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Abstract
Concurrent infections in hematological malignancies (HM) are major contributors to adverse clinical
outcomes, including prolonged hospitalization and reduced life expectancy. Individuals diagnosed with HM
are particularly susceptible to infectious pathogens due to immunosuppression, which can either be
inherent to the hematological disorder or induced by specific therapeutic therapies. Over the years, the
treatment paradigm for HM has witnessed a tremendous shift from broad-spectrum treatment approaches to
more specific, targeted therapies. Even now, the therapeutic landscape of HM is constantly evolving due to
the advent of novel targeted therapies and enhanced utilization of these agents for treatment purposes. By
initiating unique molecular pathways, these agents hinder the proliferation of malignant cells, consequently
affecting innate and adaptive immunity, which increases the risk of infectious complications. Due to the
complexity of novel targeted therapies and their associated risk of infection, it often becomes a daunting
task for physicians to maintain updated knowledge in their clinical practice. The situation is further
aggravated by the fact that most of the initial clinical trials on targeted therapies provide inadequate
information to conclude the associated risk of infection. In such a scenario, a cumulative body of evidence is
paramount for guiding clinicians regarding the infectious complications that can arise following targeted
therapies. In this review, I summarize the recent knowledge on infectious complications arising in targeted
therapies for HM.
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Introduction And Background
Infections remain a substantiated concern in patients with targeted therapies for hematological
malignancies (HM) [1]. Patients with HM are inherently susceptible to infectious pathogens due to their
impaired immune response, either as a direct result of their underlying hematological condition or as a
consequence of specific therapeutic interventions aimed at targeting the malignancy [2]. Over the years, the
treatment paradigm for hematological malignancies has witnessed a tremendous shift from broad-spectrum
treatment approaches to more specific, targeted therapies that modify one or more cellular pathways [3].
Even now, targeted therapies remain at the forefront of ongoing research in hematological malignancies and
are constantly reshaping the therapeutic landscape with novel therapeutic agents [4,5]. Initially, it was
believed that the inception of these novel agents would minimize the infectious complication post-therapy.
However, several unpredictable infectious sequelae have emerged with the use of some of the targeted
therapies. Although targeted therapeutic agents demonstrate a narrow spectrum of toxicity primarily due to
their specific signaling pathways, they have the potential to cause downstream path inhibition which can
alter the immune system [6]. Consequently, prolonged immunosuppression in such patients exposes them to
opportunistic pathogens. A broad array of pathogenic agents such as fungi, protozoa, and viruses have been
identified in HM patients undergoing some targeted therapies [7,8].

Due to the constantly changing therapeutic landscape of HM and the advent of novel targeted therapies, it
has become a daunting task for clinicians to keep track of potential infectious complications that can arise
after treatment. Generally, it has been noted that most infectious disease physicians often exhibit a lack of
comprehensive understanding regarding the fundamental physiological processes or untoward effects
associated with the use of specific targeted therapies [9]. Therefore, it is critical for them to develop a deeper
understanding and maintain updated knowledge regarding the unique risks that are associated with targeted
therapies. However, most clinical studies reporting infectious complications in hematological malignancies
provide incomplete data that rarely provide a structured presentation [10]. In such a scenario, a cumulative
body of evidence is paramount for guiding clinicians regarding the infectious complications that can arise
following targeted therapies. In this review, I summarize recent innovations, from an infectious
complication perspective, regarding targeted therapies in hematological malignancies. I will cover targeted
therapies that are frequently utilized in HM treatment including different monoclonal antibodies, bispecific
T-cell engagers (BiTE), Bruton’s tyrosine kinase (BTK) inhibitors, Janus-associated kinase (JAK) inhibitors,
and the B-cell lymphoma 2 (BCL-2) inhibitor (Table 1).
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Therapeutic
intervention

Drugs Mode of action
Approved
indication

Risk of infection

CD20-targeted
therapy

Rituximab
obinutuzumab
ofatumumab

Complement-
dependent cytotoxicity,
antibody-dependent
cell-mediated
cytotoxicity   .

Non-Hodgkin's
lymphoma (NHL)
and chronic
lymphocytic
leukemia (CLL).

Rituximab treatment can result in severe infections including
upper respiratory tract infections, sinusitis, nasopharyngitis,
urinary tract infections, and bronchitis [11,12]. Viral infection with
hepatitis B, cytomegalovirus infection, and the varicella-zoster
virus has been observed in rituximab-treated patients [13].

CD38-targeted
therapy

Daratumumab

Complement-
dependent cytotoxicity,
antibody-dependent
cell-mediated
cytotoxicity  

Multiple myeloma

Neutropenia, thrombocytopenia, and anemia had been recorded
with the use of daratumumab [14]. Most infections with
daratumumab are of mild severity (grade 1 or 2) [15]. Patients
undertaking daratumumab therapy are prone to varicella-zoster
virus (VZV) infection [16].

CD52-targeted
therapy

Alemtuzumab

Complement-
dependent cytolysis
(CDC) and antibody-
dependent cellular
cytotoxicity

Chronic lymphatic
leukemia

Alemtuzumab leads to grade 3/4 neutropenia, thrombocytopenia,
non-cytomegalovirus, cytomegalovirus infections, and anemia in
chronic lymphocytic leukemia (CLL) patients [17].

