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Abstract
Computed tomography has played an instrumental role in the understanding of the pathophysiology of
atherosclerosis in coronary artery disease. It enables visualization of the plaque obstruction and vessel
stenosis in a comprehensive manner. As technology for computed tomography is constantly evolving,
coronary applications and possibilities are constantly expanding. This influx of information can overwhelm
a physician's ability to interpret information in this era of big data. Machine learning is a revolutionary
approach that can help provide limitless pathways in patient management. Within these machine
algorithms, deep learning has tremendous potential and can revolutionize computed tomography and
cardiovascular imaging. In this review article, we highlight the role of deep learning in various aspects of
computed tomography. 
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Introduction And Background
As cardiovascular imaging data is becoming more multi-dimensional in nature and increasingly complex,
this will pose significant difficulties in the healthcare sector in years to come [1]. Similarly, diagnostic
modalities are progressively evolving with the addition of various new parameters [2]. These technological
advancements have had significant impacts in the field of computed tomography (CT) [3,4]. In parallel with
the growth of cardiovascular imaging, there is a massive influx of data arising from a multitude of wearable
devices and smart apps, which will inevitably integrate with clinical management [4]. Similarly, the
technology behind electronic medical record systems is also growing and is capable of collecting and storing
more patient information [5]. With a plethora of information arising from multiple user interfaces, this in
turn may become more of a curse rather than a blessing for any healthcare personnel [6]. Furthermore, data
being exceedingly complex will supersede the capabilities of current statistical software [7].

To navigate through this complex labyrinth of information, artificial intelligence (AI) is becoming a vital
necessity for aggregating information in a clinically meaningful manner [4,5]. AI can interpret information
and lead to data-driven discoveries typically not seen with traditional statistics [8,9]. Within the various
algorithms of AI, deep learning has the most revolutionary potential and is at the forefront of AI in
cardiovascular imaging [6,10]. With rapid advances in graphical processing units (GPU) and emergence of
cloud technology, this has greatly propelled the growth of deep learning [3]. Deep learning enables image
classification and segmentation in imaging [11]. Among non-invasive modalities, computed tomography
angiography (CTA) is an emerging modality with efficacy and accuracy paralleling other contemporary
modalities. Furthermore, CTA can clearly exclude obstructive coronary artery disease (CAD) with high
negative predictive value [12]. Deep learning can automate redundant tasks and augment diagnostic or
prognostic capabilities of CTA [4,11]. In this review article, we highlight the role of deep learning in various
aspects for computed tomography. 

Review
Types of machine learning
Machine learning (ML) is an umbrella term which encompasses a wide variety of algorithms [1,4]. These can
be broadly categorized into supervised learning, unsupervised learning, semi-supervised learning, and
reinforcement learning [1,4]. Supervised learning uses annotations and labels within a dataset [5].
Unsupervised learning is independent and does not requires any labels or classes within a dataset [7]. Semi-
supervised learning uses properties present within supervised and unsupervised learning [4]. It can
comprehend data with or without labels. Lastly, reinforcement learning is similar to human psychology [3].
It utilizes certain reward criteria for the algorithm to function independently.

One of the weaknesses of current statistics is its prediction is not a strong suit of these computational
programs [8,13]. Furthermore, current statistical software cannot handle large or complex information [1,7].
For this particular aspect, ML algorithms are strikingly different [3,7]. This is particularly applicable to deep
learning. As data becomes larger, it helps ML algorithms to function better, and accuracy improves [11].
Machine learning can unravel hidden new relationships, not possible with conventional statistics [5].
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Overview of deep learning
Among the variety of algorithms present, deep learning (DL) algorithms have the most revolutionary
potential [14]. “Deep” technically refers to a multilayered separation [11]. DL is being widely utilized in
various parts of human industry from information technology to the commercial industry [2]. For example,
DL framework is being utilized in self-driving cars to voice recognition software from Google and Amazon
[2,3,13]. The architecture of DL is similar to human neuronal structure [4]. DL algorithms can process and
extract information in a series of hierarchical layers [15]. It has proven to be a valuable asset in image
classification, speech recognition, genomics, and image segmentation. 

