously published articles. The goal of this literature review was to collect information from previously
published articles that are relevant to the topic under discussion.

To ensure a comprehensive review, the authors used various search terms like: "Advances in Cancer
Screening", "Microfluidic Technology", "Artificial Intelligence", and "Biosensors". The selected articles were
carefully reviewed and analyzed to extract essential trends and insights about the topic under discussion.

Microfluidic technology
Microfluidic technology allows the manipulation of fluids on a micron scale, making it a powerful tool for
diagnosing cancer. It can perform complex laboratory techniques on a microchip with high precision and
efficiency, allowing scientists to demonstrate that their platform was a reliable and simple method to isolate
single cells without any labeling, which is crucial for the research of particular therapeutic target detection
of cancer cells and cell-derived products [8]. The technology can also be used for therapeutic target
discovery and treatment response monitoring. Microfluidic devices can extract individual tumor cells,
allowing for genomics, transcriptomics, and metabolomics analysis. It can capture unusual cells, including
circulating stem cells, fetal cells, and tumor cells. The platform is also useful for investigating specific
processes and treatment options for metastases, which cause more than 90% of cancer deaths [9]. A
drawback of microfluidic technology is the absence of an appropriate microfluidic device that can carry out
every laboratory process on a single chip [10]. Nevertheless, by decreasing and removing the barriers to
accurate detection, the technology has the ability to detect cancer early on and save lives.

Microfluidic systems provide a substantial opportunity to use sensor devices for various applications,
including clinical diagnostics, biological detection, and environmental or wastewater monitoring. In order
to track the movement of a single cancer cell, Nguyen et al. devised an electrical cell-impedance sensing
system that was combined with a microfluidic device [11]. Without the need for physical contact like off chip
pneumatics, microfluidics approaches may effectively collect cancer cells consecutively. The identification
of single cancer cell migration was successfully shown using the real-time detection of MDA MB 231 cells in
the early migration phases in metastases [11]. This method may be used as a cutting-edge tool in studying
cancer cells.

Shah et al. put into practice a clever technique for cell recovery from microfluidic devices employing a
biopolymer system. A complicated substance, such as tumor cells in whole blood, is isolated specifically
utilizing an affinity-based microfluidic device. They used this method to capture and release cancer cells
that expressed the epithelial cell adhesion molecule (EpCAM) [12]. The process involves exposing cancer
cells that express Ep-CAM to a gel functionalized with anti-Ep-CAM molecules. The gel is then dissolved to
release the cancer cells. Cell capture, release, and recovery rates were used to measure the efficiency of the
cell release process. The viability of the release cells was determined to be 98.9%±0.3% compared to the
viability of control cells, which was 99.4%±0.6%. The liberated cells were then tested for their ability to
proliferate by diluting them in a culture medium. At 96 hours, the data showed a proliferation capacity of
69.3%±3.4, compared to a control value of 68.8%±2.2 [12].

Rather than the primary tumors, metastasis, and its associated complications are the leading cause of most
cancer-related deaths. Zhao et al. developed microfluidic devices to merge tumor and stromal cell spheroids
in a controlled setting to replicate the process of metastasis in a 3-D metastatic analysis [13]. This research
aimed to evaluate the metastatic process of tumor-stromal cell spheroids in a three-dimensional (3D) cell
culture system using microwell array microfluidic devices. Traditional 3D culture methods are incapable of
precisely pairing and quantifying the coexistence of diverse cell populations. The researchers used
microfluidic devices to produce accurate one-to-one pairing of tumor and fibroblast spheroids, allowing
them to analyze 3D tumor invasion using high-content imaging [13].

Chu et al. created an attomolar-level multiplex-microRNA (miRNA) detection system for cancer diagnostics
employing nanomaterial-based microfluidic biochips [14]. The assembly utilized graphene oxide (GO) as a
special nanomaterial. The scientists used five miRNA biomarkers (miR-125, miR-126, miR-191, miR-155,
and miR-21) often present in breast cancer to assess the effectiveness of their microfluidic device [14]. The
microfluidic biochip detected these miRNA markers accurately in breast cancer samples, with a detection
time of around 35 minutes and a sample volume of about 2 μL [14]. This method has the potential for non-
invasive early cancer detection and screening.

For the purpose of diagnosing cancer, Otieno et al. created a microfluidic immune-array technology to
detect parathyroid hormone-related peptides (PTHrP) [15]. PTHrP has been associated with cancer
metastasis in various human cancers and plays a significant role in humoral hypercalcemia of malignancy
(HHM) [15]. The scientists used magnetic beads with enzyme labels and peptide-specific antibodies to create
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an ultrasensitive multiplexed peptide test to detect PTHrP 1-173. The device achieved an outstanding
detection limit of 150 aM in a 30-minute timeframe utilizing a 5 μL sample. To characterize the electrical
and mechanical characteristics of individual cancer cells, Zhou et al. created a microfluidic device; they
investigated the deformability of Michigan Cancer Foundation- 7 (MCF-7) breast cancer cells by monitoring
the time it takes a cell to pass through a narrow constriction [16]. By measuring the time it takes for cells to
deform and pass through a narrow constriction, the device characterizes cell deformability and surface
friction. Electrical impedance spectroscopy was used to analyze both undeformed and deformed cells.
Combining mechanical and electrical properties provides a comprehensive set of intrinsic cellular
biomarkers for improved differentiation of cellular phenotypes [16]. In order to get a high capture ratio for
LNCaP-C4-2 prostate cancer cells, Ren et al. designed a microfluidic device that required five or six rows of
micro constriction channels [17]. A sequential size-based microfluidic chip was developed to capture
circulating tumor cells (CTCs) in prostate cancer. The chip utilized a series of microfiltration steps with
gradually decreasing pore sizes to trap CTCs based on size. The captured CTCs were then analyzed and
characterized. This approach demonstrated high capture efficiency and selectivity for CTCs, allowing for
their isolation from blood samples [17].