CD19-targeted
therapy

Inebilizumab

Modulates B cell
receptor (BCR)-
dependent and
independent signaling
pathways.

Acute lymphocytic
leukemia

Inebilizumab-related infections included nasopharyngitis, upper
respiratory tract infection, urinary tract infections, and
hypertension [18].

Bispecific T-Cell
Engagers (BiTE)

Blinatumomab

It crosslinks CD3 on T
cells with CD19 antigen
on B cells,
consequently resulting
in the activation of T
cells and proliferation of
cytolytic proteins to
eliminate CD19-positive
B cells.

Refractory acute
lymphoid leukemia

The likelihood of serum IgG levels to normal is very bleak after
blinatumomab treatment [19].  

Kinase inhibitors
Ibrutinib,
acalabrutinib,
zanubrutinib

Inhibit Bruton tyrosine
kinase (BTK)

Mantle cell
lymphoma, chronic
lymphocytic
leukemia,
Waldenström
macroglobulinemia.

Acalabrutinib demonstrates a better safety profile which is
associated with a significantly lower relative risk of infections in
acalabrutinib-treated patients compared to non-acalabrutinib-
based therapies [16]. A similar safety profile has been depicted by
zanubrutinib [20]. Ibrutinib use is correlated with various infections
such as diarrhea, upper respiratory tract infection, pyrexia,
pneumonia, musculoskeletal pain, and atrial fibrillation.
Hematological adverse events (AE)s include thrombocytopenia
neutropenia, and anemia [21].

Phosphoinositide
3-Kinase (PI3K)
Inhibitors

Idelalisib,
duvelisib and
copanlisib

Inhibition of PI3K
pathways

chronic lymphocytic
leukemia (CLL)
and follicular
lymphoma (FL).

Following idelalisisb, almost 32.1% (36/112) of patients
experienced one or more infections. Viral infections/ reactivations
were observed in 61·5% (16/26) of patients with a major share of
cytomegalovirus (CMV) infection [22].

Janus-
Associated
Kinase (JAK)
Inhibitors

Ruxolitinib
Inhibitor of Janus-
associated kinases
(JAKs).

Polycythemia vera

Ruxolitinib treatment was associated with grade 3/4 anemia and
thrombocytopenia in 2% and 5% of participants, respectively
whereas corresponding percentages were 0% and 4% in
standard therapy [23].

BCL-2 Venetoclax

Selective inhibitors of
the anti-apoptotic
protein B-cell
lymphoma 2 (Bcl-2)

Chronic
lymphocytic
leukemia, acute
myeloid leukemia

Venetoclax use has been attributed to an increased risk of
infections, mainly due to neutropenia [24]. Severe adverse events
including sepsis, bacteremia, lung infection, and respiratory
problems have been observed within 30 days of the first
venetoclax [25].

TABLE 1: List of targeted therapies in hematological malignancies and their risk of infection
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Review
Monoclonal antibodies
Due to their higher specificity and low adverse reactions, therapeutic monoclonal antibodies have emerged
as the predominant drugs in the development phase [26]. As of 2022, eighty monoclonal antibodies have
been approved by the Food and Drug Administration (FDA) for use [27,28]. In order to facilitate the
distinction between various monoclonal antibodies, an international nomenclature has been proposed by
using specific suffix corresponding to their biological origin such as murine, chimeric, humanized, or human
antibodies [29]. Murine antibodies (suffix “-omab”) was the first to be formed from rodent sequences.
However, since then utilization of more sophisticated engineering technologies has led to more specified
antibodies such as chimeric (suffix “-ximab”) from the combination of murine Fab and human Fc regions
[30]. Humanized antibodies are denoted by the suffix “-zumab” and are primarily formed by human
sequences but have complementarity-determining regions (CDRs) of murine origin. Human antibodies
(suffix “-umab”) demonstrate lower immunogenic properties and are developed purely from human
sequences [31].

Anti-CD20 monoclonal antibodies
The inception of anti-CD20 monoclonal antibodies (mAbs) was hailed as a groundbreaking event [32,33].
Anti-CD20 mAbs depict a family of treatment therapies targeted at CD20-positive B-cell malignancies and
other orphan autoimmune diseases [34,35]. As CD20 is a B cell-specific membrane protein that is expressed
on normal and malignant B cells but not on B-cell precursor or plasma cells, anti-CD20 mAbs do not cause
immediate impairment in immunoglobulin production [36]. Repeated doses of some anti-CD20 antibodies
have been associated with hypogammaglobulinemia and the late onset of neutropenia (LON) [37]. The
underlying mechanism of immunosuppression by anti-CD20 mAbs includes long-lasting B-cell depletion,
either by apoptosis or cell-mediated cytotoxicity, which consequently results in alterations in humoral
immune response [38]. Following anti-CD20 monoclonal antibody treatment, a decrease in the B cell
population may persist for at least 6 to 9 months [9]. Further anti-CD20 antibodies impart various
downstream effects by influencing the function of B- and T-cells regarding antigen presentation and
cytokine production [39].

