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Abstract
Lung cancer screening by low-dose computed tomography (LDCT) can save lives. Nevertheless, the test
suffers from low accuracy. Improving its accuracy will reduce unnecessary invasive procedures and allow
lung cancer treatment to be delivered sooner. This review describes the principles, advantages, and
disadvantages of selected emerging modalities potentially useful to improve the accuracy of LDCT. A
literature search was conducted using PubMed and Google scholar for relevant publications. We identified
four key emerging approaches: radiomics, breath analysis, urine test, and blood test. Radiomics, which uses a
computer program to extract various radiological features from radiographic images, holds the potential to
improve the accuracy of LDCT. However, to date, there remains no adequately validated system. Breath
analysis and urine tests represent a noninvasive and convenient means of screening by detecting substances
such as volatile organic compounds associated with lung cancer. However, the results can be confounded by
diets, medications, and concurrent medical conditions. Finally, a blood test to screen for protein biomarkers
or methylation profiles such as Galleri® has high specificity. However, its sensitivity is low, especially for
detecting early-stage lung cancer. Furthermore, the cost for mass public use can be significant. Based on our
review, blood tests may have potential for future clinical utility. Its high specificity may be useful to rule in a
suspicious lung nodule as malignant, so that other additional tests can be omitted. Data from a well-
designed clinical trial will be needed to understand the clinical utility of this strategy.
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Introduction And Background
Lung cancer remains the leading cause of cancer death [1]. Early detection and prompt treatment can reduce
mortality from lung cancer [2]. In 2014, the US Preventive Services Task Force began recommending lung
cancer screening with low-dose computed tomography (LDCT) among high-risk smokers [3]. Based on
findings from the National Lung Screening Trial (NLST), the mortality risk reduction by LDCT screening was
approximately 20%. Subsequent large studies have also substantiated the findings [4]. The National
Comprehensive Cancer Network guideline currently recommends LDCT for all adults aged 50 years or older
with at least a 20-pack-year smoking history [5].

Nonetheless, there are several limitations with LDCT. One of the key issues is the high rate of false
positivity. At baseline screening, the false positive rate is approximately 20-25% [3,4]. False-positive results
can increase the utilization of unnecessary procedures or tests. At the least, it can create anxiety among
participants. False positivity stems from the fact that benign pulmonary nodules cannot be readily
distinguished visually from early-stage lung cancer [6]. Currently, the American College of Radiology uses
the Lung Imaging Reporting and Data System (Lung-RADS) to classify lung nodules based on their size and
growth rate [7]. False-positive rate decreases when the size cut-off for the definition of a suspicious nodule
is increased [8]. In addition, previous CT scan images can be useful. Patients who had previous chest CT
scans, such as those with a history of other treated malignancies, have decreased positive findings on LDCT
because the stability of nodule size or growth rate can be elucidated over time [9]. However, waiting to
observe a pulmonary nodule over time can be harmful if the nodule is, in fact, malignant. There is a need to
improve the accuracy of LDCT.

In this article, we reviewed the literature on emerging approaches to refine the accuracy of LDCT. For each
approach, we describe the principle and summarize available data relevant to lung cancer screening. We
finally discuss the future potential of these approaches.

Review
Radiomic features
Some unique radiographic features can be used to differentiate benign from malignant nodules. For
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example, spiculation or irregularity is known to be associated with malignant nodules. To utilize this feature,
one will need to be able to reliably quantify the degree of irregularity. Radiomics emerges as a potential
solution. Radiomics is the science of describing various radiological features in quantitative variables via the
help of computer programs [10].

The principle of radiomics lies in the extraction of radiomic features. Some features cannot be easily
understood and merely reflect a subtle interplay of several other features. In general, there are three types of
features. The first-order features describe the distribution of all the voxel (i.e. 3-dimensional pixel) values in
the CT images. These are histogram-based properties detailing the mean, median, maximum, and minimum
values of the voxel intensities on the images. The second-order features are textural features, which are
obtained by calculating the spatial relationship between voxels. Finally, the higher-order features are
derived by the mathematical transformation of the images. There are various methods to derive the higher-
order features contributing to the growing number of publications in this field [11].

