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Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), has been widely documented as a multi-systemic illness and associated with an increased incidence
of thromboses. Likewise, sickle cell disease (SCD) is a hematologic disease responsible for widespread effects
on the vasculature and is also associated with elevated thrombotic risk. In this review, we examine the
incidence rates of venous thromboembolism (VTE) in SCD and COVID-19 independently and review the
mechanisms of coagulopathy associated with both diseases. We describe the possible associations and
commonalities between VTE mechanisms, as both diseases cause widespread inflammation that influences
each tenet of Virchow’s triad. We also discuss current anticoagulation guideline recommendations for the
prevention of VTE events in each of these diseases. We report on current literature to date describing rates
of VTE in SCD-COVID-19 patients and outline prospective areas of research to further understand the
possible synergistic influence of coagulopathy in these patients. The association between SCD and COVID-
19 remains a largely under-researched area of coagulopathy in current hematology and thrombotic
literature, and our report lays out potential future prospects in the field.
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Introduction And Background
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), is a multisystemic illness associated with systemic inflammatory response, immune hyperactivity,
sepsis, and coagulopathy. Acute respiratory distress syndrome (ARDS) has been well documented as the
leading cause of death in patients with COVID-19; however, more recent studies describe the role of venous
thromboembolism (VTE) causing pulmonary embolism (PE) having a significant impact on morbidity and
mortality [1-3]. Since the onset of the COVID-19 pandemic, there has been a rise in the literature describing
the impact of COVID-19 on the vascular system and the various mechanisms by which viral infection
increases the risk for PE and deep vein thromboses (DVTs).

Sickle cell disease (SCD) is the most common genetic disorder worldwide, affecting approximately 100,000
people in the United States [4]. It is caused by a point mutation in the beta-globin chain of hemoglobin,
resulting in inappropriate hemoglobin folding that facilitates a sickled red blood cell (RBC) morphology.
During conditions of physiological stress such as hypoxia, increased oxidative stress, hyperosmolarity, and
acidity, the conformation of RBCs becomes altered to assume a sickled shape. This conformational change
results in subsequent vaso-occlusion, hemolytic anemia, increased blood viscosity, ischemia-reperfusion
injury, and widespread inflammation [4]. SCD is associated with multisystem damage and has widespread
effects affecting all organ systems. Patients with SCD are at high risk of VTE, and many studies have
documented the mechanisms by which SCD affects coagulopathy.

Interestingly, both COVID-19 and SCD increase VTE risk and coagulopathy by affecting each of the three
parameters of Virchow’s triad. In this study, we review the mechanisms of VTE in COVID-19 and SCD
separately and describe the commonalities in coagulopathy risk between the two diseases. We also discuss
current literature describing VTE risk in SCD patients affected with COVID-19 and prospects for further
studies to continue to investigate this association.

Review
Role of COVID-19 in coagulopathy
Since the onset of the COVID-19 pandemic in 2020, many studies have described the association between
elevated VTE risk in COVID-19 patients. It is estimated that hospitalized COVID-19 patients have a 25%
higher risk of VTE incidence, while patients with severe disease have an approximately 3.77-fold increased

1 2

 
Open Access Review
Article  DOI: 10.7759/cureus.37226

How to cite this article
Saxena P, Muthu J (April 06, 2023) COVID-19 and Sickle Cell Disease: Two Independent Risk Factors for Venous Thromboembolism. Cureus
15(4): e37226. DOI 10.7759/cureus.37226

https://www.cureus.com/users/370371-parima-saxena
https://www.cureus.com/users/470179-john-muthu
javascript:void(0)
javascript:void(0)
javascript:void(0)


risk of VTE despite the use of prophylactic anticoagulation [5]. Postmortem analyses have demonstrated
that COVID-19 infection causes multiple sites of endothelial injury and vascular thromboses; with alveolar
microthrombi nine times more prevalent than in patients with influenza [6-8]. Pulmonary microthrombi are
present in up to 72% of COVID-19 patients on autopsy despite the use of prophylactic anticoagulation, with
macrothrombi in up to 34% of patients [7,8]. Collectively, these findings illustrate the severe morbidity and
mortality associated with VTE in COVID-19 patients.

