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Abstract
Anxiety disorders are among the most prevalent psychological issues worldwide, displaying the
youngest age of onset and greatest chronicity of any mood or substance abuse disorder. Given
the high social and economic cost imposed by these disorders, developing effective treatments
is of the utmost importance. Anxiety disorders manifest in a variety of symptomatic
phenotypes and are highly comorbid with other psychological diseases such as depression.
These facts have made unraveling the complex underlying neural circuity an ever-present
challenge for researchers. We offer a brief review on the neuroanatomy of anxiety disorders and
discuss several currently available therapeutic options.
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Introduction And Background
Anxiety is understood as an adaptive response, serving to maximize survival through the
avoidance of potentially harmful events [1]. In unraveling the complexities of anxiety, it is
important to distinguish anxiety from fear. Fear is a response triggered by the presence of an
imminent, real threat, whereas anxiety revolves around the anticipation of potential harm in
the future [2]. While anxiety is a necessary tool for human cognition, anxiety disorder describes
the uncontrolled, excessive persistence of anxious responses such that an individual is no
longer able to live a normal functioning life.

The lifetime prevalence of anxiety disorders is estimated to be from 11.3% to 14.7% worldwide
[3]. Epidemiologic data from the World Health Organization (WHO) estimates the lifetime
prevalence for anxiety disorders to be 25% in the United States [4]. As of 2010, anxiety disorders
were the most common mental disorder in the European Union, estimated to have an annual
cost of 74.4 billion euros [5].

The prevalence of anxiety disorders varies by culture, with rates in Euro/Anglo cultures almost
double what they are in African cultures [6]. Prevalence rates vary too by gender, with women
having a statistically greater likelihood than men of developing an anxiety disorder at some
point in their lives [3]. Finally, and perhaps most importantly, anxiety disorders display the
youngest age of onset and greatest chronicity of any mood or substance abuse disorders [4].

Given the early age of onset, chronicity, and high rate of comorbidity associated with anxiety
disorders, early interventions may prevent the development of many secondary disorders. With
the high social and economic cost imposed by anxiety disorders, the development of effective
treatments is paramount.
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We briefly review the functional neuroanatomy of anxiety and discuss the effects of several
therapeutic interventions on neural functioning (see Etkin, et al. for further reading) [7].

Review
The term ‘anxiety disorders’ describes a range of multidimensional phenotypes. Many traits are
shared across anxiety disorders. However, key differences exist in underlying cognitive
processes that remain to be untangled.

Functional imaging of anxiety disorders
The phenotypic heterogeneity of anxiety disorders is reflected in the heterogeneity of the
neuroimaging literature. To take one example, anxiety and depression are highly comorbid [8]
and their co-occurrence is known to drive unique brain activation patterns [9]. It is also known
that different types of anxiety disorders yield different activation patterns, yet how each of
these anxiety disorders subtypes vary when comorbid with depression has not been untangled.

However, we do know that common to three major types of anxiety disorders (post-traumatic
stress disorder (PTSD), social anxiety disorder (SAD), and specific phobias (e.g.,
arachnophobia)) is hyperactivation of the amygdala and insula [10].

The amygdala is one of the most consistently identified regions of hyperactivity in anxiety [11]
with its interactional behavior varying across anxiety disorder subtypes [10]. The amygdala
serves several major roles including reward learning, unpredictability processing, salience
determination in the setting of emotional and social stimuli, and broader stimulus valuation
[11-12]. It is theorized that amygdalar dysfunction may drive the inappropriate threat
perception and emotional dysregulation believed to lie at the heart of many anxiety disorders.

The clinical manifestation of anxiety is often preceded by what is known as an anxious
temperament (AT). Rhesus monkeys are a well-validated primate model of AT and 18-
fluorodeoxyglucose-positron emission tomography (FDG-PET) in young rhesus macaques has
shown that activity in the lateral division of the central nucleus (CeL) of the dorsal amygdala
and in the anterior hippocampus predicts all examined measures of AT [13].

Of interest, the fusiform gyrus appears to hold significant influence over the amygdala in the
emotional face-processing of SAD patients. The effect is most profound for viewing fearful
faces and, within this condition, activation of the fusiform gyrus was negatively correlated with
social anxiety scores and other avoidance-related behavioral assessments [14].