Zielke et al. developed a droplet microfluidic technique called Sorting by Interfacial Tension (SIFT) for
identifying cancer cell subpopulations based on glycolytic activity. High glycolysis rates in tumors have been
associated with cancer metastasis, relapse, and poor prognosis. Identifying and targeting cells with high
glycolysis levels may thus be critical for effective cancer therapy. The researchers successfully demonstrated
that their platform is a reliable and straightforward method for isolating cancer cells with high glycolytic
activity, which is crucial for researching particular therapeutic targets [18].

Malhotra et al. created an electrochemical microfluidic array for measuring four-protein panels to diagnose
oral cancer. The instrument displayed an ultralow detection range of IL-6, IL-8, vascular endothelial growth
factor, and vascular endothelial growth factor-C in serum [19]. The device utilized off-line protein capture
with magnetic beads and demonstrated good correlation with traditional enzyme-linked immunosorbent
assays. Serum analysis of oral cancer patients and controls yielded a clinical sensitivity of 89% and
specificity of 98% [19]. The immunoarray is inexpensive, simple to make, and a useful test for diagnosis and
personalized therapy of oral cancer (Table 1).
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 Study   
               

Objective Method Key Findings

Shah et
al. [12]

Cell recovery using a
biopolymer system

Affinity-based
microfluidic device

- Captured and released cancer cells expressing EpCAM - Cell release process had
99% efficiency - Viability of released cells: 98.9% compared to control cells (99.4%) -
Released cells showed 69.3% proliferation capacity

Zhao et
al. [13]

Replicating metastasis
in 3D cell culture
system

Microwell array
microfluidic devices

- Pairing tumor and stromal cell spheroids accurately - Analyzing 3D tumor invasion
using high-content imaging

Chu et
al. [14]

Multiplex-miRNA
detection for cancer
diagnostics

Nanomaterial-based
microfluidic biochips  

- Detected miRNA biomarkers in breast cancer with high accuracy - Detection time:
~35 minutes, sample volume: ~2 μL  

Otieno et
al. [15]

Microfluidic immune-
array technology for
PTHrP detection

Magnetic beads with
enzyme labels and
peptide-specific
antibodies

- Detected PTHrP 1-173 with outstanding sensitivity (limit of detection: 150 aM) -
Ultrasensitive multiplexed peptide test

Zhou et
al. [16]

Characterizing electrical
and mechanical
properties of cancer
cells

Microfluidic device
- Investigated deformability of MCF-7 breast cancer cells - Measured cell
deformability and surface friction using narrow constrictions

Ren et
al. [17]

Capture and
characterization of
circulating tumor cells
(CTCs)

Size-based microfluidic
chip

- Sequential microfiltration steps to capture CTCs based on size - High capture
efficiency and selectivity for CTCs

Zielke et
al. [18]

Identifying cancer cell
subpopulations based
on glycolytic activity

Droplet microfluidic
technique (SIFT)

- Reliable and straightforward method for isolating cancer cells with high glycolytic
activity - Useful for research on therapeutic targets

Malhotra
et al. [19]

Electrochemical
microfluidic array for
oral cancer diagnosis

Off-line protein capture
with magnetic beads

- Ultralow detection range for IL-6, IL-8, vascular endothelial growth factor, and
vascular endothelial growth factor-C - Clinical sensitivity of 89% and specificity of
98% in oral cancer diagnosis

TABLE 1: Summary of Microfluidic Studies in Cancer Screening and Diagnostics.

Artificial intelligence
Artificial Intelligence (AI) shows significant potential in revolutionizing cancer screening, diagnosis, and
therapy by utilizing machine learning (ML) techniques that automate laborious tasks and analyze enormous
amounts of data. Specifically, Deep Learning (DL), a subset of ML, has proven effective in detecting and
segmenting cancerous lesions in various oncology applications. AI models have proven great accuracy in
cancer screening, diagnosis, prediction, classification, and molecular marker identification, particularly in
breast and colon cancer [4]. Furthermore, AI and Radiomics have improved glioma grading, surgical
planning, and postoperative surveillance in CNS malignancies. Furthermore, AI has the potential to develop
broadly applicable cancer screening systems for mammograms and colonoscopies, resulting in higher
detection rates for many types of cancer [20].

Screening Mammogram

According to the National Cancer Institute, breast cancer is the most common cancer in the United States.
AI has shown significant advantages in mammography screening. AI models have shown high accuracy
compared to radiologists. However, when considering the same sensitivity level, the specificity of AI was
lower than that of community-practice radiologists. But the combination of AI and radiologist assessment
achieved higher accuracy in mammogram interpretation compared to AI or radiologists alone [21]. In studies
of several DL models, sensitivity rates ranged from 88% to 96% overall [22]. Radiologists who used AI-
assisted systems performed better in classification, performance, and sensitivity. AI-based Computer-Aided
Design (CAD) systems have also improved sensitivity from 84% to 91% and decreased false positive rates by
69% [22]. To further improve detection accuracy and save effort by 70%, DL models are being included in
digital breast tomosynthesis and contrast-enhanced digital mammography datasets for the volumetric
evaluation of breasts in three dimensions [23].
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Several recent studies have explored the potential of Computer-Aided Diagnosis (CAD) and Artificial
Intelligence (AI) in the field of breast cancer [24]. One study introduced a Multiscale All Convolutional
Neural Network (MA-CNN) for the classification of mammogram images, achieving promising results in
automated breast cancer detection and classification [25]. These studies demonstrate the potential of CAD
and AI technologies in improving diagnostic accuracy, aiding early detection, and providing valuable
insights for personalized treatment strategies. In the United States, double readers are not common practice,
but the potential for cost-effective AI in conjunction with radiologists may raise total sensitivity. AI also
provides the benefit of reducing the time required for interpretation. To further increase accuracy rates,
breast imaging has been subjected to radiomics, a technique to extract pertinent quantitative characteristics
from clinical, histological, and radiological data [26].