Rituximab

Rituximab was the first anti-CD20 monoclonal antibody that was approved for the treatment of lymphoid
malignancy [40]. It is of chimeric origin and binds to the CD20 antigen present in all peripheral B cells.
Rituximab is indicated for relapsed/refractory, follicular B-cell Non-Hodgkin’s Lymphoma (NHL), newly
diagnosed or previously treated CLL, microscopic polyangiitis (MP), rheumatoid arthritis, and systemic lupus
erythematosus (SLE) [41-46]. Late onset of neutropenia has emerged as a frequently reported consequence
of rituximab either as monotherapy or combination therapy [47]. Shimony et al. shared the findings from 330
study participants with lymphoproliferative neoplasms who were categorized into rituximab (n = 283) and
obinutuzumab (n = 47) treatment groups [48]. Late onset of neutropenia was observed in 23% of patients
who were present in the rituximab arm of the study [48]. Similar results were shared by Tesfa et al. who
investigated 169 evaluable consecutive rituximab-treated NHL patients. Fifteen patients (9%) in the
treatment group developed late-onset neutropenia (LON). They also evaluated the levels of different
cytokines (G-CSF, SDF1, BAFF, APRIL) to understand the underlying mechanism of rituximab-induced LON.
They observed transient bursts of blood granulocyte colony-stimulating factor (G-CSF) and serum B cell
activating factor from the tumor necrosis factor family (BAFF) concentrations in LON patients which can
partially explain the rituximab-induced LON as neutrophils are a major source of BAFF and their release is
initiated by G-CSF [49-51]. However, the complete mechanism of LON following rituximab therapy remains
poorly understood. In the majority of cases, neutropenia induced by rituximab therapy resolves
spontaneously [52].

Hypogammaglobulinemia is another major concern that has been reported after rituximab therapy [53]. Low
levels of immunoglobulins are a significant contributor to infectious complications as they exhibit a
prominent role in protective immunity. Tiu et al. evaluated long-term clinical outcomes following rituximab
therapy in 142 patients who had autoimmune diseases [54]. Their findings showed a median time of 22.5
months with IgG <5g/L in rituximab-treated patients [54]. Casulo et al. observed an association between
rituximab administration and an increased risk of symptomatic hypogammaglobulinemia [55]. Almost 39%
of their study participants who received multiple rituximab courses had low levels of IgG whereas 6.6%
developed recurrent sinopulmonary infections. However, their conditions improved after intravenous
immunoglobulin therapy [55]. A systemic review by Arnold et al. showed that rituximab resulted in serious
infections in 7 (2.3%) of the total 303 patients, of which 4 had fatal outcomes [56]. Cohen et al., in their
phase 3 trial, evaluated the safety and efficacy of rituximab at twenty-four weeks of assessment. They
reported that the rate of serious infection was 5.2/100 patient-year following rituximab treatment compared
to 3.7 in the placebo group. The most common infections in the rituximab group included upper respiratory
tract infections, sinusitis, nasopharyngitis, urinary tract infections, and bronchitis [11].

A review of the literature by Aksoy et al. investigated 64 cases of rituximab-related viral infections in
lymphoma patients. They found that hepatitis B was the most frequent viral infection, followed by
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cytomegalovirus infection, and varicella-zoster virus [12]. Rituximab has also demonstrated higher infection
rates in combination therapy either with chemotherapy or immunotherapy. A CLL-10 trial by Eichhorst et al.
evaluated two treatment approaches for advanced chronic lymphocytic leukemia (CLL) with fludarabine (F),
cyclophosphamide (C), and rituximab (R) (FCR) compared to bendamustine (B) and rituximab (BR). His
findings demonstrated that FCR was superior in terms of efficacy compared to BR; however, FCR was
associated with significantly higher severe infections compared to the BR group. The risk of infection was
higher in participants aged over 65 years and infections occurred late during treatment which can be
explained by LON [57]. A case report of 31-year-old women, who received combination therapy with
cyclophosphamide and rituximab for indolent lymphoma, showed depressed CD4 levels and
panhypogammaglobulinema while having recurrent sinus infections [58]. However, the symptoms improved
after monthly intravenous immunoglobulin treatments [58].

A phase 3 study evaluated the 6-year outcome in rituximab maintenance treatment for resistant follicular
NHL. Their findings showed that survival was improved to 74% in the rituximab treatment arm compared to
64% in the observation arm. However, rituximab maintenance for NHL was significantly associated with
grades 3/4 infections (9.7% v 2.4%). At the 2-year evaluation, in the observation arm, serum immunoglobulin
(Ig) G levels increased from 6.6g/L to 7.3g/L whereas, in the treatment arm, it was 6.5 g/L at the 2-year
assessment, and 6.3 g/L at the end of maintenance therapy [59]. Moulis et al. performed a large population
study including patients with immune thrombocytopenia to evaluate the risk of infections after rituximab
treatment. Their findings showed that the serious infection rate for the lower respiratory tract was 42.8%,
whereas the treatment group had almost 2.6 times more risk of developing serious bacterial and viral
infections compared to the placebo [60]. A high prevalence of hepatitis C virus (HCV) infection has been
described in B-cell non-Hodgkin's lymphoma patients. Marignani et al., in a retrospective analysis of 104
consecutive patients, found that 9 (8.6%) were HCV positive, with no reported death at 12-month follow-up
[61].

