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Abstract
The role of vitamin D in the development of autism spectrum disorder (ASD) is of intensified
interest in medical science in recent years. Vitamin D has a significant role in neurogenesis,
neuroprotection, and neurodevelopment. Due to the close association of vitamin D with the
brain, it has been found that in the pathophysiology of several neuropsychiatric disorders
vitamin D receptor (VDR) polymorphism plays a significant role. In this review article, we
looked for a relation between VDR polymorphism and ASD. We systemically reviewed all the
potential articles on the relation between VDR polymorphism and ASD. We found that several
VDR variants FokI, BsmI, and TaqI polymorphisms are related to ASD. Even paternal VDR
polymorphism can be a causative factor for ASD in the offspring. The relation between FokI (ff)
genotype polymorphism and increased level of serum 1,25(OH)D3 in ASD patients is a very
significant finding. Variation of ASD-related genotypes in different ethnic population raises a
big question on whether the environmental factors also can do changes in human genotypes
leading to ASD.
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Introduction And Background
Autism spectrum disorder (ASD) defines a broad range of conditions portrayed by compromised
social skills, repetitive behaviors, and deficits of speech and nonverbal communication. ASD
affects >1% of children in the United States [1]. It is mainly diagnosed by the clinical signs and
symptoms; in fact, the precise etiology continues to elude researchers [2]. Only 10%-35% of
ASD patients have a major known risk factor, while the remaining cases appear to be more
sporadic [3]. Since last decade, the prevalence of ASD has been increasing dramatically.
Attention is now being given to possible environmental and genetic risk factors associated with
ASD [4]. Based on the adolescent’s predominant symptom, there are different subgroups
of ASD: autism, Asperger syndrome, and pervasive developmental disorder not otherwise
specified. Individuals with ASD have difficulties in establishing relationships with others and
expressing emotions while failing to conform to social expectations. Autism patients are more
prone to psychiatric and metabolic dysfunction [5]. Further evidence even suggests autism may
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be of an inflammatory nature. Autoantibodies targeting the brain and glutathione subsets show
that ASD may be associated with high levels of oxidative stress [6-8].

Since last decade, the prevalence of ASD has been increasing dramatically. Attention is now
being given to possible environmental and genetic risk factors associated with ASD. Most
commonly identified risk factors for ASD are a male gender, gene-environment reaction,
children born in early spring, immigrant mothers, and paternal age [9-10]. Cannell, in 2008,
revealed a hypothesis that low vitamin D level in fetal life and early childhood has a strong role
in ASD [11]. Vitamin D exerts its effect not only at the cellular level, but it also affects the gene
expression by inducing changes in vitamin D response elements. Autism-specific neural
changes like overgrowth of the brain in neonatal life, retardation of brain growth in early
childhood, and neurodegenerative changes in adults happen. In gestational hypovitaminosis, it
also shows the overgrowth of the brain in the fetus which indicates a possible role of vitamin D
in the pathophysiology of autism. In fact, animal studies show that vitamin D deficiency in fetal
life has a drastic neuromodulatory effect on the offspring, causing structural and functional
changes in the brain. Furthermore, the most recent breakthrough in vitamin D functionality has
been neuroprotective-like effect exhibited during fetal development [9, 12-13].

Review
Vitamin D in human body
Vitamin D is a prohormone though classified as a vitamin. In general, food is a rare source of
vitamin D except for fish liver oil and plants like Solanum glaucophyllum. A significant source
of vitamin D is through exposure of skin to ultraviolet B (UVB) radiation. On exposure to sun, 7-
dihydroxy cholesterol of epidermis and dermis absorbs the UVB and gets converted to pre-
vitamin D3. Through heat-induced isomerization, pre-vitamin D3 changes to vitamin D3
(Figure 1). Vitamin D3 is a biologically inert substance; it needs hydroxylation in the liver and
kidney to change into its biologically active form 1,25-dihydroxy vitamin D3. Once formed,
1,25-dihydroxy vitamin D3 acts through a special nuclear receptor to conduct its biological
functions including calcium and phosphate absorption in the intestine, mobilization of calcium
in bone, and renal reabsorption of calcium. Vitamin D also plays an important role in other
noncalcemic pathways of the body [14-15]. Vitamin D receptors (VDRs) were found in the
primary target cells of enterocytes, osteoblasts, and distal renal tubular cells as well as in
parathyroid gland cells, skin keratinocytes, promyelocytes, lymphocytes, colon cells, and in
ovarian cells. Identification of VDR in these cells signifies the potential role of vitamin D
there [14].