COVID-19 infection mediates coagulopathy by affecting each of the three tenets of Virchow’s triad (Figure
1). Endothelial damage and endothelial activation begin when SARS-CoV-2 enters vascular endothelial cells
by binding to the angiotensin-converting enzyme 2 (ACE2) receptor, facilitating endothelial activation to
mediate a local inflammatory response. Subsequent endothelial activation results in the release of von
Willebrand factor (VWF) and expression of tissue factor (TF) to activate the clotting cascade and initiate
thrombus formation [9]. Activated endothelium also releases platelet factor 4 (PF4) to recruit platelets and
amplify coagulation [9]. A study investigating markers of endothelial injury in COVID-19 ICU patients
compared with inpatient controls demonstrated that VWF and P-selectin were significantly elevated in
severe COVID-19, suggesting endothelial damage as a driver of coagulopathy [10].

FIGURE 1: Mechanisms by which SCD and COVID-19 influence each
factor of Virchow's triad
ACE2: angiotensin-converting enzyme 2; COVID-19: coronavirus disease 2019; PF4: platelet factor 4;
SCD: sickle cell disease; TF: tissue factor; vWF: von Willebrand factor

Prior studies have described a role for ADAMTS13, a protein responsible for the cleavage of VWF multimers,
in sepsis. ADAMTS13 becomes inactivated during sepsis, resulting in incomplete VWF cleavage, thereby
increasing blood viscosity and stasis [11-13]. Multiple studies have noted a correlation between elevated
VWF aggregation (up to five-fold), reduced ADAMTS13 activity, and elevated markers of coagulation in
COVID-19 patients [10,14,15]. Through an imbalance in ADAMTS13 activity, SARS-CoV-2 mediates the
formation of ultra-large VWF to result in VWF adhesion to exposed endothelium, hypercoagulability, and
spontaneous thrombus formation [16]. Ultra-large VWF also increases blood viscosity and vascular stasis,
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thereby enhancing the likelihood of thrombus formation.

An imbalance of thrombin and antithrombin has been implicated in thrombosis. Thrombin cleaves
fibrinogen into fibrin to form clots. Antithrombin is a plasma protease inhibitor released by the liver, which
inactivates thrombin and intrinsic pathway coagulation factors. Studies have demonstrated that levels of
thrombin-antithrombin complexes are strongly elevated in COVID-19 patients [16]. Antithrombin release is
usually impaired during inflammatory states due to impaired synthesis and increased clearance. Current
literature shows decreased antithrombin levels are associated with higher mortality in COVID-19 patients
[17].

Markers of coagulation also have altered levels in COVID-19. TF, a pro-coagulant, has elevated expression
and activity in COVID-19 and is associated with disease severity and risk of mortality [18,19]. Similarly, pro-
coagulants such as fibrinogen and factor VIII are increased in COVID-19 [20]. D-dimer levels are strikingly
elevated in COVID-19 and associated with disease severity, indicating marked fibrinolysis [20]. Likewise,
there are decreased levels of anticoagulants such as antithrombin, protein C, and protein S. COVID-19 is
associated with decreased protein C and S activity, with a concurrent rise in factors V and VIII [21].

Neutrophil extracellular traps (NETs) are extracellular clusters of decondensed neutrophil DNA complexed
with histones and granule proteins, released from dying neutrophils as a mechanism of innate immune
defense [22]. NETs also facilitate fibrin polymerization, VWF adhesion, platelet binding, and erythrocyte
recruitment, all of which predispose to thrombosis. COVID-19 patients have increased NETs in plasma
samples, and elevated NET expression is related to disease severity [23]. Studies have also found that
neutrophils in COVID-19 patients yielded high TF expression and released TF-carrying NETs to facilitate
thrombosis. It was reported that treatment to control neutrophils with the plasma of COVID-19 patients
containing TF-enriched NETs induced thrombotic activity in endothelial cells [9]. Immunothrombosis is
driven in COVID-19 by NET release and interaction with activated endothelium [9].