Infections with opportunistic pathogens such as Pneumocystis jiroveci post-rituximab treatment therapy have
been reported in the literature due to impaired cell-mediated immunity. A systemic review of 11 cohort
studies showed that lymphoma treated with a rituximab regimen was significantly associated with the risk of
pneumocystis pneumonia (PCP) (risk ratio: 3.65) [62]. However, the incidence of PCP was reported to be very
low by Barreto et al. in patients with B cell lymphoma who were treated with rituximab. They analyzed a
total of 689 patients after 180 days of the last treatment therapy and found a PCP incidence of 1.51% which
was even below the conventional threshold for considering the use of prophylaxis [63]. According to the
guidelines of the 5th European Conference on Infections in Leukemia (ECIL-5),
trimethoprim/sulfamethoxazole should be given 2-3 times every week for prophylaxis of PCP during at-risk
periods after rituximab therapy [64]. The management of CLL has been targeted with anti-CD20 mAbs [65].
Goede et al. compared the efficacy of obinutuzumab and rituximab in combination with chlorambucil in CLL
patients. Their findings showed that rituximab addition was associated with grade 3/4 neutropenia (34%)
and thrombocytopenia (11%) [66].

Ofatumumab

Ofatumumab is a fully humanized anti-CD20 monoclonal antibody [67]. After binding to CD20, the Fc
portion of ofatumumab induces cytolysis of B cells [68]. A phase 3 trial by Byrd et al. evaluated the safety and
efficacy of ofatumumab compared to ibrutinib in 391 patients with refractory CLL. Although the incidence of
grade 3 or 4 infections was similar in both groups, ofatumumab showed a lower number of infections
compared to ibrutinib (54% vs 70%). Common adverse reactions included rash (8% vs. 4%), pyrexia (24% vs.
15%), and blurred vision (10% vs. 3%) in ibrutinib and ofatumumab, respectively [13]. A phase 3 trial by
Davids et al. compared the safety and efficacy of ofatumumab and duvelisib in patients with
relapsed/refractory (R/R) CLL/small lymphocytic lymphoma (SLL) [69]. Their findings showed that adverse
events of grade 3/4 were more common in ofatumumab compared to duvelisib including diarrhea (47%/23%),
pyrexia (24%/4%), cutaneous reactions (23%/4%), and thrombocytopenia (10%/6%); however, neutropenia
was similar in both treatment groups (26%/23%) [69]. Desikan et al. reported that early treatment with
ofatumumab in high-risk CLL patients is well-tolerated with only adverse events being related to infusion
reactions which were amendable by antihistamine and/or steroid treatment [70].

Obinutuzumab

Obinutuzumab is a humanized monoclonal antibody that was approved in 2017 for the treatment of
untreated CLL and untreated or R/R follicular lymphoma (FL) [71,72]. Obinutuzumab leads to cytolysis of B
cells by activating complement and apoptotic pathways [73]. Marcus et al., in their randomized trial,
categorized 1202 patients equally in each group of obinutuzumab-based chemotherapy and rituximab-based
chemotherapy for follicular lymphoma [74]. At 34.5 months follow-up, a higher rate of infection (20%) was
reported in the obinutuzumab-treated group compared to 15.6% in the rituximab group [74]. In a
randomized control trial, Goede et al. compared the efficacy of obinutuzumab and rituximab, each combined
with chlorambucil in CLL patients. The overall rate of grade 3/4 infections ranged between 11 to 14% and
was indifferent between both groups; however, infusion-related adverse events and neutropenia were more
prevalent in the obinutuzumab-treated arm of the study [75].
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CD38-directed agents and risk of infection
The CD38 antigen represents a frequently expressed antigen on plasma cells which makes them an excellent
target for treatment in multiple myeloma (MM) by anti-CD38 directed agents [76]. Daratumumab, an anti-
CD38 antibody, has demonstrated efficacy in MM by inducing Fc-mediated cell lysis by cell-mediated
toxicity and complement activation [77]. Consequently, daratumumab leads to the depletion of CD38-
positive myeloid-derived suppressor cells, T-, and B-cells. Several adverse events including neutropenia,
thrombocytopenia, and anemia had been recorded with the use of daratumumab [14]. Dimopoulos et al.
recruited 569 patients with multiple myeloma to investigate the effects of daratumumab and a combination
of lenalidomide with dexamethasone. Their findings showed that the severity of daratumumab-treated
infections was mild (mostly grade 1 or 2) [14]. Similar findings were shared by Palumbo et al. in their phase 3
trial, who found that most infections were of grade 1 or 2 severity, with only 8.6% exhibiting grade 3 level
infection [15]. Patients receiving CD38-targeted agents such as daratumumab can be more prone to
varicella-zoster virus (VZV) infection [16]. A large phase 3 study was performed by Spencer et al. involving
498 patients with R/R MM [78]. In their CASTOR trial, participants were randomized to bortezomib and
prednisone or daratumumab, bortezomib, and prednisone. Their findings demonstrated that the
daratumumab arm of the study resulted in significantly prolonged neutropenia (12.8% versus 4.2%) and risk
of infectious complications (21.4% versus 19.0%) [78]. Similarly, Bahlis et al. randomized 569 patients who
were previously treated for multiple myeloma into daratumumab, dexamethasone, and lenalidomide or
dexamethasone and lenalidomide alone [79]. They reported that the daratumumab group had higher
neutropenia compared to the daratumumab-negative group (5.7% versus 2.5%) and serious pneumonia
(8.1% versus 8.5%) [79].