As an example, in a study of 72 patients: 40 with lung cancer and 32 with benign lung nodules, images from
CT scans were contoured by the investigators and submitted to automated software, resulting in 750
radiomic features. Of these, the investigators found that four features can be used to differentiate lung
cancer from benign nodules with an accuracy of 84% [12]. More recent studies have integrated radiomics
features with deep learning technology. These include convolutional neural networks [13], artificial neural
networks [14], and computer-aided detection (CAD) [7]. Some investigators have reported the sensitivity for
lung cancer detection as high as 96% with CAD, compared to 68% as read by a single radiologist [7].

While the science of radiomics is progressing, there are several issues that draw criticism. For example, the
lack of clinical or biological correlates with some of the radiomics features raises the possibility that the
features may be obtained by chance and will not be useful in other datasets [15]. In fact, some radiomics
models appear highly sensitive to variations in image acquisition protocols, making it difficult to replicate.
Additionally, radiomics approaches have been developed by several investigator groups almost
simultaneously and to date, there has not been a single, well-validated, and widely adopted system.
Furthermore, many radiomics models were developed from a small set of images obtained from patients who
may not necessarily represent the same population who undergoes LDCT screening [12].

Breath analysis
The concept of volatolomics, an analysis of body fluid for volatile organic compounds (VOC) that emanate
from cancer cells or their microenvironment, has been recognized since ancient times. Physicians in the
Roman empire used their sense of smell to diagnose disease. Examples include uncontrolled diabetes
associated with an acetone odor, liver failure linked with a fish-like smell, and renal failure identified by a
urine smell [16]. In oncology, the amount of VOC released from cancer is very small. However, some
investigators have described the use of trained dogs to detect malignancies including melanoma, bladder
cancer, and lung cancer [17]. A combination of VOCs performs better than a single VOC [17]. While the type
and concentration of VOCs can vary from person to person, the close similarity between VOC profiles in
each disease gives rise to the concept of discriminative volatolomic signatures [16]. For example, one study
has reported a volatolomic signature in lung cancer to include styrene, decane, isoprene, benzene,
undecane, 1-hexene, hexanol, propyl benzene, 1,2,4-trimethyl benzene, and heptanal, methyl cyclopentane
[17].

Several methods of VOC analysis have been studied including gas chromatography-mass spectrometry, ion
mobility mass spectrometry, quartz microbalance, solid phase microextraction, colorimetry, and gold
particle nano-sensor [17]. These methods exploit the differential characteristics of VOCs to separate them.
For the detection of VOC emanating from lung cancer, the most studied analyzing method has been with a
gold nanoparticle. While promising, these techniques demonstrate variable sensitivity and specificity,
influenced by both clinical and environmental factors including age, smoking history, and the method of
sample collection [17]. Furthermore, cancer cells have been found to have variable VOC patterns, and
individual VOCs can be associated with multiple diseases. Decane, for example, is a VOC that has been
found in lung cancer as well as liver cancer [16]. Nonetheless, a combination of VOCs or VOC profiles can
improve accuracy [17]. Newer approaches include the integration of machine learning. In a small validating
study using machine learning of VOC profile obtained from a conductive polymer sensor to diagnose lung
cancer, the prediction models showed overall accuracies greater than 90% [18].

Volatolomics still faces major challenges, and several steps will need to be successfully implemented before
this technology can come to clinical arenas. First, the timing and method of breath sampling need to be
standardized [16,17]. Second, an algorithm needs to be implemented to overcome confounding variables
such as age, diet, genetics, and cigarette smoking [18]. Third, once the reliability of a VOC profile is
established, a larger validation study, both internal and external will need to be performed. Although
volatolomics is promising, this approach still requires much further development [16].

Urine test
A number of substances or biological activities associated with lung cancer can be traced from urine. For
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example, VOCs or the DNA fragment released from lung cancer can be detected [19]. Furthermore, an
abnormally upregulated protease activity associated with some lung cancers can be measured in urine. By
first administering an activity-based nano-sensor to a person, the protease activity can be recorded when
the sensor is retrieved later from the urine [20,21].