Colonic Polyps and Colorectal Cancer

Colorectal cancer (CRC) is the third most prevalent cancer in the US, and artificial intelligence (AI) is being
rapidly employed to enhance its detection, diagnosis, and care. AI algorithms have been developed to
analyze historical data and complete blood counts (CBCs) to predict the likelihood of CRC and high-risk
colonic polyps. Notably, two algorithms, ColonFlag and MeScore, have shown promising results in
predicting polyps and CRCs based on CBC, demographic, and age data [27]. These models offer the potential
for early and non-invasive screening, allowing for the identification of high-risk individuals who can be
closely monitored [27].

AI is being used to improve the detection of colonic polyps during colonoscopy, which can help diagnose
and screen for colon cancer. Computer-aided detection (CADe) and computer-aided diagnosis (CADx)
systems have been developed to automate polyp identification during colonoscopy and provide further
characterization of detected polyps [28]. An AI system known as Gastrointestinal (GI) Genius has
demonstrated high detection rates and sensitivity for polyp identification, and real-time AI-aided
colonoscopy has shown higher adenoma detection rates (ADR) compared to colonoscopy alone. By assisting
endoscopists with higher ADR during screening colonoscopy, these AI-assisted algorithms can potentially
reduce adenoma miss rates and the risk of post-colonoscopy CRC [29].

AI also plays a role in classifying colon polyps (CP) as malignant or non-malignant tumors. AI-assisted
models have been developed to improve the accuracy and speed of CP diagnosis, which can be used with
diagnostic techniques such as CT colonography and capsular endoscopy [30]. Deep learning (DL) models are
utilized to accurately segment and define tumors, enabling faster and more precise identification of CRC
metastases. With the introduction of AI-based algorithms for automating image processing, pathologists can
now identify CPs with an average accuracy of 95% or higher [31]. Additionally, AI models have been
employed to identify gene expressions, gene profiling, and non-coding micro-ribonucleotides (mi-RNAs) for
targeted treatment planning, prognosis, and diagnosis. The use of AI in identifying microRNAs aids in the
diagnosis, prognosis, and targeted therapy of CRC [32].

In summary, AI-based models have the potential to aid in the early detection of CRC by isolating circulating
tumor cells and analyzing serum-specific biomarkers. These models can greatly assist pathologists in
accurately classifying CPs and managing patients with CRC (Table 2).

Application Description

Mammography
Screening

AI models have shown high accuracy in mammography screening, achieving sensitivity rates ranging from 88% to 96%. Combining AI
with radiologist assessment improves accuracy and sensitivity. AI-based Computer-Aided Design (CAD) systems have also improved
detection accuracy and reduced false positive rates.

Colonic Polyps
and CRC

AI algorithms analyze historical data and complete blood counts (CBCs) to predict the likelihood of colorectal cancer (CRC) and high-
risk colonic polyps. AI is used for polyp identification during colonoscopy, providing further characterization. Real-time AI-aided
colonoscopy improves adenoma detection rates (ADR) and reduces adenoma miss rates.

Colonic Polyps
Classification

AI-assisted models improve the accuracy and speed of colon polyp (CP) diagnosis, enabling faster and more precise identification of
CRC metastases. AI-based algorithms automate image processing and gene profiling for targeted treatment planning, prognosis, and
diagnosis of CRC.

TABLE 2: Applications of Artificial Intelligence (AI) in Breast and Colorectal Cancer Screening.

Central Nervous System Cancers

The diagnosis and treatment of central nervous system (CNS) malignancies have been proven to benefit from
the application of artificial intelligence (AI), notably in identifying and categorizing brain tumors. The gold
standard technique for tumor identification and characterization right now is MRI, however, traditional

2023 Noor et al. Cureus 15(5): e39634. DOI 10.7759/cureus.39634 5 of 10

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


approaches have drawbacks, such as a high chance of missing tumor foci infiltration [33]. By automating
these procedures, AI has improved radiologists' efficiency and detection rates while reducing the time
typically required for diagnosis. Additionally, Convolutional Neural Networks (CNN) based DL can identify
Glioblastoma Multiforme (GBM) from metastatic brain lesions and find millimeter-sized brain tumors. Even
with AI systems, it is still difficult to distinguish low-grade gliomas from high-grade gliomas on imaging.
For the first time, attention-based transformers are being studied in categorizing gliomas, and their use
might result in a breakthrough [34].

Initial observation, grading, determining the level of infiltration, segmenting and locating the tumor,
histological analysis, and the discovery of molecular markers are all steps in the clinical care of central
nervous system (CNS) malignancies. Clinical professionals create a treatment plan by manually assembling
all the data for validation. AI has been proven to be helpful in this area, especially in improving radiologists'
efficiency and detection rates. Although tumor distinction is usually predicted on histological examination,
which is invasive, time-consuming, and costly, MRI technologies give organized anatomical information on
tumors [35]. AI can recognize chemical compounds that are helpful for glioma grading and detecting tumor
infiltrating locations, increasing the likelihood of discovery. Attention-based transformers are being
researched for their potential to provide a breakthrough, although differentiating low-grade gliomas from
high-grade gliomas on imaging remains difficult.

Radiomics

Clinical, histological, and radiological data are combined with machine learning and deep learning image
processing in the emerging discipline of radiomics in neuro-oncology. This enables improved non-invasive
tumor characterization and prognostication, monitoring, and therapy response assessment. The two
primary algorithms used in radiomics are feature-based and DL-based, and both provide outcomes that are
more accurate and trustworthy than those of readers [20]. While DL radiomics employ CNN to learn a
cascade manner without previous feature definition, feature-based algorithms analyze subsets of particular
features from segmented areas and volumes of interest. Imaging pre-processing, tumor segmentation,
feature extraction, feature selection, model creation, and model assessment are all steps in the complicated
multi-step process of radiology [26].