CD52-directed agents
Alemtuzumab, a humanized monoclonal anti-CD52 antibody that binds to cell surface CD52 glycopeptide
expressed almost on all human lymphocytes, monocytes, and macrophages, leads to the depletion of CD52-
positive B and T cells [80]. Alemtuzumab induces antibody-dependent cell-mediated cytolysis which leads to
the depletion of lymphocytes. Low circulating CD4+ lymphocyte counts persist for 1 to 2 years after
alemtuzumab administration [81,82]. Alemtuzumab is often contraindicated in patients who are infected
with human immunodeficiency virus (HIV), primarily due to depleted levels of CD4+ lymphocytes [83]. The
immunosuppression caused by alemtuzumab can lead to the reactivation of hepatitis B virus (HBV) infection
[84]. Findings of two cases of chronic lymphocytic leukemia with occult HBV infection by Lannitto et al.
reported activation of HBV after immunotherapy with alemtuzumab [85]. Alemtuzumab has also been
implicated in higher herpes infections. Cohen et al., in their phase 3 trial, assessed the comparative effects
of alemtuzumab and Interferon Beta 1a [86]. Patients who were treated with alemtuzumab had higher rates
of herpes infections compared to patients treated with Interferon Beta 1a (16% vs 2%) [86].

A phase 2 trial by Stilgenbauer et al. reported that alemtuzumab resulted in grade 3/4 neutropenia (56%),
thrombocytopenia (57%), and anemia (49%) in CLL patients. Grades 3 to 4 non-cytomegalovirus and
cytomegalovirus infections occurred in 29% and 8% of patients, respectively [17]. A smaller study by Poh et
al., with only 5 participants receiving alemtuzumab, reported no cases of CMV infections [87]. CMV
reactivation is attributed to the depletion of T cells following alemtuzumab treatment therapy [88]. A
randomized trial by O'Brien et al. evaluated the efficacy of valganciclovir against reactivation of CMV post-
alemtuzumab therapy. They showed that none of the patients from the treatment arm showed reactivation
compared to 35% in the without prophylaxis group [89]. Although rare, mycobacterium tuberculosis has
been reported in literature following alemtuzumab therapy. Kim et al. investigated the efficacy of
alemtuzumab alone or alemtuzumab-containing chemotherapy. Their finding revealed that out of 182 study
participants, 16 were positive for tuberculosis [90]. Other reported infectious complications in their trial
included CMV (36%), varicella zoster virus (13%), and fungal infection (17%) [90]. Bosch et al. reported two
cases of patients who received alemtuzumab as part of their renal transplant management and later
developed Mycobacterium tuberculosis infection [91]. A pooled analysis of 6-year data from CAMMS223,
CARE-MS I, and CARE-MS II studies, and the CAMMS03409 extension study revealed that the risk of
infection with alemtuzumab is mostly mild or moderate with only 1.0%-1.9% serious infections per year.
The findings showed that infections decrease over time due to the preservation of protective immunity with
time [92].

CD19 targeted agents
Anti-CD19 monoclonal antibodies have demonstrated efficacy against several R/R B-cell malignancies [93-
96]. The expression of CD19 is mostly restricted to the B cell population and it commences in early
developmental stages. Almost all plasma B cells in peripheral circulation and around 50% of plasma cells in
bone marrow express CD19 on their surfaces. Compared to CD20, it is expressed at an earlier stage [97].
Research has highlighted that infection can occur before and after B cell depleting therapies until there is
complete recovery of serum immunoglobulins. Inebilizumab is a humanized anti-CD19 mAb that depletes
lymphocytes derived from the B cell lineage [98]. Agius et al. evaluated the safety and tolerability of
inebilizumab, an anti-CD19 monoclonal antibody agent. Their findings showed that inebilizumab caused a
decrease in immunoglobulin levels and adverse reactions including nasopharyngitis (24%), upper respiratory
tract infection (19%), urinary tract infection (14%), urinary tract inflammation (14%), pyrexia (14%) and
increased blood pressure (14%). However, most infections were of grade 1 or 2 severity [18]. Recently, two

2024 Andreescu et al. Cureus 16(1): e52050. DOI 10.7759/cureus.52050 5 of 14

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


novel anti-CD19 monoclonal antibodies have been approved by the FDA, including tafasitamab and
loncastuximab tesirine, which have been propagated as viable options for the treatment of R/R diffuse large
B-cell lymphoma (DLBCL). However, further studies are required to evaluate infectious complications with
these therapies [99].

