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Abstract
The ease of formulation and surface modification of gold nanoparticles (AuNPs) by ligands, greater
biocompatibility, non-cytotoxicity, and excellent optical properties are the characteristics that
necessitate their application in clinical and genomic research. Not only that, but the extensive synthetic
chemistry of AuNPs also offers precise control over physicochemical and optical properties owing to the
inert, biocompatible, and non-toxic nature of the inner gold core. Another important property of AuNPs
involves their incorporation into larger structures, including liposomes or polymeric materials, thereby
increasing their capability of drug delivery in concurrent therapy and imaging labels for enhanced diagnostic
applications. AuNPs are endowed with physical properties that suggest their use as adjuvants for
radiotherapy and bio-imaging and in computed tomography (CT) scans, diagnostic systems, and therapy.
Thus, these features strongly endorse the AuNPs in thrust areas of biomedical fields. The diverse properties
of gold nanoparticles (AuNPs) have made them promising candidates in biomedical fields, including in
the development of theranostics, which encompasses using these gold nanoparticles for both diagnosis
and therapy simultaneously. To appreciate these and related applications, a need arises to review the basic
principles and multifunctional attributes of AuNPs in relation to their advances in imaging, therapy, and
diagnostics.
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Introduction And Background
Nanotechnology entails the study of the molecular and submolecular structural characteristics of
nanostructures. It has been used extensively in bionanotechnology based on its electrical, optical, and
magnetic characteristics [1,2]. It refers to the development and utilization of materials that are produced at
the nanoscale, usually up to 10-1,000 nm in size. The unique properties and multiple surface functionalities
make gold nanoparticles (AuNPs) widely used in biotechnology. The multifunctionality of AuNPs makes
them a useful material to be assembled with proteins, oligonucleotides, and antibodies [3]. Besides, the
development of innovative biomaterials for the study of biological systems has also made
AuNP bioconjugates an increasingly viable alternative. Due to the resilience of AuNPs, numerous valuable
materials have been provided for a variety of biomedical applications [2,3]. Additionally, AuNPs exhibit the
property of having a high surface area, which serves as valuable platforms for therapeutic agents such as
drugs and targeting agents. The binding event between the analytes and the AuNPs in diagnostics might
impact the physicochemical features of the AuNPs, such as surface plasmon resonance (SPR), conductivity,
and redox behavior, yielding detectable signals [3]. Not only that, but gold nanoparticles also serve as a
candidate for the delivery of small drug molecules to large biomolecules such as DNA, RNA, and proteins.
Some drug molecules can be directly conjugated with gold nanoparticles via physical absorption and ionic or
covalent bonding without any alteration of the AuNP monolayer [4]. On the other hand, the delivery of large
biomolecules necessitates the functionalization of AuNPs such as PEGylation, peptide and amino acid
conjugation, or oligonucleotide functionalization [4]. In this review, we present an overview of
the various properties and clinical and diagnostic applications of AuNPs and highlight a few of their recent
applications in bionanotechnology.

Review
Properties and applications of gold nanoparticles (AuNPs)
Tunable Optical Properties

Gold nanoparticles exhibit salient characteristics as illustrated in Figure 1. The optical features of AuNPs are
determined by their size and composition. Importantly, the scattering and absorbance characteristics of
AuNPs vary with their sizes [1,2]. Studies suggested that AuNPs less than 20 nm exhibited surface plasmon
resonance (SPR) with negligible scattering characteristics [3,4]. In contrast, large AuNPs between 20 and 80
nm display increased scattering characteristics of these materials [5-7]. Many studies demonstrated the
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colloidal nature of spherical AuNPs, which appeared red with surface plasmon resonance (SPR) band
observed at 520 nm, which depends on AuNP interparticle distance, surrounding media refractive index,
shape, and size [8-10]. The large AuNPs relatively are characterized to show a high-scattering effect [11-13].
Alternatively, the greater absorption characteristics of AuNPs attract their use for colorimetric analyte
detection, which is required in biological analysis on the basis of changes in the refractive index of the
AuNP environment [11,14].