Several studies have reported the utility of urine VOC in detecting lung cancer. In a recent systematic review
and meta-analysis, the authors identified 13 studies including 1266 participants testing VOC profiles in five
different cancers [21]. The authors found a major inconsistency in the results owing to the heterogenicity of
the study design and methodology. For example, a study comparing the concentration of urinary VOCs in
patients with lung cancer versus controls demonstrated that VOC profiles are different, not only between
lung cancer and benign nodule but also among different histological subtypes of lung cancer [20]. One
unique study used trained canines to detect VOC markers in urine samples from lung cancer patients,
healthy controls, and patients with non-malignant pulmonary conditions. The results showed a sensitivity
from 45% to 73% and a specificity of 89% to 91% for lung cancer diagnosis [22]. In addition to VOC,
abnormal DNA methylation due to lung cancer can be recovered from urine. Liu et al. analyzed DNA
methylation as a means to screen for NSCLC. The results showed that independent of age, race, and smoking
pack-years, the presence of CDO1, TAC1, HOXA9, and SOX17 in urine was significantly associated with
NSCLC. When at least three genes were methylated in urine analysis, lung cancer was diagnosed with a
sensitivity of 93% and a specificity of 30% [23].

Arguably the most novel technology in urine testing is the use of nano-sensor. Protease activity is
commonly dysregulated in cancer [24]. In lung cancer, an abnormal protease activity can be detected among
adenocarcinoma with KRAS or TP53 mutation, common genetic alterations in lung cancer [25]. As such,
rather than relying on the detection of endogenous biomarkers released into the urine, nano-sensors can be
administered to amplify and detect the activity of aberrant protease and the sensors can be recovered from
urine, known as urinary reporters [19]. In a pre-clinical study, an assay was coated with protease peptide
substrates conjugated to mass-spectrometry-encoded reporters. The nanoparticles accumulate in tumors
where the tumor-associated proteases cleave the substrates, thereby releasing the reporters. The reporters
subsequently diffuse into the bloodstream and are excreted in the urine. Comparing the mouse models to
control mice, this approach was able to detect lung adenocarcinoma with 100% specificity and 81%
sensitivity. Though promising, this approach will need further clinical development [19].

Urine detection of lung cancer has its own unique strengths and weaknesses. Similar to breath volatolomics,
urine testing can be confounded by medical illnesses [20]. Nevertheless, the DNA collected in urine samples
is stable for longer compared to other bodily fluids and large sample volumes can easily be collected to
increase the sensitivity [23].

Blood test
Blood tests can be a useful approach to refine the accuracy of LDCT screening. Most of the early studies
involving blood-based biomarkers focused on detecting specific mutations associated with lung cancer via
circulating tumor DNA (ctDNA) released from lung cancer cells. More recently, studies are investigating the
use of methylation profiles in the circulating cell-free DNA (cfDNA). Although cfDNA is not necessarily
ctDNA, the methylation profile in ctDNA can be useful to predict the existence of lung cancer. Abnormal
DNA methylation may develop early in the course of tumorigenesis [23]. Methylation analysis of cfDNA is
quickly emerging as an attractive approach given its robust data output and cost efficiency [26].

In a prospective case-control study by Liu et al., a targeted methylation analysis of cf DNA obtained from
over 100,000 informative methylation regions among 6689 participants was performed to potentially detect
over 50 cancer types, including lung cancer. For overall cancer detection, the developed platform was
reported to have increased sensitivity with increasing stages of cancer [26]. The platform, known as multi-
cancer early detection (MCED) tests utilized a machine learning technology. In a validation study consisting
of 4077 participants, 2823 with cancer and 1254 without cancer, the MCED test had a sensitivity of 51.5%
and specificity of 99.5% across all cancer types [27]. When focusing on a subset of lung cancer, the sensitivity
of MCED was 74.8% for all lung cancer stages. However, its sensitivity was only 21.9% for stage I lung cancer.
Currently, the MCED test is commercially available known as Galleri® and a randomized clinical trial is
being conducted in the United Kingdom; however, the test has not been reviewed by the United States Food
and Drug Administration [27].