Bispecific T-Cell Engagers (BiTE)
Blinatumomab, a bispecific T cell engager (BiTE) antibody, was the first treatment for refractory acute
lymphoid leukemia [100]. Blinatumomab crosslinks CD3 on T cells with CD19 antigen on B cells,
consequently activating T cell production to eliminate CD19-positive B cells. As they are cytotoxic to CD19-
positive cells invariably to their cancerous nature, they are likely to cause secondary antibody deficiency
[101]. Although the number of T cells returns to base within 7 to 14 days, lower B cell levels are likely to
persist throughout treatment. Consequently, it leads to hypogammaglobinemia which continues for over a
year. Zugmaier et al. reported that the likelihood of serum IgG levels returning to normal is very bleak after
blinatumomab treatment [102]. In their phase 2 study, they demonstrated that upon follow-up for 255 to
1605 days (median, 457.5 days) among six patients treated with blinatumomab, 5 out of 6 patients did not
recover their IgG levels. Only one subject was able to obtain normalcy after 2 years. As CD19 is expressed on
plasma blasts, their targeted therapy induced more profound immune suppression. They demonstrated that
grade 3 infections were reported by two out of six of the participants [102].

A phase 3 RCT by Kantarjian et al. reported that almost 6% of participants reported depleted IgG levels
treated with blinatumomab compared to 0.9% in the chemotherapy arm of the study [103]. However, these
results were not translated to neutropenia outcomes, as blinatumomab caused lower neutropenia (38%)
compared to 58% in the chemotherapy group, whereas AEs of grade 3 or more were also less frequent (87% in
the blinatumomab group compared to 92% in chemotherapy arm of the study) [103]. Further
characterization of blinatumomab-related infections was provided by Topp et al. in their phase II clinical
trial [104]. They reported grade 3 infections in participants with a higher number of catheter-related
infections (9.5%), followed by bacterial/Escherichia sepsis (4.8%), and bronchopneumonia (4.8%) [104].
Similar observations were shared by another phase 2 trial in patients aged over 65 years with
relapsed/refractory B-precursor acute lymphoblastic leukemia (r/r ALL). They reported that grade 3 or more
AEs were reported in 86% of participants, whereas infections were seen in 39% of patients [19].

Bruton’s Tyrosine Kinase (BTK) Inhibitors
The management of hematological disorders has undergone profound changes in recent years with the rise
of novel anti-cancerous agents [105]. Several Bruton tyrosine kinase (BTK) inhibitors, including ibrutinib,
acalabrutinib, and zanubrutinib, have emerged that inhibit Bruton tyrosine kinase (BTK). Ibrutinib, a first-
in-class BTK drug, has been attributed to an increased population of activated T cells and diminished levels
of Treg/CD4+ T cell ratio while imparting its immunomodulatory effects against CLL through inhibition of
BTK and IL-2-inducible T cell kinase (ITK) [106]. However, ibrutinib use has shown several adverse reactions
like diarrhea, upper respiratory tract infection, hyperuricemia, pyrexia, pneumonia, musculoskeletal pain,
and atrial fibrillation. Severe infections of grade 3 or higher have been reported in 35% of the patients. The
most commonly cited hematological AEs include thrombocytopenia, neutropenia, and anemia [21].
Acalabrutinib is a novel BTK inhibitor that is recommended for the treatment of CLL. The efficacy of
acalabrutinib is well-established, with recent research demonstrating its better safety profile. A meta-
analysis of 3 RCTs with 1362 patients reported a significantly lower relative risk of infections in
acalabrutinib-treated patients compared to non-acalabrutinib-based therapies [107]. Another BTK inhibitor,
zanubrutinib has demonstrated a better safety profile compared to other targeted agents. Investigations by
Trotman et al. in 73 Waldenström macroglobulinemia patients concluded that long-term treatment with
single-agent zanubrutinib demonstrated a durable response with an acceptable safety profile [20]. AEs
mostly included grade 3 diarrhea, neutropenia, and atrial fibrillation [20]. A review by Tillman et al. reported
that infectious complications such as pneumonia developed in 56% of patients taking single-agent ibrutinib
and 52% of those on combination therapy [108].

Phosphoinositide 3-Kinase (PI3K) inhibitors
The activation of receptors on B cells leads to downstream signaling pathways that ensure proliferation, cell
survival, and motility. Normally these pathways include phosphatidylinositol 3-kinase (PI3K), protein kinase
B (AKT), and mammalian target of rapamycin (mTOR), and are often activated in B cell malignancies [109].
The activation of PI3K has been implicated in the recruitment of several intracellular enzymes that lead to
cancerous cell proliferation [110]. Therefore, PI3K represents an important target for anticancer therapy in
several hematological malignancies [111]. Idelalisib is an orally bioavailable, small molecule, reversible
inhibitor of PI3K- δ [112]. It was the first PI3K inhibitor that was approved for the treatment of CLL and
follicular lymphoma (FL) [113]. Other PI3K inhibitors, including duvelisib and copanlisib, were later
approved. A phase 3 trial by Furman et al. evaluated idelalisib along with rituximab in the treatment of
relapsed CLL. They reported that serious adverse events occurred in 40% of patients including pneumonia,
pyrexia, and febrile neutropenia [114].