Histopathological Aspects, Genetics, and Molecular Marker Detection

It may be difficult to accurately diagnose cranial tumors histopathologically, which might produce false-
positive findings. Microscope slides are now digitized, and AI-based algorithms like support vector machines
(SVM) and decision trees are utilized to analyze malignant glioma specimens and forecast outcomes based
on genetic and molecular markers [36]. Isocitrate dehydrogenase (IDH) mutation status, 1 p/19 co-deletion
status, Methylguanine-DNA Methyltransferase (MGMT) methylation status, epidermal growth factor
receptor splice variant III (EGFRvIII), Ki-67 marker expression, and prediction of BRAF and catenin -1
mutations are some of these indicators. In order to predict MGMT methylation status with up to 83%
accuracy, AI can identify these biomarkers from traditional MRI modalities and apply principal component
analysis to the last layer of CNN [37]. As an alternative to the invasive and time-consuming conventional
technique of detection through immunohistochemistry tests on the removed tumor sample, AI-based
radiomics has also been developed to identify Ki-67 marker expression from fluorodeoxyglucose (FDG)-
positron emission tomography (PET) and MRI images [38].

Preoperative Assessment

Planning therapy for CNS tumors requires precise segmentation, volumetric evaluation, and tumor
differentiation from normal brain tissue and peripheral edema. The tumor has been precisely and accurately
localized by applying AI algorithms like CNN and SVM to the tumor parts. The automatic segmentation of
gliomas using 3D-U-Net CNN on 18-fluoroethyl-tyrosine-PET has shown excellent results [39].

Intraoperative Modalities

High-grade tumors, like GBM, proliferate rapidly and spread beyond the augmenting areas seen on
radiographs. AI-based deep learning algorithms now enable surgeons to excise a greater amount of tumors
while preserving healthy brain tissue. Differentiating primary brain tumors, main CNS lymphoma, and brain
metastases has been accomplished using decision trees and multivariate logistic regression models [40].

Postoperative Surveillance

The gold standard for assessing postoperative tumor development and tumor response is MRI with
gadolinium contrast. Clinical, imaging, genetic, and molecular marker data have been used to predict
treatment response and survival outcomes using AI-based algorithms like CNN and SVM. CNN models can
distinguish between real and fake progression, while ML algorithms can distinguish between radiation
necrosis and tumor recurrence [41].

2023 Noor et al. Cureus 15(5): e39634. DOI 10.7759/cureus.39634 6 of 10

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


Precision and Personalized Medicine

Through the use of clinical decision support systems, chemotherapy, immunotherapy, and radiation
treatment, AI has made it possible to practice precision and personalized oncology. A more focused
approach to treatment is possible because of the development of machine learning (ML) algorithms that can
forecast the effects of chemotherapy medications based on genetic fingerprints and identify cancer cells
with HR abnormalities. For example, in CRC, PI3K alpha and tankyrase have been identified as promising
therapeutic targets using DL algorithms [40]. Big data from the clinical setting combined with AI may be
used to create personalized treatment plans for patients based on various variables. AI can synthesize and
evaluate enormous volumes of chemical data to design novel cancer treatments. AI may also assist
radiologists in scheduling radiation treatments and anticipating the therapeutic benefits of immunotherapy
[37]. By offering better, more individualized treatment alternatives that are also time-effective, AI has
thereby transformed oncology.

Biosensors for biomarker detection
As an accurate, quick, and sensitive analytical test, biosensors are utilized to identify cancer biomarkers. To
find cancer biomarkers and transform biological signals into observable electrical or visual forms, they use
certain biomolecules as biorecognition components. According to the transduction principle, biomarkers
may be classified as electrochemical, mass-sensitive, or optical. Due to their sensitivity, specificity,
affordability, and potential for miniaturization, electrochemical biosensors (EB) are chosen [42]. Cancer
biomarkers are found using biorecognition components such as proteins, Deoxyribonucleic acid (DNA),
enzymes, and aptamers. EBs may be divided into immunosensors, apta-sensors, enzymatic biosensors, and
nucleic acid biosensors based on the biorecognition element used [42].

Nucleic Acid-Based Biomarker Detection

Due to their sensitivity in detecting minute oligonucleotide concentrations, single-base mismatches, and
straightforward construction, nucleic acid-based biosensors are employed to quickly and precisely detect
cancer biomarkers. These indicators make identifying cancer in people with no visible symptoms possible.
Detecting nucleic acid-based cancer biomarkers has been suggested using various electrochemical
techniques. Using a magnetically controlled EB with a limit of detection (LOD) as low as 2.2 × 10−19 M,
Zhang et al. made it possible to diagnose oral cancer instantly [43]. Based on biotinylated complementary
probes immobilization on magnetic beads (MBs) coated with streptavidin, Boriachek et al. presented an EB
for detecting miRNA from human serum. Differential pulse voltammetry (DPV) was used to measure the
electrochemical response with a LOD of 1.0 pmol/L [44]. With a LOD of 2.3 fM, Luo et al. created a locked
nucleic acid-based EB for exosomal miRNA-21r detection. Electrochemical impedance spectroscopy (EIS)
and differential pulse voltammetry (DPV) were used to verify the sensor [45]. Recently, a biosensor made of
single-walled carbon nanotubes and fluorine-doped tin oxide was suggested for detecting miRNA-21, a
particular biomarker for various cancer types with a LOD as low as 0.01 fmol L1.

Protein/Immune-Based Biomarker Detection

Advancements in analytical instruments have made protein biomarkers an important target for cancer
detection. The discovery of protein-based cancer biomarkers in biological samples has led to the
development of several biosensors. Epidermal growth factor receptor (EGFR) detection limits of 0.88 pg/mL
and 0.34 pg/mL, respectively, were recommended by Elshafey et al. for use in human plasma and phosphate
buffer [46]. Carcinoembryonic antigen (CEA) has a good detection limit of 1 104 ng mL1, and Zhang et al.
created a nanocomposite-based electro-sensing platform for its detection [47]. An immune-sensing device
with a detection limit of 5.3 pg/mL for CEA was suggested by Luo et al. and is based on single-walled carbon
nanotubes (SWCNTs), quantum dots, and reduced graphene oxide- gold nanoparticles (AuNPs) [45]. To
detect HER3, with a linear detection range of 0.2-1.4 pg/mL, Canbaz et al. covalently bonded the
complementary HER3 Ab to a nanomodified gold electrode [48].