Protein blood-based biomarkers such as autoantibody have been proposed as a way to diagnose lung cancer
in an early stage [28]. Blood-based biomarkers are also being studied to assess their effectiveness in risk-
stratifying pulmonary nodules detected on LDCT. For example, the combination panel called 4MP, which
includes proteins pro-SFTPB, CA125, CYFRA 21-1, and CEA, showed a good predictive value for cancer.
Other biomarkers such as 4MP when used along with LDCT screening may help reduce the number of false-
positive screens [29].

Blood-based analyses do have a clear limitation in lung cancer screening; i.e. low sensitivity. It has been
estimated that to achieve high-sensitivity detection of ctDNA in stage I-II cancer patients, a large (>80 mL)
volume of blood will be needed with current methodologies [30]. In general, the heterogeneity of lung cancer
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deters the establishment of a single blood-based test to detect early-stage lung cancer [28]. However, given
the promise of targeted DNA methylation analysis, large-scale studies will be needed to further elucidate the
clinical utility as well as the economic impact of targeted methylation analysis of cfDNA.

Discussion
We have presented four distinct methodological approaches to help improve the accuracy of LDCT screening
(Table 1). Radiomics has the potential to enhance LDCT screening by defining various radiological features.
Breath analysis, by characterizing VOC profiles, is being studied for its utility as a non-invasive test that can
distinguish between lung cancer and benign nodule. Urine testing, similar to breath analysis, employs a
non-invasive test strategy to analyze VOC profiles. Urine testing is also being studied to detect abnormal
protease activity in lung cancer. Finally, blood testing has also shown promise by detecting the blood-based
biomarkers, such as protein biomarkers, ctDNA, and hypermethylation detection via cfDNA associated with
lung cancer.

Approaches Principle Key strengths Key weaknesses

Radiomic
feature

Lung cancer has morphologically unique features
which can be described using radiomic features

Utilizing images
obtained from LDCT
scan

Lack of widely accepted system to extract radiomic
features and validation studies

Breath
analysis

Lung cancer produces volatile compounds that can be
detected from exhaled breaths

Most convenient way
to obtain specimens

Breath samples can be contaminated during
collection and confounded by comorbid illnesses

Urine test
Lung cancer produces substances that can be
recovered in the urine

Convenient way to
obtain specimens

Urine samples can be confounded by diet,
medications, and comorbid illnesses

Blood test
Lung cancer releases unique protein or DNA/RNA into
the blood

High specificity Low sensitivity

TABLE 1: Summary of approaches

Although promising, these modalities do possess notable weaknesses. For radiomics, there is a lack of a
well-validated, widely accepted system to extract characteristics from lung nodules. In the breath analysis,
the process of collecting, storing, and analyzing a breath sample can be cumbersome and has not been
standardized. The main drawback of urine testing, like breath analysis, is that VOC profiles can be
confounded by diet, medications, and medical comorbidities, thereby limiting sensitivity and specificity. The
primary limitation of blood testing is the ability to detect a very small quantity of biomarkers, especially
when the cancer is in a very early stage.

A combination of these modalities has the potential to maximize benefits and minimize limitations. Blood-
based molecular biomarkers and radiomics have been employed in combination to diagnose early-stage lung
cancer with improved sensitivity and specificity [6]. Similarly, combining information from LDCT and
volatolomics can improve the accuracy of lung cancer detection [31]. Further studies will be needed to better
understand the most efficacious approach to integrating these modalities into LDCT. While our review aims
to provide emerging approaches to complement LDCT screening, it is not meant to provide an exhaustive
list. Another promising modality, for instance, is the utility of bronchial washing fluid. Transcriptional
profiling of bronchial brushings may enhance the diagnostic sensitivity of bronchoscopy alone, even for
peripheral and early-stage pulmonary lesions [32,33].

Conclusions
In summary, many emerging approaches can be useful to complement LDCT screening, including radiomics,
urine testing, breath analysis, and blood testing. With future advancements in technology and the continued
development of artificial intelligence, LDCT can be augmented by these new strategies to save even more
lives.
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