FIGURE 1: Vitamin D synthesis in human body.
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Genomic and nongenomic pathways of vitamin D receptor
Vitamin D follows two pathways of action—genomic and nongenomic. In the genomic pathway,
Vitamin D binds with the VDR, a member of the steroid/thyroid superfamily of transcription
factors. After binding to vitamin D, fetal VDR gets phosphorylated; then gets heterodimerized
with the retinoid X receptor which binds to VDR elements (VDRE) within the genome to
influence gene transcription [16-17]. A study done on 2,200 genomic positions of VDR
confirmed that vitamin D is pleiotropic [18].

In the nongenomic pathway, vitamin D binds to the membrane-bound VDR, or a protein
disulfide isomerase associated 3(PDIA3) protein. Following the signal transduction pathway,
vitamin D causes the release of an intracellular influx of Ca2+ leading to the activation of
protein kinase which eventually changes the phosphorylation of cellular proteins [16].

The study showed that the nongenomic pathway of vitamin D action has an abundant role in
cellular proliferation and immune function [19]. In the mammalian brain including the human
brain, both VDR and 1 alpha-hydroxylase were identified. VDR is present in the brain, spinal
cord as well as in the areas which control motor function and behavior in animal models. VDR
knockout mice showed significant changes in stereotypical behaviors like increased grooming
activity which indicate the presence of VDR in the areas of the brain (hypothalamus, basal
ganglia, limbic system) related to grooming activity [20-21].

Vitamin D functions
Vitamin D is the primary hormone for calcium and phosphorus regulation. It also plays a role in
bone formation, resorption, mineralization as well as in the maintenance of neuromuscular
function. Rickets and osteomalacia are two well-known conditions caused by vitamin D
deficiency, but there are many other conditions reported related to vitamin D deficiency.
Fifteen different types of cancer, osteoporosis, orthostatic hypotension, diabetes mellitus,
hypertension, hyperlipidemia, inflammatory bowel disease, rheumatoid arthritis, multiple
sclerosis are also reported being related with vitamin D deficiency [22].

Fetal brain and vitamin D
Vitamin D metabolite 25-hydroxyvitamin D (25-OHD) was first detected in the human
cerebrospinal fluid (CSF) in 1980. A study showed that 25-OHD concentration is similar in
human plasma and CSF which proves that vitamin D can easily cross the blood-brain barrier.
Vitamin D dependent calcium binding protein (D-CaBP) increases calcium absorption in the
intestine and D-CaBP also has been reported to be present in the human brain [23]. 1-Alpha-
hydroxylase, the activating enzyme of vitamin D is found in the brain. Also, 25-hydroxylase and
24-hydroxylase (CYP24A1), which degrade the active biological form of vitamin D, are also
present in the human brain [16]. Cytochrome P450 enzyme regulating vitamin D synthesis,
CYP27B1 has also been detected in fetal and adult human brain. In the adult brain, CYP27B1 is
present in neurons, glial cells with schizophrenia, expression in substantia nigra, supraoptic,
and paraventricular nucleus of the hypothalamus. Distribution of CYP27B1 in adult brain
proves that brain can synthesize the active metabolite 1,25(OH)2D3 [17, 24].

Vitamin D has a crucial role in pregnancy due to its primary role in developing brain of the
fetus. Inadequate exposure to vitamin D causes several changes in the fetal brain which are
responsible for adverse outcomes in brain function in later life. The significant role of vitamin
D in fetal brain development has been widely accepted in the last decade and vitamin D is now
being considered as a neurosteroid. Vitamin D influences the developing brain by its several
endocrine functions via regulating extracellular calcium, inflammation-mediated cytokines,
and glucocorticoids. By regulating these crucial factors in the fetal brain, vitamin D expresses
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its significant role in neurogenesis, neurodifferentiation, and neuroprotection since the
initiation of a life [24]. A study was done on Bagg Albino (BALB/c) mice and showed that
maternal vitamin D deficiency induced neuroanatomical alterations and revised gene
expressions [25]. In fetal mice, vitamin D deficiency caused suppression of neural forkhead box
protein P2(FoxP2) and tyrosine hydroxylase (TH), especially in females. Fox P2 is an essential
gene for speech and language developments causing dyspraxia, difficulties in expressive and
receptive language, as well as this is the pathway which gets hampered in some cases of ASD.
FoxP2 knockout models showed delays in developments, altered motor function, and impaired
cerebellar morphology [26-28].