The breast cancer biomarker HER2- extracellular domain (ECD) was identified in human blood with a LOD of
2.1 ng/mL in another investigation using a disposable EB. By analyzing a number of human proteins and
another cancer biomarker, cancer antigen (CA) 15-3, the stated sensor's sensitivity was verified. For the
detection of epidermal growth factor receptor (EGFR) with a LOD of 50 pg/mL, Ilkhani et al. developed an
aptamer-based biosensing assay. Biotinylated EGFR aptamer immobilized on streptavidin-modified
graphene oxide served as the foundation for the biosensor [49]. These biosensors provide doctors with a
sensitive and dependable tool for spotting cancer even in its earliest stages.

Electrochemical Apta-sensors for Cancer Biomarker Detection

The detection of cancer biomarkers is a common use for electrochemical apta-sensors. Three categories of
electrochemical apta-sensors for cancer biomarkers exist, including those that recognize exosomes,
circulating tumor cells, and protein tumor biomarkers. In one work, microgel nanocomposites were used to
create a highly sensitive electrochemical apta-sensor for the detection of miRNA-21. With a linear range of
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10 aM to 1 pM, the apta-sensor displayed a low LOD of 1.35 aM. For the simultaneous detection of
carcinoembryonic antigen (CEA) and cancer antigen 15-3 (CA 15-3) in blood samples, another apta-sensor
was created [50]. This apta-sensor demonstrated LODs of 11.2 pg mL-1 and 11.2 x10-2 U mL-1 for CEA and
CA 15-3, respectively. It employed a nanocomposite of gold nanoparticles (AuNPs) and 3D graphene
hydrogel.

Another research used the LC-18 aptamer to create an electrochemical apta-sensor for detecting lung cancer
biomarkers. The immobilization of thiolated aptamer on gold disc electrodes created the apta-sensor,
demonstrating high specificity for lung cancer-related proteins and cells. Additionally, a label-free
electrochemical apta-sensor for the detection of CA-125, a marker for the diagnosis of ovarian cancer, was
created utilizing nickel hexacyanoferrate (NiHCF) nanocubes and polydopamine-functionalized graphene
(PDA/GR) [51]. With a linear range of 0.10 pg mL-1 to 1.0 g mL-1, this apta-sensor showed a low LOD of
0.076 pg mL-1.

Biosensors for Diagnosing Multiple Biomarkers

Since no single biomarker is sufficiently specific for each kind of cancer, there is rising interest in creating
multi-biomarker platforms for cancer detection, according to a number of studies. To detect many cancer
indicators with high sensitivity and specificity, researchers have created a variety of biosensors. For
instance, Chen et al. developed an electrochemical sandwich platform based on bio-functional carboxyl
graphene nanosheets (CGS) to detect CEA and alpha-fetoprotein (AFP) with respective limits of detection of
0.1 ng/mL and 0.05 ng/mL [52]. Similarly, Atlintas and his coworkers created a biosensor that can track CEA
and EGFR over a linear range of 20-1000 pg/mL and detect CA15-3 over a broad range of 10-200 U/mL [53].
With detection limits of 0.23 pg/mL and 0.30 pg/mL, respectively, Malhotra et al. developed an EI capable of
detecting two prostate cancer biomarkers, Prostate-specific antigen (PSA) and interleukin (IL) 6 [19].

With LODs of 0.7 pg/mL, 0.007 U/mL, and 0.9 pg/mL, respectively, Hong and coworkers disclosed a gold-
modified indium tin oxide (ITO) electrode that could detect CEA, CA125, and PSA [54]. With LODs of 0.8
pg/mL, 0.005 U/mL, and 0.7 pg/mL, respectively, biotin-doped polypyrrole was also created to detect CEA,
CA125, and PSA cancer biomarkers.

Additionally, scientists have created a number of biosensors that can simultaneously detect multiple cancer
biomarkers. Wilson and Nie have developed a second biosensor for the detection of seven cancer biomarkers
connected to different types of cancer, including CEA, human chorionic gonadotropin (hCG), alpha-
fetoprotein (AFP), CA125, CA15-3, ferritin, and CA19-9. The development of efficient cancer screening
technologies is made possible by the high potential for early and accurate cancer detection offered by these
biosensors [55].

Conclusions
Cancer screening and diagnosis have advanced significantly with the development of new technologies and
techniques, such as microfluidic devices, non-invasive procedures, and machine learning algorithms. These
advancements have enabled early cancer detection, improving the chances of effective treatment and
management. In particular, biomarker-based cancer diagnosis utilizing biosensing devices with different
nanoparticles offers promising potential for early detection and disease progression monitoring. Overall, the
use of advanced technologies and techniques in cancer screening and diagnosis has the potential to improve
patient outcomes greatly, and continued research and development in this field is critical.

Additional Information
Disclosures
Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the
following: Payment/services info: All authors have declared that no financial support was received from
any organization for the submitted work. Financial relationships: All authors have declared that they have
no financial relationships at present or within the previous three years with any organizations that might
have an interest in the submitted work. Other relationships: All authors have declared that there are no
other relationships or activities that could appear to have influenced the submitted work.