Inappropriately severe and prolonged anticipation of negative events is posited as a common
cognitive problem in anxiety disorders. The anticipation of negative outcomes (eg., aversive
pictures) recruits a neural network that includes the anterior cingulate cortex (ACC), insula,
amygdala, dorsolateral prefrontal cortex (dlPFC), parahippocampal gyrus, and the medial
aspects of the bilateral orbitofrontal cortex (OFC) [15-16].

The ACC, together with the insula, are increasingly understood to constitute a “fear network”
[17]. Among other functions, ACC is involved in conflict-monitoring and fear learning.
Functional magnetic resonance imaging (fMRI) investigation has shown trait-anxiety levels to
be inversely correlated with task-related rostral ACC (rACC) activation when viewing affective
faces [18]. Trait anxiety has also been correlated positively with ACC activation and negatively
with functional connectivity between the ACC and lateral PFC (lPFC) in an emotional conflict
task [19].
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The insula is thought to play a significant role in the dysfunctional anticipatory processing of
anxious individuals [20], which is unsurprising given its role in effective and interoceptive
processing [21]. Compared to anxiety-normative (AN) controls, anxiety-prone (AP) individuals
demonstrate greater bilateral insular activation during the anticipation of aversive stimuli
(pictures of snakes and spiders). This abnormal insular activation is associated with reduced
activation of the superior and medial frontal gyrus [20]. Other analyses have specified the right
anterior insula (AI) and the left dlPFC to be regions of heightened activity in the anticipation of
aversive stimuli in AP patients, with measures of anxiety correlating with greater activation of
the amygdala and AI in response to emotional faces [8].

Abnormal anticipatory processing has also been attributed to hyperactivation of the right
amygdala and the bed nucleus of the stria terminalis (BNST) [16]. In children with a generalized
anxiety disorder (GAD), hyperactivity in the right amygdala during anticipation of aversive
images was positively correlated with symptom severity [22].

The PFC is another region of interest in anxiety disorders. Among several roles, the
ventrolateral PFC (vlPFC) is known to be activated upon the presentation of emotional
distractors during a working memory task [23]. Examination of SAD patients found
hypoactivation of the vlPFC in a verbal fluency task, with a negative correlation between vlPFC
activation and social avoidance [24].

Researchers at Cambridge found that lesions of the vlPFC in the common marmoset result in
increased anxiety characteristics [25]. The same research group found that lesions to either the
vlPFC or the anterior OFC result in increased anxiety-related responses to a mock snake [26].

Among the attentional deficits that define anxiety disorders, anxious individuals show an
attentional bias (AB) towards threat, with increased vigilance toward threatening stimuli and a
decreased ability to disengage from said threats during visual search tasks [27]. Transcranial
direct current stimulation (tDCS) of the right dlPFC has been shown to induce attentional
impairments similar to those noted in emotional disorders such as anxiety, suggesting a causal
role of the dlPFC in anxiety disorders [28]. Meanwhile, anodal tDCS over the left dlPFC
significantly decreases the attentional bias for social threat associated with SAD [29].

As previously mentioned, anxiety disorder subtypes display different patterns of brain
activation. One such difference lies in PTSD patients. Etkin and colleagues showed PTSD
patients demonstrate both regional hypo- and hyperactivity, while SAD and specific phobia
patients only showed regional hyperactivity. In comparison to SAD and specific phobia
individuals, PTSD patients have significant hypoactivation in the medial PFC (mPFC), rACC and
dorsal ACC (dACC), and thalamus. SAD and specific phobia individuals showed more common
hyperactivation in the amygdala and insula [10]. However, it was only in PTSD that amygdalar
activation was positively associated with symptom severity [30]. mPFC activity [31], and more
specifically, ventromedial PFC (vmPFC) activity were also found to positively correlate with
symptom severity in PTSD [30].

Obsessive-compulsive disorder (OCD) is characterized by obsessive thought patterns and
compulsions (eg., hand-washing, tapping) that becomes debilitating to a patient’s ability to live
a normal life. Increased resting OFC and ACC activation has been observed in OCD [32] and
anxiety symptoms correlate with ACC hyperactivity [33].