A phase 3 trial by Zelenetz et al. compared the addition of idelalisib or placebo to bendamustine and
rituximab in patients with relapsed or refractory CLL. Their findings showed that 60% of the patients in the
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idelalisib arm developed neutropenia, whereas 23% demonstrated febrile neutropenia [115]. They also
observed a higher frequency of infections in the idelalisib-treated group compared to the placebo group
(69% versus 59%). Pneumonia of bacterial origin was reported in 14% of patients in the idelalisib arm of the
study, and CMV infection (6%), PJP (2%), and pulmonary mycoses were also observed in the treated group
[115]. Similar results were shared by Jones et al. who reported grade 3 or higher neutropenia and pneumonia
in 34% and 14% of patients, respectively, with idelalisib treatment compared to 16% and 8% in ofatumumab
monotherapy [116]. Lymphocytosis is often reported in patients who undergo PI3K inhibitors as
monotherapy [117-119]. The SEIFEM retrospective study reported infectious complications with ibrutinib
and idelalisib in lymphoproliferative disorders [22]. Almost 32.1% (36/112) of patients experienced one or
more infections. Viral infections/ reactivations were observed in 61.5% (16/26) of patients with a major
share having CMV infection [22]. PI3K inhibitors have demonstrated a variable risk of infection, with some
depicting an acceptable risk of infection and others culminating in the termination of the trial owing to
severe adverse reactions [120,121].

Janus-associated kinase (JAK) inhibitors
Janus-associated kinases (JAKs) are a family of four receptors that mediate the signaling of cytokine
receptors via the signal transducer and activator of the transcription (STAT) pathway. They are involved in
the proliferation of a variety of cells but play a crucial role in immune and hematopoietic cells [122].
Ruxolitinib, an inhibitor of JAK1 and JAK2, was approved in 2011 for the treatment of myelofibrosis. It leads
to the downregulation of T-helper cell type 1 (Th1) responses and cytokines including IL-1, IL-6, and TNFα
[123]. A phase 3 randomized trial by Vannucchi et al. investigated ruxolitinib versus standard therapy for
polycythemia vera. Their findings showed that grade 3/4 anemia and thrombocytopenia occurred in 2% and
5% of participants, respectively, whereas corresponding percentages were 0% and 4% in standard therapy.
Herpes zoster infection was much higher (6%) in the ruxolitinib-treated group compared to 0% in the
standard therapy group [23]. Similar observations were shared by Verstovsek et al. in patients with
myelofibrosis who underwent ruxolitinib treatment. They found that herpes zoster infections were more
common in the ruxolitinib-treated group compared to the untreated group; however, other infectious
complications were similar in both groups [124]. Similarly, a review and meta-analysis by Lussana et al.
reported that ruxolitinib treatment was associated with a higher risk of herpes zoster infection compared to
the control group [125].

B-Cell Lymphoma 2 (BCL-2) Inhibitors
BCL-2 inhibitors represent a class of anti-tumor agents that are selective inhibitors of the anti-apoptotic
protein B-cell lymphoma 2 (Bcl-2). Upon binding to BCL-2, they inhibit its activity, which restores apoptotic
processes in tumor cells [126,127]. Venetoclax has shown efficacy in the treatment of relapsed chronic
lymphocytic leukemia. However, its use has been attributed to an increased risk of infections, mainly due to
neutropenia. A clinical trial by Davids et al. observed a higher incidence of grade 3/4 neutropenia which
resulted in infections in almost 15% of patients [24]. The safety analysis of 350 CLL patients showed that
infection of any type was observed in 72% of patients with a major share of respiratory infections and fever
[24]. These findings were supported by DiNardo et al. who reported severe adverse events including sepsis,
bacteremia, lung infection, and respiratory problems within 30 days of the first venetoclax [25].

Other novel agents
As the therapeutic landscape of hematological malignancies is being enriched with novel targeted agents,
there are several targeted agents are still in the process of safety evaluations. Due to a lack of substantial
evidence, I have summarized them here. For example, brentuximab vedotin is a conjugated antibody
directed against CD30 which was approved in 2011 for the treatment of Hodgkin’s lymphoma, R/R anaplastic
lymphoma, and cutaneous T-cell lymphoma [128]. The major risk factor of infectious complications arises
due to the tendency of this drug to cause neutropenia [129,130]. Tudesq et al. have reported cytomegalovirus
infection after brentuximab vedotin treatment [131]. Inotuzumab ozogamicin is a CD22-directed
antineoplastic agent that is used in the treatment of B-ALL [132,133]. Kantarjian et al. reported lower rates
of neutropenia compared to standard therapy. However, veno-occlusive liver disease was observed in 11%
(15/109) who received inotuzumab ozogamicin and in 1% in standard therapy [132]. FMS-like tyrosine kinase
3 (FLT3) inhibitors are novel agents that target FLT3, a receptor tyrosine kinase that is expressed primarily in
the hematopoietic compartment [134]. Over 30-35% of patients suffering from acute myeloid leukemia are
due to mutations of FLT3‐ITD and FLT3‐TKD, consequently resulting in prolonged activation of protein that
promotes cell proliferation and survival [135]. A review by Xu et al. demonstrated that FLT3 inhibitors
improved outcomes in the induction/reinduction stage of FLT3(+) AML; however, adverse reactions
including thrombocytopenia, neutropenia, anemia, cardiac abnormalities, dyspnea, and cough [136]. The
breakpoint cluster region/Abelson leukemia virus (BCR-ABL) inhibitors have been used to treat chronic
myeloid leukemia (CML), acute lymphocytic leukemia (ALL), and other hematological malignancies.
Imatinib was the first approved drug in this class for the treatment of CML or ALL [137]. Kalmanti et al.
evaluated the 10-year safety and efficacy of imatinib in CML. Their findings showed that the eight-year
probability of grade 3/4 adverse events was 22% [138]. Isocitrate dehydrogenase (IDH) inhibitors are another
type of targeted therapies that target the genetic mutations in isocitrate dehydrogenase genes (IDH1 and
IDH2) in acute myeloid leukemia (AML), occurring in up to 30% of AML cases [139]. Most infectious
complications with these agents are mild in nature [140].
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Impact of targeted therapies on SARS-CoV-2 infections
The intersection of coronavirus disease 2019 (COVID-19) infection and targeted therapies poses complex
therapeutic dilemmas for healthcare providers as both cause significant morbidity and mortality. The
interplay between the host immune system, underlying hematological malignancy, and targeted therapies
can have significant impacts on the course of COVID-19 illness. Patients suffering from CLL have
demonstrated an augmented vulnerability towards the severe manifestation of the novel coronavirus
(COVID-19), irrespective of their disease phase or their current treatment regimen [141,142]. A joint
retrospective international multicenter study by ERIC, the European Research Initiative on CLL, and the CLL
Campus evaluated 190 patients with confirmed CLL and COVID-19 [143]. The majority of participants (79%)
presented with severe COVID-19 (need of oxygen and/or intensive care admission). The rate of
hospitalization was significantly lower in ibrutinib-treated patients (p-value < 0.05) compared to patients on
alternate regimens [143]. However, these findings were not supported by Courtre et al., who found no
improvement with the addition of ibrutinib in the routine standard of care [144].