References
1. Loud JT, Murphy J: Cancer screening and early detection in the 21st century . Semin Oncol Nurs. 2017,

33:121-8. 10.1016/j.soncn.2017.02.002
2. Kaushal A, Kaur N, Sharma S, Sharma AK, Kala D, Prakash H, Gupta S: Current update on biomarkers for

detection of cancer: comprehensive analysis. Vaccines (Basel). 2022, 10:10.3390/vaccines10122138
3. Mathew DG, Beekman P, Lemay SG, Zuilhof H, Le Gac S, van der Wiel WG: Electrochemical detection of

tumor-derived extracellular vesicles on nanointerdigitated electrodes. Nano Lett. 2020, 20:820-8.
10.1021/acs.nanolett.9b02741

4. McKinney SM, Sieniek M, Godbole V, et al.: International evaluation of an AI system for breast cancer
screening. Nature. 2020, 577:89-94. 10.1038/s41586-019-1799-6

2023 Noor et al. Cureus 15(5): e39634. DOI 10.7759/cureus.39634 8 of 10

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://dx.doi.org/10.1016/j.soncn.2017.02.002?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.soncn.2017.02.002?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3390/vaccines10122138?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3390/vaccines10122138?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/acs.nanolett.9b02741?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/acs.nanolett.9b02741?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1038/s41586-019-1799-6?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1038/s41586-019-1799-6?utm_medium=email&utm_source=transaction


5. Díaz-Fernández A, Lorenzo-Gómez R, Miranda-Castro R, de-Los-Santos-Álvarez N, Lobo-Castañón MJ:
Electrochemical aptasensors for cancer diagnosis in biological fluids - a review . Anal Chim Acta. 2020,
1124:1-19. 10.1016/j.aca.2020.04.022

6. Ivancic MM, Megna BW, Sverchkov Y, et al.: Noninvasive detection of colorectal carcinomas using serum
protein biomarkers. J Surg Res. 2020, 246:160-9. 10.1016/j.jss.2019.08.004

7. Lu Y, Yu Q, Gao Y, et al.: Identification of metastatic lymph nodes in mr imaging with faster region-based
convolutional neural networks. Cancer Res. 2018, 78:5135-43. 10.1158/0008-5472.CAN-18-0494

8. Sudhakara Prasad K, Cao X, Gao N, Jin Q, Sanjay ST, Henao-Pabon G, Li X: A low-cost nanomaterial-based
electrochemical immunosensor on paper for high-sensitivity early detection of pancreatic cancer. Sens
Actuators B Chem. 2020, 305:10.1016/j.snb.2019.127516

9. Gupta P, Gulzar Z, Hsieh B, Lim A, Watson D, Mei R: Analytical validation of the CellMax platform for early
detection of cancer by enumeration of rare circulating tumor cells. J Circ Biomark. 2019,
8:1849454419899214. 10.1177/1849454419899214

10. Green BJ, Kermanshah L, Labib M, et al.: Isolation of phenotypically distinct cancer cells using nanoparticle-
mediated sorting. ACS Appl Mater Interfaces. 2017, 9:20435-43. 10.1021/acsami.7b05253

11. Nguyen TA, Yin TI, Reyes D, Urban GA: Microfluidic chip with integrated electrical cell-impedance sensing
for monitoring single cancer cell migration in three-dimensional matrixes. Anal Chem. 2013, 85:11068-76.
10.1021/ac402761s

12. Shah AM, Yu M, Nakamura Z, et al.: Biopolymer system for cell recovery from microfluidic cell capture
devices. Anal Chem. 2012, 84:3682-8. 10.1021/ac300190j

13. Zhao L, Liu Y, Liu Y, Zhang M, Zhang X: Microfluidic control of tumor and stromal cell spheroids pairing
and merging for three-dimensional metastasis study. Anal Chem. 2020, 92:7638-45.
10.1021/acs.analchem.0c00408

14. Chu Y, Gao Y, Tang W, et al.: Attomolar-level ultrasensitive and multiplex microrna detection enabled by a
nanomaterial nocally assembled microfluidic biochip for cancer diagnosis. Anal Chem. 2021, 93:5129-36.
10.1021/acs.analchem.0c04896

15. Otieno BA, Krause CE, Jones AL, Kremer RB, Rusling JF: Cancer diagnostics via ultrasensitive multiplexed
detection of parathyroid hormone-related peptides with a microfluidic immunoarray. Anal Chem. 2016,
88:9269-75. 10.1021/acs.analchem.6b02637

16. Zhou Y, Yang D, Zhou Y, Khoo BL, Han J, Ai Y: Characterizing deformability and electrical impedance of
cancer cells in a microfluidic device. Anal Chem. 2018, 90:912-9. 10.1021/acs.analchem.7b03859

17. Ren X, Foster BM, Ghassemi P, Strobl JS, Kerr BA, Agah M: Entrapment of prostate cancer circulating tumor
cells with a sequential size-based microfluidic chip. Anal Chem. 2018, 90:7526-34.
10.1021/acs.analchem.8b01134

18. Zielke C, Pan CW, Gutierrez Ramirez AJ, et al.: Microfluidic platform for the isolation of cancer-cell
subpopulations based on single-cell glycolysis. Anal Chem. 2020, 92:6949-57.
10.1021/acs.analchem.9b05738

19. Malhotra R, Patel V, Chikkaveeraiah BV, et al.: Ultrasensitive detection of cancer biomarkers in the clinic by
use of a nanostructured microfluidic array. Anal Chem. 2012, 84:6249-55. 10.1021/ac301392g

20. Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, Bellomi M: Radiomics: the facts and the
challenges of image analysis. Eur Radiol Exp. 2018, 2:36. 10.1186/s41747-018-0068-z

21. Schaffter T, Buist DS, Lee CI, et al.: Evaluation of combined artificial intelligence and radiologist assessment
to interpret screening mammograms. JAMA Netw Open. 2020, 3:e200265.
10.1001/jamanetworkopen.2020.0265

22. Batchu S, Liu F, Amireh A, Waller J, Umair M: A review of applications of machine learning in
mammography and future challenges. Oncology. 2021, 99:483-90. 10.1159/000515698

23. Houssami N, Kirkpatrick-Jones G, Noguchi N, Lee CI: Artificial intelligence (AI) for the early detection of
breast cancer: a scoping review to assess AI's potential in breast screening practice. Expert Rev Med Devices.
2019, 16:351-62. 10.1080/17434440.2019.1610387

24. Chan HP, Samala RK, Hadjiiski LM: CAD and AI for breast cancer-recent development and challenges . Br J
Radiol. 2020, 93:20190580. 10.1259/bjr.20190580

25. Agnes SA, Anitha J, Pandian SI, Peter JD: Classification of mammogram images using multiscale all
convolutional neural network (MA-CNN). J Med Syst. 2019, 44:30. 10.1007/s10916-019-1494-z