DL vastly differs from contemporary ML algorithms [2]. Supervised and unsupervised learning algorithms
generally require longer training and experience for achieving acceptable results and accuracy [15]. Intense
preparation may be required for the algorithm to function properly. In contrast, the accuracy of deep
learning algorithms is easier to improve by augmenting the training dataset or elevating the network
capacity [15]. They require substantially lesser domain knowledge to perform a function.

Architecture of deep learning
DL encompasses a wide number of algorithms designed to perform a variety of algorithms [11]. In Fully
Connected Networks (FNNs), every unit in any layer is linked to every unit in the succeeding and preceding
layers [16]. For Deep Belief Networks (DBNs), each layer contains statistical dependencies corresponding to
units in the prior layers [17]. Convolutional Neural Networks (CNNs) consist of a segment that allows
hierarchical feature interpretation and another segment performing classification or regression [11].
Autoencoders (AE) contain encoding and decoding parts which connect the input to the output which
provides valuable properties within the data [18]. Recurrent Neural Networks (RNNs) utilize internal states
through feedback loops to comprehend the input [11]. Within RNN, long short term memory and gated
recurrent unit are commonly used algorithms.

Among the DL algorithms, CNNs are frequently used in cardiovascular imaging. CNNs prioritize feature
optimization while examining the data through the convolutional layers. The classification layers are located
in the last layers of the CNN. In addition, feature maps can be produced by convolutional layers from various
parameters. Visual Geometry Group (VGC) is a simple CNN framework with lesser depth [19]. GoogleNet [20]
and ResNET [21] have CNN-like structures with multiple layers of complexity.

The stacked Denoised AE is a frequently used AE algorithm [18]. This algorithm can create clean input from
corrupted input. The U-net is another AE-like framework that can associate layers of the encoder with the
decoder [22]. The U-net plays an important role in the segmentation of images in cardiology.

Emerging relationship between computed tomography and machine
learning
CAD is the leading cause of mortality in the developed world [23]. For the evaluation of CAD, cardiac CT is
non-invasive and is a well-established modality. Cardiac CT depicts the extent of the atherosclerotic process
in the coronary artery tree [24]. With the advent of CTA, it has rapidly shifted diagnostic paradigms in the
assessment of CAD [25,26]. Cardiac CTA has a negative predictive value approaching 100%, and the
sensitivity and specificity reach 98% and 89% respectively. Without question, cardiac CT can reliably exclude
CAD in suspected cases. As a result, cardiac CT is integrated into many diagnostic algorithms in patients
with obstructive CAD in clinical or emergency settings [26]. 

Cardiac CT provides a comprehensive portrait of CAD from the level of atherosclerotic plaque to functional
evaluation of various coronary lesions [24]. Many prestigious societies are firmly advocating cardiac CT as a
first-line option for suspected CAD [27,28]. As the technology continues to thrive and evolve, there will be an
influx of new parameters [9]. These new parameters may provide additional information but not in a
meaningful manner. There is a growing interest within the cardiovascular community in the integration of
ML algorithms with cardiac CT and other imaging modalities [4,10]. ML algorithms can streamline the
clinical workflow and help provide more time for clinical decision-making [29,30]. They can execute
mundane tasks and help analyze medical information in a clinically meaningful manner [31]. The
integration of ML algorithms with cardiac CT will pave the pathway for precision medicine in cardiovascular
imaging [13].

Role of deep learning in coronary artery calcium assessment
Non-contrast coronary artery calcium (CAC) evaluation is an important facet of coronary CT [32]. CAC
scoring helps assess the extent of atherosclerotic disease [33] and is a paramount parameter for
cardiovascular risk stratification. There is an inherent relationship between elevating CAC and the presence
of obstructive CAD [32]. A number of studies have explored the role of deep learning for CAC in cardiac CT.

Lessman et al. utilized a CNN framework to evaluate CAC [34]. The CNN algorithms created a bounding box
around the heart. This bounding box corresponds to Hounsfield units. If patients were above certain
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thresholds for Hounsfield units, they were considered to be candidates for CAC by cardiac CT. Based on this
score, patients were segregated into five risk categories. Similarly, Lessman et al. utilized a CNN algorithm
for the identification of calcification in low-dose CT [35]. Wolternick et al. assessed the role of a multi-
layered CNN architecture for measuring CAC which did not need coronary extraction [36]. The CNN
algorithm created a bounding box around the heart in multiple planes and another CNN simultaneously
detected CAC. The algorithm obtained a high correlation coefficient of 0.95.