In comparison, the novel concept of making an alloy of Ag-AuNPs imparts the required optical properties for
improving the detection of biological interactions based on coupled plasma mass spectrometry (CPMS) and
localized surface plasmon resonance (LSPR) [15-17]. The sensitivity of plasmon-based bioassays improves as
a result of LSPR, which involves the detection of a single molecule for diagnostic purposes [18]. In fact,
Nishimura et al. [18] went a step further and noted that ionophores are located on the sensor in the form of
receptors that allowed the specific detection and quantitative analysis of ionic species in biological samples.
In this regard, imprinted polymers have been reported as useful for replacing antibodies for the specific and
quantitative analysis of small molecules [19]. Figure 2 depicts the various morphological shapes and
arrangements of AuNPs that exhibit considerable potential in numerous clinical applications, rendering
them a high-potential choice for various medical endeavors. The detection of biomarkers in bio-fluids is
promising in point-of-care applications due to its low invasiveness and high adaptability, while the
detection of biomarkers in tissues serves as the gold standard for precision diagnosis in pathological
examination [20]. The translation of AuNP-based optical diagnostics into clinics requires the modification of
existing methods such as enzyme-linked immunosorbent assay (ELISA). Moreover, they can find applications
in microflow-controlled chips, which can improve the ability to identify, isolate, and detect targets.

FIGURE 1: Properties of AuNPs
AuNPs: gold nanoparticles
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FIGURE 2: Different morphologies of AuNPs
AuNPs: gold nanoparticles

Surface Plasmon Resonance

This phenomenon occurs at the surface of gold (Au) after the incidence of a beam of light at a particular
angle and distance, thereby resulting in a gradual reduction in reflected light intensity. By analyzing the
refractive index of the surrounding medium on the gold (Au) surface, Englebienne et al. [20] utilized this
property to measure the SPR sensitivity, followed by measuring the molecules’ scattering and absorption on
the gold surface along their targeted specific ligands. The principal application of this property helped in
developing biosensing SPR instruments, which proved useful in determining affinity parameters for
biomolecular interactions, especially in diagnostics and therapeutic efficacy. The technology holds promise
for detecting small molecules, determining the real-time kinetics of ligand-receptor interactions, and
screening lead compound identification in developing pharmaceutical drugs [21]. Many studies surfaced one
after another, exploiting these properties while studying DNA hybridization [22,23]. Further studies on
enzyme-substrate interactions [24-26], antibody characterization [27,28], antigen-antibody interaction
[29,30], and characterization of antibody orientations [31,32] are of note. Many more studies on varied fields
such as epitope mapping [33,34], protein conformational studies [35], and label-free immunoassays [36,37]
are in extended use. The strong dependence of the SPR effect employing AuNPs finds its way quite
successful in bioassay applications, colorimetric sensors, gene therapy, photothermal therapy, and bio-
imaging [38,39]. Owing to the remarkable color change from red to purple by AuNPs that is subjected to the
change in refractive index, antibodies can easily be attached to AuNPs. Moreover, the analytes bind to the
antibodies specifically, which results in a change in color in proportion to analyte concentration [40].
Despite these advances, one of the primary limitations of SPR-based biosensors is that anything that alters
the refractive index at the sensing surface will interfere with the analysis, including non-homogenous
(complex) sample matrices and nonspecific binding interactions. Hence, research is underway to cope with
these issues [41].

Magnetic Resonance Properties

This property paved the way for better molecular imaging, which helps greatly in measuring biological
processes at the molecular and cellular levels, therapy, and biological imaging. The utility of AuNPs as
template agents provides better magnetic resonance imaging (MRI) contrast agents, owing to their high
sensitivity [39,40], and showed improved results in clinical diagnosis [41,42]. All these observations are
aimed to quantify molecular changes that are linked to the development and onset of pathological
conditions to provide input for early prognosis and diagnosis of cancer. Imaging agents with high density,
relaxivity, and ability to target the receptors specifically are required for the imaging of cellular and
subcellular structures. Researchers have earlier synthesized the core-shell structured iron-gold
nanoparticles (Fe-Au-NPs) through a reverse micelle approach, aimed to analyze their efficacy as magnetic
resonance (MR) contrast agents [43]. These AuNPs exhibited superior magnetism and high relaxivity.
Further reinforcement comes from a study by Alric et al. [44] when AuNPs were synthesized with high
relaxivity for imparting improved contrasting agents for MRI. Moreover, Au cores were encapsulated in a
multilayered gadolinium (Gd) organic shell bonded by disulfide bonds, which resulted in the enhancement of
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contrast while the strong X-ray absorption was provided by Au cores. These AuNPs were revealed to have a
dual-modal imaging ability and can freely circulate in the blood vessels without causing an undesirable
accumulation in the liver, lungs, and spleen. Also, PEG-coated iron oxide gold nanoparticles (PEG-AuIONs)
were developed to show high specificity to solid tumors by accumulating within the mass of the tumor and
nonspecifically accumulating in the liver and spleen [44,45].

These studies demonstrate the application of AuNPs as effective MRI contrast agents for the diagnosis of
malignant tumors, such as lung and pancreatic cancer. AuNPs were also coated by gadolinium chelate (Gd-
Au) as a potential bimodal contrast agent for computed tomography (CT) and MRI with increased efficiency
[46,47]. Lack of precise control on monolayer-protected cluster (MPC) stoichiometry and charge state affects
the magnetic property of AuNPs. Hence, efforts were raised earlier, which could pave the way to enable
controlled magnetism-related applications of gold MPCs, especially those based on the use of molecular
MPCs [48,49].