26. Forghani R: Precision digital oncology: emerging role of radiomics-based biomarkers and artificial
intelligence for advanced imaging and characterization of brain tumors. Radiol Imaging Cancer. 2020,
2:e190047. 10.1148/rycan.2020190047

27. Nartowt BJ, Hart GR, Muhammad W, Liang Y, Stark GF, Deng J: Robust machine learning for colorectal
cancer risk prediction and stratification. Front Big Data. 2020, 3:6. 10.3389/fdata.2020.00006

28. Hilsden RJ, Heitman SJ, Mizrahi B, Narod SA, Goshen R: Prediction of findings at screening colonoscopy
using a machine learning algorithm based on complete blood counts (ColonFlag). PLoS One. 2018,
13:e0207848. 10.1371/journal.pone.0207848

29. Vobugari N, Raja V, Sethi U, Gandhi K, Raja K, Surani SR: Advancements in oncology with artificial
antelligence - a review article. Cancers (Basel). 2022, 14:10.3390/cancers14051349

30. Corley DA, Jensen CD, Marks AR, et al.: Adenoma detection rate and risk of colorectal cancer and death . N
Engl J Med. 2014, 370:1298-306. 10.1056/NEJMoa1309086

31. Mori Y, Kudo SE, Berzin TM, Misawa M, Takeda K: Computer-aided diagnosis for colonoscopy . Endoscopy.
2017, 49:813-9. 10.1055/s-0043-109430

32. Grosu S, Wesp P, Graser A, et al.: Machine learning-based differentiation of benign and premalignant
colorectal polyps detected with CT colonography in an asymptomatic screening population: a proof-of-
concept study. Radiology. 2021, 299:326-35. 10.1148/radiol.2021202363

33. Brindle KM, Izquierdo-García JL, Lewis DY, Mair RJ, Wright AJ: Brain tumor imaging. J Clin Oncol. 2017,
35:2432-8. 10.1200/JCO.2017.72.7636

34. Rudie JD, Rauschecker AM, Bryan RN, Davatzikos C, Mohan S: Emerging applications of artificial
intelligence in neuro-oncology. Radiology. 2019, 290:607-18. 10.1148/radiol.2018181928

2023 Noor et al. Cureus 15(5): e39634. DOI 10.7759/cureus.39634 9 of 10

https://dx.doi.org/10.1016/j.aca.2020.04.022?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.aca.2020.04.022?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.jss.2019.08.004?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.jss.2019.08.004?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1158/0008-5472.CAN-18-0494?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1158/0008-5472.CAN-18-0494?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.snb.2019.127516?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.snb.2019.127516?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1177/1849454419899214?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1177/1849454419899214?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/acsami.7b05253?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/acsami.7b05253?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/ac402761s?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/ac402761s?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/ac300190j?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/ac300190j?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/acs.analchem.0c00408?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/acs.analchem.0c00408?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/acs.analchem.0c04896?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/acs.analchem.0c04896?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/acs.analchem.6b02637?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/acs.analchem.6b02637?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/acs.analchem.7b03859?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/acs.analchem.7b03859?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/acs.analchem.8b01134?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/acs.analchem.8b01134?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/acs.analchem.9b05738?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/acs.analchem.9b05738?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/ac301392g?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/ac301392g?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1186/s41747-018-0068-z?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1186/s41747-018-0068-z?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1001/jamanetworkopen.2020.0265?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1001/jamanetworkopen.2020.0265?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1159/000515698?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1159/000515698?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1080/17434440.2019.1610387?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1080/17434440.2019.1610387?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1259/bjr.20190580?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1259/bjr.20190580?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s10916-019-1494-z?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s10916-019-1494-z?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1148/rycan.2020190047?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1148/rycan.2020190047?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3389/fdata.2020.00006?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3389/fdata.2020.00006?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1371/journal.pone.0207848?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1371/journal.pone.0207848?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3390/cancers14051349?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3390/cancers14051349?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1056/NEJMoa1309086?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1056/NEJMoa1309086?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1055/s-0043-109430?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1055/s-0043-109430?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1148/radiol.2021202363?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1148/radiol.2021202363?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1200/JCO.2017.72.7636?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1200/JCO.2017.72.7636?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1148/radiol.2018181928?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1148/radiol.2018181928?utm_medium=email&utm_source=transaction


35. Artzi M, Bressler I, Ben Bashat D: Differentiation between glioblastoma, brain metastasis and subtypes using
radiomics analysis. J Magn Reson Imaging. 2019, 50:519-28. 10.1002/jmri.26643

36. Abdel Razek AA, Alksas A, Shehata M, AbdelKhalek A, Abdel Baky K, El-Baz A, Helmy E: Clinical
applications of artificial intelligence and radiomics in neuro-oncology imaging. Insights Imaging. 2021,
12:152. 10.1186/s13244-021-01102-6

37. Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A: Artificial intelligence in digital pathology - new
tools for diagnosis and precision oncology. Nat Rev Clin Oncol. 2019, 16:703-15. 10.1038/s41571-019-0252-
y

38. Korfiatis P, Kline TL, Coufalova L, et al.: MRI texture features as biomarkers to predict MGMT methylation
status in glioblastomas. Med Phys. 2016, 43:2835-44. 10.1118/1.4948668

39. Shaver MM, Kohanteb PA, Chiou C, et al.: Optimizing neuro-oncology imaging: a review of deep learning
approaches for glioma imaging. Cancers (Basel). 2019, 11:10.3390/cancers11060829

40. Allemani C, Matsuda T, Di Carlo V, et al.: Global surveillance of trends in cancer survival 2000-14
(CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from
322 population-based registries in 71 countries. Lancet. 2018, 391:1023-75. 10.1016/S0140-6736(17)33326-
3

41. Li Y, Liu X, Xu K, et al.: MRI features can predict EGFR expression in lower grade gliomas: a voxel-based
radiomic analysis. Eur Radiol. 2018, 28:356-62. 10.1007/s00330-017-4964-z