Cano-Espinosa et al. created a CNN algorithm that automatically generated Agaston score for CAC in 5973
CT images [37]. Surprisingly, Cano-Espinosa et al. achieved a Pearson correlation coefficient of 0.932.
Santini et al. used a multi-layered CNN algorithm for classification of coronary lesions with various CT
volumes [38]. Their CNN algorithm was able to reveal a Pearson correlation of 0.983.

Role of deep learning in image segmentation for computed tomography
One of the primary uses of cardiac CT in clinical practice is segmentation of various cardiac structures.
Cardiac CT and CTA require manual segmentation of structures which can be time-consuming [30] and may
diminish time for clinical management. Automated deep-learning algorithms can be particularly useful for
producing rapid and reliable results [9]. It could set the platform for automated segmentation in the near
future.

Liu et al. utilized a multi-layered FCN for automatic segmentation of the left atrium for 3D CT volumes [39].
The authors further improved the algorithm to reach a Dice index of 93%. Hong et al. evaluated a DBN
algorithm for segmentation and classification of abdominal aortic aneurysm from CT [38,39]. López-Linares
et al. explored the potential of CNN framework for evaluation of aortic thrombus [40]. Automatic
segmentation was performed for preoperative and postoperative imaging. Jin et al. applied a CNN algorithm
to automatically segment the left atrial appendage for diagnosing atrial fibrillation from CTA [41]. In relation
to manual annotation, there was a mean Dice overlap of 94.76% and a mean volume overlap of 91.10%. The
computation time was less than 40 seconds per volume. Dormer et al. used a CNN algorithm for complete
segmentation of the heart, obtaining an overall accuracy of 87.2% ± 3.3% and an overall chamber accuracy of
85.6 ± 6.1% [42].

Baskaran et al. explored the potential of deep learning in automatic segmentation of cardiac structures on
CT [30]. They used a U-Net deep learning algorithm to automatically segment ten structures which included
various structures in the left and right sides of the heart along with the great vessels. The overall Dice score
was 0.932 and results were consistent across various subsets. Strikingly, automatic segmentation took an
average of 440 seconds per case which greatly contrasts with manual segmentation of five hours.

Role of deep learning in detection of cardiac structures for computed
tomography
Cardiac CT is extensively used for identification and detection of various structures. With appropriate
training, deep learning algorithms can greatly aid physicians in this process. De Vos et al. utilized a CNN
algorithm to identify cardiac and aortic regions in 2D images derived from CT slices and find the
corresponding regions on 3D [43]. The algorithm would detect these regions in 3D CT and place a 3D
bounding box around the findings. Moradi et al. assessed the role of CNN algorithm to aid automatic
segmentation and anatomic recognition. They arranged the various body areas visualized in CT into nine
categories, each representing a relevant area relating to a disease or key cardiovascular feature. The CNN
algorithm was able to devise a schematic map to a corresponding CT slice and relevant level. Moradi et al.
were able to report a margin zero and margin 1 accuracy of 91.7% and 98.8% was effective in matching a CT
image to a relative narrow anatomic window [44]. Zreik et al. applied a CNN algorithm for automatic
segmentation of the left ventricle from CTA scans in 60 patients [45]. Left ventricular voxel classification was
performed by a bounding box around the left ventricle. The algorithm produced a Dice index of 0.85 and a
mean absolute surface distance of 1.1 cm. 

Recently, Baskaran et al. explored the role of deep learning algorithms in identification and quantification of
cardiovascular structures from CTA [29]. They utilized a U-Net architecture in 166 patients undergoing CTA
for assessing left ventricular volume, left atrial volume, right ventricular volume, and right atrial volume,
and left ventricular myocardial mass. The combined Dice score was 0.9246. The deep learning architecture
correlated with manual annotation for left ventricular volume (r=0.98), right ventricular volume (r=0.97), left
atrial volume (r=0.78), right atrial volume (r=0.97), and left ventricular myocardial mass (r=0.94) with
statistical significance (p<.05).