Annexin A2, a plasminogen receptor with increased expression in inflammatory states, has also been
implicated in COVID-19 coagulopathy. Under normal circumstances, it acts to accelerate plasmin
generation up to 60-fold. SARS-CoV-2-induced antibodies block Annexin A2 to dampen fibrinolysis and
disrupt the balance between thrombosis and clot breakdown [24].

Thromboelastography (TEG) is a viscoelastic test of whole blood that measures clot formation and
dissolution in real-time. Whole blood samples from COVID-19 patients have demonstrated increased clot
mechanical strength and impaired fibrinolysis, suggesting a hypercoagulable state [25,26]. The profound clot
formation and resistance to lysis persist in whole blood samples from COVID-19 ICU survivors up to six
months post-discharge [26]. Collectively, this data suggests that thrombotic risk remains elevated for
months following COVID-19 infection.

Prophylactic anticoagulation use may be insufficient in VTE prevention in COVID-19 patients. Current data
suggests that the overall prevalence of thrombotic complications is 2.6% in acute but non-critical patients
and 35.3% in critically ill patients [20,27]. Current American Society of Hematology (ASH) guidelines revised
in 2022 for thromboprophylaxis without suspected VTE recommends prophylactic intensity anticoagulation
for critically ill patients and therapeutic dose anticoagulation for acutely but not critically ill patients
[28,29]. ASH guidelines for post-discharge, updated in 2021, recommend against post-discharge
thromboprophylaxis in COVID-19 patients [30].

Coagulopathy in sickle cell disease
SCD is a chronic inflammatory disease associated with increased lifetime VTE risk compared to the general
population. Observational studies indicate a 25% increased VTE likelihood in SCD patients, with the age of
incidence similar to high-risk thrombophilia patients (30 vs. 29 years), while the age of incidence of VTE in
the general population is much higher (65 years) [31]. Brunson et al. (2017) compared 6237 SCD patients
with age-matched asthma control patients and noted that the cumulative incidence for VTE by the age of 40
years was 17.1% in SCD patients vs. 8.0% in matched asthma controls (HR: 2.86; 95% CI: 2.42-3.37) [31].
They noted a five-year VTE recurrence risk of 36.8% in SCD patients with severe disease [31]. Similarly, a
study comparing African Americans with SCD to those without SCD noted that SCD patients have a higher
likelihood of PE (0.44% vs. 0.12%), although the risk of DVT is similar between the two groups [32].
Interestingly, SCD patients have an increased prevalence of PE in the absence of DVT, suggesting possible in
situ pulmonary thrombosis [33].

Like COVID-19, SCD impacts each aspect of Virchow’s triad to trigger coagulopathy (Figure 1), such as an
imbalance of coagulation factors, endothelial damage through oxidative and shear stress, and rheology
consistent with vascular stasis [34]. Endothelial damage ensues when heme, released during intravascular
hemolysis, activates the complement cascade and P-selectin, participating in microvascular thrombosis [34].
Furthermore, the persistent state of hemolysis supersedes the development of new RBCs and results in
premature reticulocyte release from bone marrow. Reticulocytes highly express adhesion molecules, such as
α4β1 integrin and CD36, which bind to and activate vascular endothelium [35,36]. Similarly, ischemia-
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reperfusion injury results in the production of excess free radicals to mediate oxidative stress and damage
vascular endothelium [37]. Likewise, phosphatidylserine (PS) on the surface of RBCs can injure vascular
endothelium in SCD. Under normal circumstances, PS is found on the inner lipid bilayer of RBCs; however,
in SCD with repeated cycles of sickling and unsickling, the lipid bilayer of RBCs can become rearranged to
result in PS expression on the outer bilayer. When PS is exposed on the surface of RBCs it can activate
vascular endothelium [37]. There is also an abundance of activated platelets in SCD, and the release of PF4
from the damaged vascular endothelium initiates the process of thrombosis in SCD [38].

ADAMTS13 and VWF are inappropriately regulated in SCD, similar to what is seen in COVID-19 patients. A
recent meta-analysis studying VWF levels in SCD patients noted significantly higher levels of VWF in SCD
than in control populations, with a marked increase in VWF during vaso-occlusive crises [39]. Current
theories suggest acquired ADAMTS13 deficiency in SCD [40].