42. Yang G, Xiao Z, Tang C, Deng Y, Huang H, He Z: Recent advances in biosensor for detection of lung cancer
biomarkers. Biosens Bioelectron. 2019, 141:111416. 10.1016/j.bios.2019.111416

43. Zhang X, Xie G, Gou D, Luo P, Yao Y, Chen H: A novel enzyme-free electrochemical biosensor for rapid
detection of Pseudomonas aeruginosa based on high catalytic Cu-ZrMOF and conductive Super P. Biosens
Bioelectron. 2019, 142:111486. 10.1016/j.bios.2019.111486

44. Boriachek K , Umer M , Islam MN , Gopalan V , Lam AK , Nguyen NT , Shiddiky MJ : An amplification-free
electrochemical detection of exosomal miRNA-21 in serum samples. Analyst. 2018, 143:1662-9.
10.1039/c7an01843f

45. Luo Y, Wang Y, Yan H, Wu Y, Zhu C, Du D, Lin Y: SWCNTs@GQDs composites as nanocarriers for enzyme-
free dual-signal amplification electrochemical immunoassay of cancer biomarker. Anal Chim Acta. 2018,
1042:44-51. 10.1016/j.aca.2018.08.023

46. Elshafey R, Tavares AC, Siaj M, Zourob M: Electrochemical impedance immunosensor based on gold
nanoparticles-protein G for the detection of cancer marker epidermal growth factor receptor in human
plasma and brain tissue. Biosens Bioelectron. 2013, 50:143-9. 10.1016/j.bios.2013.05.063

47. Zhang X, Yu Y, Shen J, Qi W, Wang H: Design of organic/inorganic nanocomposites for ultrasensitive
electrochemical detection of a cancer biomarker protein. Talanta. 2020, 212:120794.
10.1016/j.talanta.2020.120794

48. Canbaz MÇ, Simşek CS, Sezgintürk MK: Electrochemical biosensor based on self-assembled monolayers
modified with gold nanoparticles for detection of HER-3. Anal Chim Acta. 2014, 814:31-8.
10.1016/j.aca.2014.01.041

49. Ilkhani H, Sarparast M, Noori A, Zahra Bathaie S, Mousavi MF: Electrochemical aptamer/antibody based
sandwich immunosensor for the detection of EGFR, a cancer biomarker, using gold nanoparticles as a
signaling probe. Biosens Bioelectron. 2015, 74:491-7. 10.1016/j.bios.2015.06.063

50. Khanmohammadi A, Aghaie A, Vahedi E, et al.: Electrochemical biosensors for the detection of lung cancer
biomarkers: a review. Talanta. 2020, 206:120251. 10.1016/j.talanta.2019.120251

51. Hou Z, Zheng J, Zhang C, et al.: Direct ultrasensitive electrochemical detection of breast cancer biomarker-
miRNA-21 employing an aptasensor based on a microgel nanoparticle composite. Sensors Actuators B
Chemical. 2022, 367:132067. 10.1016/J.SNB.2022.132067

52. Chen X, Jia X, Han J, Ma J, Ma Z: Electrochemical immunosensor for simultaneous detection of multiplex
cancer biomarkers based on graphene nanocomposites. Biosens Bioelectron. 2013, 50:356-61.
10.1016/j.bios.2013.06.054

53. Altintas Z, Kallempudi SS, Gurbuz Y: Gold nanoparticle modified capacitive sensor platform for multiple
marker detection. Talanta. 2014, 118:270-6. 10.1016/j.talanta.2013.10.030

54. Hong W, Lee S, Jae Kim E, Lee M, Cho Y: A reusable electrochemical immunosensor fabricated using a
temperature-responsive polymer for cancer biomarker proteins. Biosens Bioelectron. 2016, 78:181-6.
10.1016/j.bios.2015.11.040

55. Wilson MS, Nie W: Multiplex measurement of seven tumor markers using an electrochemical protein chip .
Anal Chem. 2006, 78:6476-83. 10.1021/ac060843u

2023 Noor et al. Cureus 15(5): e39634. DOI 10.7759/cureus.39634 10 of 10

https://dx.doi.org/10.1002/jmri.26643?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1002/jmri.26643?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1186/s13244-021-01102-6?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1186/s13244-021-01102-6?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1038/s41571-019-0252-y?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1038/s41571-019-0252-y?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1118/1.4948668?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1118/1.4948668?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3390/cancers11060829?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3390/cancers11060829?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/S0140-6736(17)33326-3?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/S0140-6736(17)33326-3?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s00330-017-4964-z?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s00330-017-4964-z?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.bios.2019.111416?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.bios.2019.111416?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.bios.2019.111486?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.bios.2019.111486?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1039/c7an01843f?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1039/c7an01843f?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.aca.2018.08.023?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.aca.2018.08.023?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.bios.2013.05.063?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.bios.2013.05.063?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.talanta.2020.120794?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.talanta.2020.120794?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.aca.2014.01.041?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.aca.2014.01.041?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.bios.2015.06.063?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.bios.2015.06.063?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.talanta.2019.120251?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.talanta.2019.120251?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/J.SNB.2022.132067?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/J.SNB.2022.132067?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.bios.2013.06.054?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.bios.2013.06.054?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.talanta.2013.10.030?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.talanta.2013.10.030?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.bios.2015.11.040?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.bios.2015.11.040?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/ac060843u?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1021/ac060843u?utm_medium=email&utm_source=transaction

	Microfluidic Technology, Artificial Intelligence, and Biosensors As Advanced Technologies in Cancer Screening: A Review Article
	Abstract
	Introduction And Background
	Review
	Methodology
	Microfluidic technology
	TABLE 1: Summary of Microfluidic Studies in Cancer Screening and Diagnostics.

	Artificial intelligence
	TABLE 2: Applications of Artificial Intelligence (AI) in Breast and Colorectal Cancer Screening.

	Biosensors for biomarker detection

	Conclusions
	Additional Information
	Disclosures

	References