Role of deep learning in various aspects of computed tomography
Zreik et al. employed a CNN algorithm to automatically detect coronary artery stenosis in CTA for 166
patients [46]. In relation to invasive fractional flow reserve, the network produced a c- statistic of 0.74 ± 0.02
with accompanying specificities of 77%, 71%, and 59% at sensitives of 60%, 70%, and 80% respectively.
Motwani applied a DL algorithm in CTA for 10,300 patients with suspicion of CAD to predict five-year all-
cause mortality [47]. Interestingly, the ML framework displayed a higher area under curve compared with
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Framingham risk scores (0.79 vs 0.61) or CTA severity scores (0.79 vs SSS 0.64, SIS 0.64, DI 0.62) for
predicting all-cause mortality (p<.0001). Commanduer et al. utilized a CNN algorithm to evaluate epicardial
adipose tissue in CT [48]. Gulsun et al. assessed the role of a CNN algorithm in extracting blood vessel
centerlines in CT [49]. 

Pitfalls of deep learning
Although the early results of deep learning appear promising, there are still many significant issues [15]. The
“black box” nature of deep learning is not easily understood and can be difficult for clinical interpretation
[4]. A number of approaches have been suggested to improve interpretability, but it may require higher costs
or larger data. Another common complaint is overfitting [15]. This can occur with smaller data samples or
overly intricate algorithms. The choice of algorithm is dictated by the purpose of analysis and size of data.
Deep learning may also be associated with some ethical concerns regarding bias or unintentional
manipulation of findings [50]. Consistent results need to be maintained while using the same deep-learning
algorithm at different academic sites [51]. Results may vary from one center to another with the same
algorithm. There is no standardization of deep learning algorithms. The majority of previous studies
compare the results of deep learning with the C-statistic and area under the receiver operating curve. There
is no clear cut-off mark for c-statistic [52]. Although this is effective, other statistical metrics need to be
used to truly evaluate the results of deep learning. 

Potential of deep learning
CT and CTA play an indispensable role in the modern management of obstructive CAD [26] and other
cardiovascular entities. Though numerous technological advances have made significant strides in the field
of CT, there is a growing concern regarding the integration of multiple parameters and settings in clinical
practice [9]. In this current era of clinical care, physicians are facing unprecedented work demands with
rigorous time constraints on a daily basis [31]. For each and every patient, cardiologists have to acquire
multiple images, processing, perform simple to complex measurements, interpret images, and finally write
reports [31]. This can lead to excessive fatigue, diminished attention span, and decreased memory leading to
multiple inconsistencies in findings [53]. Manual processes are known to cause substantial inter-observer
variability and decreased reproducibility. These trends are likely to worsen as we move forward as
technology is consistently evolving and increasing complexity of imaging data [1].

Deep learning offers limitless opportunities and opens new frontiers in the field of CT [29]. In contrast to its
ML sibling algorithms, deep learning processes information through a hierarchy of layers [5,7]. The
performance of deep learning increases exponentially with larger data sets [15]. Furthermore, deep learning
can process a number of raw images without having any prior information in various aspects [11]. The
algorithm can extract information from complex data and predict with great accuracy. Deep learning can
automate a number of basic tasks and expedite a number of clinical processes [29]. With adequate training,
deep learning can demonstrate tremendous accuracy and highly correlate with manual calculations.

It must be emphasized that deep learning will not replace any healthcare personnel but serve as an
invaluable extension to any physician [31]. Deep learning algorithms can greatly augment clinical workflows
because they can serve as an additional reader [30]. In addition, these algorithms can segment structures
and identify abnormal changes in morphology. This can greatly improve clinical interpretation and improve
the reproducibility of findings. This can reduce the workload and time required to process images. More time
can be diverted to clinical care [31]. Simultaneously, it does not mean a physician has diminished
responsibilities but must be cognizant and vigilant of the findings. Physicians need to constantly monitor
the output from these algorithms and determine the clinical relevance.