A final distinction of note has been drawn between anxious apprehension (worry) and anxious
arousal (somatic anxiety). Engels, et al. describe anxious apprehension as being akin to worry or
anticipatory anxiety, with anxious arousal more resembling fear or panic [9]. This distinction
has been demonstrated via neuroimaging, with greater right frontal activity associated with
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anxious apprehension and the contralateral side with anxious arousal [34]. Specifically, anxious
apprehension is associated with greater activation in the left IFG and inferior temporal gyrus
(ITG), while anxious arousal is associated with less leftward IFG asymmetry. When presented
with negative emotion words, individuals with anxious arousal demonstrate greater right-
hemisphere temporoparietal activity [35].

Therapeutic interventions for anxiety disorders
Pharmacological therapies

Selective serotonin reuptake inhibitors (SSRI), serotonin-noradrenaline reuptake inhibitors
(SNRI), and benzodiazepines are among the most typical pharmacological treatments for
anxiety disorders. SSRIs and SNRIs work by inhibiting reuptake pumps on the membrane of
presynaptic neurons, increasing the amount of serotonin and norepinephrine in the synaptic
cleft available for post-synaptic action.

Citalopram, an SSRI, has been shown to influence neural changes in anxiety disorder patients
[36], driving the attenuation of the lateral OFC and right amygdala to aversive faces [37]. Three
weeks of escitalopram, another SSRI, decreased activation of the bilateral posterior and middle
insula and the mPFC during aversive anticipation [38]. Of interest, pre-treatment activation of
the ACC to neutral and aversive stimuli is associated with greater reductions in anxiety after
eight weeks of treatment with venlafaxine (SNRI) [39]

Pregabalin affects the brain through a mechanism that ultimately leads to, among other things,
the upregulation of GABA, an inhibitory neurotransmitter. Treatment with pregabalin has been
shown to attenuate activation of the left amygdala and anterior insula and increases in ACC
activation during the anticipation and processing of emotional images [40].

Psychological therapies

Among many therapeutic psychological programs, cognitive behavioral therapy (CBT) has been
gaining traction in response to significant outcomes associated with the treatment. In OCD
patients, CBT has been shown to induce functional changes in the activation of the putamen,
cerebellum and hippocampus [32], subgenual ACC [30], the right head of the caudate nucleus
[41], and right dACC [42]. These CBT-driven changes are all correlated with anxiety symptom
improvement.

Exposure therapy has traditionally been controversial due to discrepancies in the practitioner’s
understanding and utilization of the treatment. That aside, two weeks of exposure to spiders
has been shown to reduce hyperactivity in the amygdala, ACC, and insula of phobia-specific
anxiety patients [43].

Yet another proposed psychological therapy is mindfulness meditation. Zeidan and colleagues
trained participants in mindfulness meditation and then compared the efficacy of the treatment
to a control condition in which participants were asked to attend to their breath (ATB).
Compared to the ATB group, mindfulness meditation resulted in anxiety relief that correlated
with significantly greater activation of the ACC, vmPFC, and AI [44].

Electrical stimulation therapies

One characteristic of anxiety disorders is the AB for threat that is known to contribute to the
perseverance of the condition. As anodal tDCS over the left dlPFC has been shown to attenuate
the maintenance of the AB for threat; tDCS has presented itself as an interesting therapeutic
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avenue in anxiety disorders [29, 45]. Several reviews of the literature have found evidence for an
anxiolytic effect of repetitive transcranial magnetic stimulation (rTMS) [46-48]. The authors do
however note the limitations of many of the studies examining rTMS in the context of anxiety,
and further research is required for both these treatments.

Deep brain stimulation (DBS) of the BST has been shown to be safe and effective in treating
cases of severe, treatment-resistant OCD [49]. The efficacy of such a treatment has also been
proved in a rodent model of non-OCD anxiety, where electrical stimulation of the BST was
found to reduce the rodent’s contextual anxiety [50]. However, more work is required before
DBS may be used on a large scale for anxiety patients.

Conclusions
Owing to the heterogeneous and highly comorbid nature of anxiety disorders, a thorough
understanding of the neural underpinnings of the disease remains beyond our reach. As with
any cognitive process, the complexity of regional and network interactions at a neural level,
combined with the limitations of our current methodologies, means such an understanding is
not on the immediate horizon. However, significant progress has been made in the past two
decades towards developing a more robust picture of anxiety disorders. From this work,
promising therapies such as DBS, tDCS, and rTMS have emerged and will continue to be refined
in the coming years.
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