There is a robust decrease in TH level in mice brain with reduced staining of TH proteins in
substantia nigra which shows a strong relation between vitamin D deficiency and dopamine
dysfunction. Studies showed that 1,25(OH)2D3 can increase TH and VDR expression in TH
positive neurons of the substantia nigra in both human and rat fetal brain. Developmental
vitamin D deficiency can change dopamine cell phenotype expression in fetal rat
mesencephalon, dopamine-dependent locomotion, dopamine turnover, dopamine transporters,
and several enzyme levels related to metabolism [29-32].

Vitamin D deficient rat fetuses also showed changes in brain structure like the increased size of
the lateral ventricle, decreased crown-rump, and lambda- bregma length [25, 33]. There was an
increased size of the lateral ventricle with other neuroanatomical changes for schizophrenia-
like behaviors. In humans also schizophrenia is associated with increased lateral ventricular
size [33-34].

Vitamin D deficiency in the prenatal and postnatal periods is related to some neuropsychiatric
disorders in later life like schizophrenia, autism, and multiple sclerosis [16, 35].
Evidence showed that 25-OHD level <40 ng/ml in the gestational and early childhood period is
linked with autism. Supplementation of vitamin D in pregnant mothers (5000 IU/day), infants,
and children (1000 IU/day), significantly reduced the risk of incidence of autism from 20% to
5%. Association between high latitude and autism is prominent as it has been found that
children who live in low UVB light, are at three times greater risk of having autism than the
children from sunny areas. Babies born in late winter also showed increased rates of autism as
the pregnant mothers spent significant time in low sunlight settings. Primary care providers
should focus on maximizing vitamin D intake in pregnant and lactating women as well as in
infants and young children; according to the Endocrine Society, the recommended level is up to
46 ng/ml. To prevent autism, pregnant and lactating women need to take 10,000 IU/day and a
breastfeeding infant to 6 years old child should take 150 IU/lb/day to reach the 25-OHD level
above 40 ng/ml [35].

Vitamin D receptor polymorphism in ASD
To execute functions, vitamin D needs to bind with VDRs present in the human body. The VDR
receptor is present in the whole mammalian brain. The first expression of VDR happens in E12
in rat brain and on an embryonic day (E) 11.5 in mouse brain. The time of VDR expression
coincides with the window period of brain development when there is reduced cell
proliferation, and increased cell elimination occurs [35]. Studies found that VDR protein is
present in multiple areas of rat and human brains such as the pontine-midbrain thalamus,
hypothalamus, cerebellum, basal ganglia, amygdala hippocampus, olfactory system, and
cerebral cortex (temporal, parietal, cingulate) [16, 17, 35]. Each VDR gene consists of nine exons
and nine introns which can be located in the chromosome 12q13 [16, 36]. The VDR is a member
of the neurosteroid family which signifies the role of VDR as a candidate gene for ASD [36-38].
Studies showed the association of several single nucleotide polymorphisms (SNPs) of VDR
genes with ASD but the SNPs could be variable for different population [39]. Three haplotypes
of VDR is associated with ASD which are GTTT, GTCT, ATCG. The haplotypes showed
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polymorphisms in four restriction enzymes like BsmI(G>A), FokI (C>T), ApaI(T>G), and
TaqI(T>C). In ASD the more common haplotypes found was GTTT while ATCG and GTCT were
found of lower frequencies in ASD patients [37]. Animal studies done on mice with knocked out
VDR gene showed impairment of their behavior [35-37] as well as in hearing [38-39]. The most
common promoter region of VDR which is related to multiple diseases is rs15568820 and
rs4516035. But Coşkun et al. showed that autism disorder has no association with rs15568820.
Restriction fragment length polymorphism (RFLP) assay done using different enzymes showed
important polymorphisms in the VDR gene. In intron 8, there was detection of polymorphisms
by the restriction enzyme Apa-I A/a(adenine>cytosine)(rs797532) and
BsmIB/b(adenine>guanine) (rs1544410) [37, 40]. Several other polymorphisms also got detected
which also affect gene expressions such as rs 731236(Taq 1) at exon 9 and rs11568829 Caudal
type Homeobox 2(Cdx2) in the promoter region. Taq1 polymorphism can alter protein structure
and binding specificity of VDR. The Cdx 2 polymorphism affects the transcriptional activity. The
rs 2228570(Fok1) is in exon two which can alter the transcription initiation site due to
polymorphism which eventually produces two different sized proteins. The VDR polymorphism
can play a role in the development of ASD by influencing the action pathway of vitamin D [36-
40].