Within deep learning, there are a number of other algorithms which have tremendous potential. This
includes the general adversial network (GAN). GAN has the potential of distinguishing between fake images
and real images [54]. It has two generators that create real and fake images. It has been used in intra-venous
ultrasound and is underutilized in computed tomography. Another deep learning algorithm is the capsule
network, which has fewer training requirements than traditional CNN algorithms [11]. Their interpretive
prowess of capsule network is more akin to human perception. It is more frequently used in brain tumor and
breast cancer classification. 

For deep learning to thrive and prosper in CT or any other field of cardiovascular imaging, a form of
universal standard for data standardization may be necessary [5]. Each medical center has its own distinct
classifications, protocols, and acquisition methods [5]. If a common method or approach can be developed,
this can facilitate the growth of deep learning and other ML approaches. Since deep learning has a
requirement for large data, some form of data sharing is required among institutions. This can excessively
time-consuming and tedious process due to regulations and involvement of multiple institutional review
boards. Data needs to be publicly available to facilitate training in these complex frameworks. Lastly, for
clinical knowledge to disseminate, some form of code sharing is required between academic centers. There
can be a number of discrepancies in results which can arise from due to differences in coding structures
[4,5]. Overcoming these minor differences which affect algorithm performance can lead to greater
consistency in results which can benefit clinical care. Here is a summary of all the studies reviewed in the
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article (Table 1).

Name Of The
Study

Tool used
Year of
Study

Aim of the Study

Lessman et
al [33]

CNN framework 2016 Automated and accurate method to detect CAC1

Wolternick et
al [26]

CNN Framework 2016 Automated and accurate method to detect CAC1

Cano- Espinosa
et al [37]

CNN Framework 2018 Generate Agaston score for CAC1 burden

Liu et al [39] FCN 2017 Develop an automated method for Left Atrial Segmentation in CT2 volumes

Lopez et al [40] Deep CNN Framework 2017
Develop Automated and accurate method for aortic thrombus segmentation and
quantification

Jin et al [41]
FCN and Conditional Random
Field

2018 Develop Automated and accurate method for LAA3 segmentation in CT2 volumes

Dormer et al [42] CNN Framework 2018 Develop automated method for heart chamber segmentation

Baskaran et
al [29]

U-Net Architecture 2019
Methods for acute and efficient segmentation of cardiovascular structures in

CTTA4

De Vos et al  [43] Deep Learning Framework 2016 Identify cardiac and aortic regions in 2D images derived from CT2 slices and find
the corresponding regions on 3D

Moradi et al [44]
CNN Framework and Conditional
Random Field

2016 Assess deep learning tool in for semantic labeling of cardiac CT2 slices and
recognition of body position.

Zreik et al [46] Deep Learning Model 2018 Assess myocardium in CCTA4 and identify patients with functionally significant
coronary artery stenosis.

Motwani et al [47] Deep Learning Algorithm 2016 Predict all-cause mortality in patients who were diagnosed CAD5 via CCTA4

Commanduer et
al [48]

Deep Learning  Algorithm 2018 Evaluate epicardial adipose tissue in CT2

Gulsun et al [49] CNN Framework 2016 Method to extract coronary centerlines from CCTA4 scans

TABLE 1: Summary of Studies Reviewed in the Article
1) CAC: Coronary Artery Calcium 

2) CT: Computed Tomography

3) LAA: Left Atrial Appendage

4) CCTA: Coronary Computed Tomography Angiogram

5) CAD: Coronary Artery Disease

Conclusions
Deep learning is not “if” or “how” but an eventual inevitability in the field of CT and cardiovascular
imaging. In this dynamic era of big data and collection, pre-existing beliefs and conceptions must evolve for
deep learning to be adopted in the medical field. Discoveries need to be data-driven for patient care to
prosper. It is natural human instinct to fear change but scientific progress is based on exploring new
possibilities. Deep learning can greatly aid cardiovascular imaging by allowing rapid automation and
execution of variety of tasks. This can improve medical reasoning and help budding physicians. At the same
time, a number of legal, ethical, and social issues must be dealt with. Deep learning is building a bridge
between man and machine which will take clinical care to new heights. 
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