Fluorescence Properties

Biological tests such as fluorescence-based assays and detection techniques are very sensitive in clinical
diagnosis. It is because AuNPs, in the presence of strong light illumination, express an excellent anti-
photobleaching behavior. As a result, AuNPs, under a high excitation energy state, show strong native
fluorescence. The fluorescence of AuNPs inside the cells or on cell membranes can be collected for cell
imaging when the cells stained with AuNPs are illuminated with strong light [46]. To monitor intracellular
reactive oxygen species (ROS) in viable cells using NP surface energy transfer, Lee et al. [47] examined Au
nanoprobes immobilized with fluorescein-hyaluronic acid (HA) conjugates. Also, dopamine was used to
robustly prevent the immobilization of HA onto the AuNP surface to secure intracellular stability against
glutathione. The advantage of this system is it allows specific and rapid detection of intracellular ROS by
releasing strong fluorescence-recovery signals. These results strongly imply that the fluorescence of Au
nanoprobes can be used for antioxidant screening and intracellular ROS detection as a new class of ROS
imaging probes. In fact, AuNPs are rather useful as fluorescent markers for optical imaging and sensing in
analytical genomics and proteomics according to Coto-García et al. [48]. The method strongly emphasizes
the different strategies employing AuNPs for bio-imaging and quantitative bioanalysis. A modified
technique based on fluorescence, exactly called fluorescence resonance energy transfer (FRET), has shown
renewed promise. It is a distance-dependent spectroscopic technique by which the donor electrons’
excitation energy is transferred to the acceptor through an induced dipole-dipole interaction [49]. AuNP
based on FRET assay has monitored DNA cleavage and DNA hybridization (DDH) [50]. Even large molecules
are also useful for drug screening and protease activity in vivo, such as proteins stabilized by fluorescent
imaging probes [51]. You et al. [52] described the use of a fluorescent polymer to decipher the response
produced by proteins at nanomolar concentrations via a variety of AuNP-protein affinities. Besides, AuNPs
are used as fluorescence quenchers aimed to detect the protein cardiac troponin by its simultaneous
interaction with two distinct antibodies, one coupled to AuNPs and the other labeled with fluorescent dyes
[53].

Mirkin et al. [54] successfully used the oligonucleotide functionalized AuNPs’ distance-dependent optical
properties in colorimetry for DNA detection. Extensive investigation into these nanostructured probes’
characteristics revealed that, in DNA and RNA assays, they display rapid melting transitions when
hybridized to complementary DNA. Besides, the catalytic properties of these novel nanoparticles make them
useful as signal transducers or amplifiers [55,56]. Since these observations, nanoparticle-based DNA
conjugates are frequently used to label DNA (DNA nanoprobes), where a particular nanoparticle tag permits
the identification of target molecules [57]. Special thrust was on noble metal nanoparticles of gold, silver,
and platinum [58,59]. The AuNPs being the focus of discussion here will be discussed in detail [60]. AuNPs
with a size range of 3-100 nm are chosen for better stability and liability and can be tailored easily by
chemical modifications [61,62]. Normally charged, these nanoparticles are quite sensitive to dielectric
solution changes [63,64].

For citrate-stabilized AuNPs, the addition of NaCl shields the surface charge, resulting in a reduction in the
interparticle distance and ultimate particle aggregation [65,66]. Another variant responsible for the intense
colors of AuNPs is the SPR [67]. Hence, monodisperse AuNPs in solution appear red, suggesting a quite
narrow surface plasmon absorption band, whereas aggregated AuNPs in solution appear blue-purple,
showing a distinctive red shift in the SPR to higher wavelengths [57,67]. As a linking molecule, DNA or
protein is used to aggregate the AuNPs, allowing biodetection assays to benefit from the optical properties
of dispersed gold particles as compared with aggregated gold particles [68,69]. The sensitivity of SPR-based
biomolecule sensing methods was improved by AuNPs’ capacity to amplify changes in the SPR of a noble
metal surface film when the two were brought in proximity after binding an analyte. Additionally, detection
assay sensitivity is improved due to the potential for silver staining of DNA and protein AuNP conjugates
and the catalytic reduction of silver ions by AuNPs. Due to their electrical conductivity properties, several
chip-based tests have been developed based on electrical read-out systems. Thus, these systems have been
used for DNA sequence characterization and single-nucleotide polymorphisms (SNPs) [70].