Some studies have demonstrated impaired serologic response following COVID-19 vaccination in CLL
patients undergoing targeted therapies, particularly anti-CD20 antibody therapy [145,146]. Herishanu et al.
investigated the antibody response of the third dose of the BNT162b2 mRNA vaccine in CLL/SLL patients
who failed to achieve a humoral response after standard second dose vaccination [147]. Antibodies against
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were measured 3 weeks post-vaccination.
Their findings revealed that 23.8% of the 172 CLL patients had an antibody response. The response rate was
lower among patients who were actively treated (12.0%) compared to those who were treatment-naïve
(40.0%) and off-therapy (40.6%). Furthermore, the lowest response rate was observed in patients receiving
Bruton’s tyrosine kinase inhibitors or venetoclax with or without anti-CD20 antibody treatment (15.3% and
7.7%, respectively). Only a limited proportion of patients treated with anti-CD20 antibodies less than 12
months prior to vaccination (3.6%) demonstrated an antibody response [147]. Similarly, Parry et al.
investigated spike-specific antibody responses following COVID-19 vaccination in 299 CLL patients and
healthy subjects [145]. Their results showed that 34% of CLL patients demonstrated spike-specific antibody
responses which were significantly lower compared to 94% of healthy participants with 104-fold lower
antibody titers in the CLL group. After the second vaccine, the response rate increased to 75% in CLL
patients but was lower when compared to the control group (100%) [146].

A study by Shen et al. assessed the immune response in 181 CLL and monoclonal B-cell lymphocytosis (MBL)
patients in correlation with their seroconversion status following the administration of two doses of the
SARS-CoV-2 spike protein IgG assay [148]. The results revealed that 79.2% of CLL patients and 50% of MBL
patients failed to achieve seroconversion after the first dose, whereas 45% of CLL and 9.5% of MBL remained
seronegative following the second dose. Univariate analysis indicated a significant correlation between the
antibody level post-dose two and pre-vaccination levels of reduced IgM (p<0.0001), IgG2 (p<0.0351), and
IgG3 (p<0.0457), as well as therapy received by CLL patients within the previous 12 months (p<0.001) [145].
Blixt et al. evaluated sixty consecutive CLL patients during the first 13 months of the pandemic.
Seroconversion to anti-SARS-CoV-2 antibodies was observed in 82% of the 40 tested patients, with 17/22
and 8/11 patients testing positive for antibodies at 6 and 12 months, respectively [148]. The risk of COVID-
19 in patients undergoing targeted therapies is an intriguing topic. However, we will not have a detailed
discussion here as this is out of the scope of our review. As significant evidence has emerged in this regard, a
separate review on this aspect will be better suited.

Conclusions
The advent of novel targeted therapies has broadened the treatment horizons of hematological
malignancies. This everchanging treatment landscape has brought several challenges to practicing clinicians
that require updated knowledge to tackle a broad range of clinical manifestations arising following targeted
therapies. Patients who receive targeted therapies for hematological malignancies are prone to infectious
complications as some of these therapies have a profound impact on the immune status of the individuals.
The risk of infection can vary among individuals owing to their underlying malignancy and previous
therapeutic treatments. This highlights a need for a thorough compilation of knowledge on this subject,
collating the clinical evidence of infectious complications in several targeted agents. However, several
challenges emerge in this setting as most targeted therapies are used in combination with chemotherapy or
other immunosuppressive agents such as glucocorticoids. This further exacerbates the challenge of
identifying the attributable infection risk of one particular agent. The infectious consequences of targeted
therapies can be better managed by adopting screening of latent infection and management practices for
hematological malignancies.
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