Imbalances between thrombin and antithrombin have also been observed in SCD. Plasma from patients and
SCD mice have increased thrombin-antithrombin complexes [41]. Protease-activated receptor 1 (PAR1) binds
thrombin to regulate the process of thrombosis. Studies in SCD mice have found that pharmacologic PAR1
inhibition and subsequent thrombin inactivation reduced microvascular stasis [42]. PAR1 deficiency in SCD
mice reduced VWF expression in plasma and was associated with lower rates of lung microemboli,
suggesting that increased PAR1 expression in SCD is a driver of thrombosis [42]. Thrombin elevations in SCD
are counteracted by reduced antithrombin levels. A case-control study involving SCD patients compared
with healthy controls noted significantly decreased baseline thrombin levels in SCD patients who were at a
steady state, without vaso-occlusive crisis [43]. Thus, disproportionate thrombin expression is associated
with hypercoagulability in SCD.

Markers of coagulation are also altered in SCD, with a similar profile to that which is seen in COVID-19
patients (Table 1). TF is a trigger for human coagulation in vivo and mediates increased thrombin
generation, as reflected by elevated levels of thrombin-antithrombin complexes, prothrombin fragments,
and D-dimer. Studies in transgenic mice with a mild sickle cell phenotype (NY1DD mice) exposed to hypoxic
environments for three hours resulted in increased TF expression in pulmonary veins, suggesting that
ischemia-reperfusion injury in SCD has a pathophysiologic role in coagulation factor imbalance [38]. TF is
also elevated in COVID-19, suggesting that the elevation in COVID-19 patients may also be secondary to
ischemia-reperfusion injury. Like COVID-19, factor VIII levels are also elevated in SCD. A study comparing
various phenotypes in SCD patients to healthy controls found factor VIII levels significantly increased in
SCD patients, with the highest levels among HbSS patients [43,44]. Likewise, plasma fibrinogen levels are
elevated in SCD patients compared to age-matched controls, suggesting a state of chronic thrombosis [45].
Natural anticoagulants, such as proteins C and S, are decreased in SCD patients. At steady state, SCD patients
have lower protein C and S activity than healthy age-/race-matched controls [46]. Proteins C and S are
presumably decreased due to the consumption of these natural anticoagulants in a state of chronic
thrombosis [47].
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Biomarker Common findings in severe COVID-19 SCD

Platelets Normal to ↓ Normal to ↑

PT Normal to ↑ Normal

aPTT Normal Normal to ↑

D-dimer ↑↑ ↑

Fibrinogen ↑ (except in DIC) ↑

Factor VIII ↑ ↑

VWF ↑ ↑

ADAMTS13 ↓ ↓

Protein C/S activity ↓ ↓

Antithrombin ↓ ↓

Tissue factor ↑ ↑

Thromboelastography Hypercoagulable Hypercoagulable

Neutrophil extracellular traps (NETs) ↑ ↑

TABLE 1: Comparison between relative levels/activity of various coagulation parameters in
COVID-19 and SCD
aPTT: activated partial thromboplastin time; COVID-19: coronavirus disease 2019; DIC: disseminated intravascular coagulation; PT: prothrombin time;
VWF: von Willebrand Factor; SCD: sickle cell disease

NETs release is a phenomenon that may also play a significant role in thrombosis in SCD. As a chronic
inflammatory condition, neutrophils in SCD patients release more NETs. Studies using C57BL/6 SCD mice
found a higher proportion of NETs in the lungs of SCD mice [48]. A recent study found that NETosis is
increased in plasma samples of patients undergoing vaso-occlusive crisis compared with patients at steady
state [49]. Collectively, this data could implicate NET release in venous stasis and immunothrombosis.

Thromboelastography has been largely used in SCD as a measure of coagulopathy. Studies comparing whole
blood of SCD patients with age-matched ethnic controls have noted that SCD is associated with a
hypercoagulable state in all thromboelastography parameters [50]. This data suggests that the
hypercoagulable changes seen in SCD rely at least in part on the cellular components of blood.