Identified genotypes of Fok-1(rs2228570) are FF, Ff, ff; Bsm-I (rs1544410) are BB, Bb, bb; Taq I
(rs731236) genotypes are TT, Tt, tt, and Apa-I (rs79752320 are AA, Aa, and aa). Allele t and A
were found to be predominant in ASD patients [36-38]. An association between female gender
and allele T was found supporting the study that autism is more common in a male gender as T
allele is less frequently present in a male child [36, 40-41]. There were few studies which
founded an association between VDR gene polymorphisms and serum 25(OH)D level. The
responsible alleles for ASD are interestingly associated with increased levels of serum 25(OH)D
while some studies showed that lower serum levels of 25(OH)D increase the risk of ASD [39].
Coşkun et al. showed in his study the connection between FokI TT(ff), TaqI CC(tt), BsmI
AA(BB) genotypes and ASD [37]. FokI genotype ff is related to high 25(OH)D levels in ASD and
presence of one F allele lowers the 1,25(OH)D level which indicates that FokI has an imminent
role in vitamin D metabolism and ASD [41-42]. FokI is present in the exon-2 regions of the VDR
which is a significant zone to regulate translation. The F allele of FokI polymorphism delivers
shorter VDR of 424 amino acids, while the f allele one is longer containing 427 amino acids. The
BsmI and Apa I polymorphisms located in intron 8 and TaqI are close to the 3'UTR region of the
exon-9. The UTR region controls the VDR mRNA stability and post-transcriptional process
which support the role of TaqI polymorphism in alteration of protein structure and vitamin D
binding specificity [37, 39, 42].

Paternal homozygous VDR TaqI and BsmI variants showed some relation with ASD [40, 43]. The
male reproductive tract has VDR and vitamin D metabolizing enzymes [44-45]. Animal studies
exhibited the role of VDR in sperm production and motility [46]. VDR and vitamin D
metabolizing enzymes express together in the mature neck of spermatozoa during the late
stages of spermatogenesis [45]. Reduced sperm motility is the reason behind aneuploid sperm
and sperms with chromosomal abnormalities which can negatively influence developing
embryos [44]. One of the studies mentioned that VDR role in sperm production and motility
has a more significant effect than a member of the steroid receptor superfamily in influencing
DNA translation and transcription [47]. Another study was done by O'Roak et al. in 2012, which
demonstrated that de novo mutation had a significant role in the development of ASD and de
novo point mutations in protein coding regions are mostly of paternal origin [48].

Autism spectrum disorder is also a disorder of innate immunity [6]. In ASD patients genes
related to innate immunity like natural killer (NK) and cytotoxic (CD+8) cells are increased
whereas the genes regulating neurodevelopment get reduced. Increased rate of autoimmune
disorders in the families of patients with ASD get reported. Anti-fetal brain antibodies are
detected in pregnant mothers which can be a potential cause of ASD. The anti-inflammatory
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action of vitamin D has an active role in regulating the immune function of the human body.
The increased risk of getting tuberculosis infection in patients with 1,25(OH)2D3 deficiency
supports the role of VDR and 1,25(OH)2D3 in innate immunity [40, 49].

Role of VDR polymorphism in ASD is still poorly understood. However, VDR gene
polymorphism is identified in several neuropsychiatric disorders like schizophrenia, bipolar
disorder, ADHD, neurodegenerative diseases, and neuroimmune diseases [50]. However. there
are a few data available for VDR polymorphism’s relation with ASD.

Conclusions
Understanding the pathophysiology of ASD remains a big challenge. There are many etiologies
like environmental, genetic, nutritional factors which have been reported in several studies
done till date. In this literature review, we discussed the association of VDR changes with ASD.
Despite selecting all the relevant articles, this review might lack some other related information
included in the excluded articles. Evidence compiled from animal and human studies showed
that vitamin D plays an essential role in developing fetal brain and any abnormality of vitamin
D metabolism in preconception or during pregnancy can affect the fetal neurodevelopmental
outcome. VDR polymorphism in certain vitamin D gene variants can influence vitamin D uptake
and metabolism in the human body. It needs more research to get a proper conclusion to
answer the question on how VDR changes can be a factor in ASD. Very few human studies are
available related to VDR polymorphism in ASD. More human studies with larger data sample
should be conducted in ASD prone patient population to confirm the findings in this article and
to implement clinical recommendations based on pieces of evidence to treat and prevent ASD.
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