Mechanistic studies on nanoPCR by Lou and Zhang [71] have added another dimension and diversified
studies on AuNPs. These studies highlighted the application of AuNPs in genetic analysis. The surface
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interaction of PCR components (which includes Taq polymerase, primers, and other products) with AuNPs is
proposed to control nanoPCR. Evidently, three typical AuNP effects can explain the nanoPCR mechanism. A
simple colorimetric assay and dynamic light scattering measurements directly show that (1) AuNPs adsorb
polymerase and regulate the number of active polymerases in PCR, (2) the adsorption of primers by AuNPs
reduces the melting temperatures (Tm) of duplexes created with precisely matched and mismatched
primers while increasing the Tm difference between them, and (3) AuNPs adsorb PCR products and
facilitate their dissociation during denaturation. Hence, all these findings can enhance the PCR of the
hepatitis B virus (HBV) gene and the amelogenin genes for genetic testing [54,70,71].

Accounts so far clearly show that AuNPs have a great future in diagnostics. The best-characterized example
of AuNPs functionalized with single-stranded DNA (ssDNA) is the exhibition of color change upon
aggregation [52]. It can be tailored with various ligands to yield highly selective nanoprobes for diagnosis
[52,72]. Even more, when coupled with metal deposition in electrochemical-based methods, it enhances the
signal by a notch [8,73,74]. Table 1 provides a summary of AuNP properties [8,73,75-79]. Fluorescent gold
nanoparticles were formulated recently in suspension as an efficient theranostic agent for highly
radioresistant cancer cells [80]. This suspension was stable in the cellular environment, and the attached
fluorophore allowed for a simple location of the nanoparticle. The nanoparticle behaves as expected as a
radio enhancer at orthovoltage energies. However, future work requires investigation of the
pharmacokinetics and tumor-targeted imaging power of the suspension in live animals to assess the
efficacy, sensitivity, and safety of this theranostics tool. One of the groups demonstrated the
functionalization of AuNPs with polyaminocarboxylate with near-infrared organic fluorophores (aminated
Cy-5) for investigating the utility between subcellular localization and in vivo biodistribution [81]. The
developed formulation exhibited improvement in X-ray performances, which could serve as key findings for
designing highly efficient nanotheranostic agents [75].

SPR property MRP Fluorescence properties

Application Reference Application Reference Application Reference

Imaging and phototherapy [73]
Magnetic cell
sorting

[75] Cancer screening and imaging [75]

Detection of IMA [8]
Intracellular
tracking

[76] Fluorescent imaging as DNA biosensing [79]

PTT

[75]

Drug delivery [77] Treatment of cancer [77]

PDT Gene therapy [78]
In vivo therapy of tumors under the skin and
deeply seated within tissue

[79]
Colorimetric assays in tumor
treatment and diagnosis

Kills cancer
cells

[78] Spectroscopic detection

TABLE 1: Properties of AuNPs
AuNPs: gold nanoparticles, SPR: surface plasmon resonance, MRP: magnetic resonance property, IMA: ischemia-modified albumin, PTT: photothermal
therapy, PDT: photodynamic therapy

Conclusions
Due to the abovementioned unique features, AuNPs serve as excellent candidates for molecular sensitive
detection, effective contrasting agents for molecular imaging, carriers for targeted drug or gene delivery, and
therapeutic reagents for specific photothermal therapy. The intrinsic properties of the gold core and the
ability to tailor the functionality of their surface are the main characteristic features that make their
application ideal in biological systems. However, extensive research requires optimization of the designing
of AuNPs as multifaceted vectors for targeting cancer. Further studies are required for understanding the
molecular interaction of AuNPs with their target cells (normal as well as malignant) for revealing the
mechanism of cancer detection and diagnosis. Future research should prioritize coping up with the
chemoresistance and heterogeneity of cancer cells. One such strategy to overcome tumor heterogeneity is by
tagging nanoparticles with stromal antagonists. Further investigation is warranted to reveal novel molecular
targets that are only expressed in the tumor microenvironment to aid the targeting of nanoparticle-based
therapy. Cancer stem cells or cancer-initiating cells can also serve as important candidates for drug
targeting. Although AuNPs are inherently non-toxic, it is important to discern the toxicity of the
nanoparticle core and that of its capping ligands. The change in pharmacokinetics, biodistribution, and
eventual side effects of such conjugated ligands should be eventually considered before suggesting their
clinical applicability. Finally, packaging technology needs to be optimized to overcome the obstacles of
immunogenicity and tumor penetration.
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Appendices
Abbreviations
AuNPs: gold nanoparticles, SPR: surface plasmon resonance, CPMS: coupled plasma mass spectrometry,
LSPR: localized surface plasmon resonance, FRET: fluorescence resonance energy transfer
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