Current ASH guidelines for SCD from 2019 recommend indefinite anticoagulation for unprovoked VTE
events and three to six months of anticoagulation for provoked DVT. There are no guidelines on the use of
prophylactic anticoagulation for VTE prevention in SCD [51].

Current updates on coagulopathy in SCD patients with COVID-19
To date, studies have demonstrated that SCD patients affected with COVID-19 usually have mild infections,
with some studies reporting favorable short-term outcomes. A recent meta-analysis by Hoogenboom et al.
(2022), which pooled data from 71 studies, found that SCD patients have a mild-moderate COVID-19 disease
course, a two-seven-fold increase in hospitalizations, and a 1.2-fold increase in the risk of death; but when
matched with controls with similar comorbidities and end-organ damage, the risks are usually equal [52].
The pre-existing state of hypoxia, oxidative stress, and chronic inflammation associated with SCD may be
associated with the milder phenotype observed in some studies [53-55].

Given the similar mechanisms of coagulopathy and enhanced VTE risk in SCD and COVID-19 patients
individually, we hypothesize that SCD patients infected with COVID-19 have higher rates of VTE than the
general population affected with COVID-19. To date, there have been few case reports and limited literature
addressing rates of VTE in SCD-COVID-19 patients [56-58].

One case series documenting postmortem analysis in three SCD patients in Ghana describes the clinical and
pathological findings in COVID-19 patients on autopsy, in which the cause of death was COVID-19
pneumonia. Attoh et al. (2022) found microemboli in the pulmonary vasculature of three SCD-COVID-19
patients despite being managed with prophylactic anticoagulation during their hospitalization [56].
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Currently, there is one large-scale study in the literature that documents rates of COVID-19 coagulopathy in
SCD patients. Singh et al. (2022) performed a multi-institute retrospective analysis to assess rates of VTE in
281 SCD patients admitted with COVID-19 and 4873 SCD patients without COVID-19. They noted that 4.6%
of SCD-COVID-19 patients experienced VTE, while 3.7% of non-COVID-19 control SCD patients
experienced VTE, with no significant difference between the two groups in VTE incidence. They also found
no differences in VTE incidence one month after discharge. However, they did note that SCD-COVID-19
patients had significantly higher VTE incidence at three and six months post-discharge, yet noted no
significant differences after adjusting for age, history of hypertension, renal disease, obesity, and prior VTE
history [57]. This study is the first of its kind to consider VTE rates in SCD patients with COVID-19 patients
compared to SCD patients without COVID-19. However, the study did not consider if patients received
prophylactic or therapeutic dose anticoagulation or assess D-dimer levels during hospitalization.

Current literature suggests that all SCD patients with COVID-19 should be given prophylactic dose
anticoagulation unless there is another factor that warrants full-dose anticoagulation [59]. The association
between SCD and COVID-19 coagulopathy remains a largely under-researched area of literature that will
require more studies to investigate if there is indeed a combined effect of the SCD hypercoagulable state
that synergistically increases VTE risk in SCD-COVID-19 patients. Further research should also consider if
VTE risk remains elevated up to six months after COVID-19 infection in SCD patients. Furthermore, future
studies involving incidence risk need to consider the use of anticoagulation use in SCD patients with
COVID-19. Future studies should involve a larger-scale analysis of SCD patients affected by COVID-19 to
asses for VTE incidence while considering the presence of confounders such as vaccination status, prior VTE,
and pregnancy. Overall, this remains an area of literature that will require further investigation to develop
guidelines for the management of SCD with COVID-19 for VTE prevention.

Conclusions
We extensively discussed the rates of VTE in SCD and COVID-19 independently and reviewed the
mechanisms of coagulopathy associated with both diseases. We described the possible associations and
commonalities between VTE mechanisms, as both diseases are causes of widespread inflammation that
influence each factor of Virchow’s triad. We also discussed current anticoagulation guideline
recommendations for the prevention of VTE events. Moreover, we assessed the current literature to date
describing rates of VTE in SCD-COVID-19 patients and outlined prospective areas of research to further
understand the possible synergistic influence of coagulopathy in these patients.
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