Investigation of Moderately-Accelerated Radiotherapy and Image Guidance on Local Control for T2N0 Glottic Cancer Treated With Partial-Laryngeal IMRT.

Kathy Rock 1, Shaohui Huang 1, Albert Tiong 2, Lin Lu 3, Wei Xu 3, Biu Chan 4, Andrew Bayley 3, Scott Bratman 2, John Cho 6, Meredith Giuliani 2, Andrew Hope 6, John Kim 6, Jolie Ringash 1, Brian O’Sullivan 8, John Waldron 9

1. Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario 2. Department of Radiation Oncology, Princess Margaret Cancer Centre, Princess Margaret Cancer Centre, Toronto, Ontario 3. Department of Biostatistics, Princess Margaret Cancer Centre, Princess Margaret Cancer Centre, Toronto, Ontario 4. Princess Margaret Cancer Centre, Toronto, Ontario 5. Radiation Oncology, Princess Margaret Cancer Centre, Toronto, ON, Toronto, CAN 6. Radiation Oncology, Princess Margaret Cancer Centre, Toronto, ON 7. Radiation Medicine Program, Princess Margaret Hospital/University Health Network 8. Radiation Oncology, Department of Radiation Medicine, Princess Margaret Hospital, University of Toronto 9. Radiation Oncology, Princess Margaret Cancer Centre, Toronto, ON, Edmonton, CAN

Corresponding author: Kathy Rock, kathy.rock@rmp.uhn.on.ca

Categories: Radiation Oncology
Keywords: head and neck cancer, imrt, glottic cancer, image guidance, local control

Abstract

Objectives

To assess the impact of evolution of radiotherapy (RT) regimens and image-guidance (IGRT) protocols on local control (LC) for T2N0 glottic cancer treated with partial-laryngeal IMRT.

Methods

All T2N0 glottic cancer treated with IMRT in 2006-2013 were reviewed. GTV was delineated based on endoscopic/radiological findings. Higher-dose CTV was (GTV +0.2-1cm); lower-dose CTV was GTV + 0.5 – 1.5 cm/whole larynx. PTV was CTV + 0.5 cm circumferentially with 0.5 - 1cm superior-inferiorly. RT regimens evolved from hypofractionated IMRT (RT-hypo, 60 Gy in 25 fractions over 5 weeks [60 Gy/25f/5w]) to moderately-accelerated IMRT (RT-acc, 66-70 Gy/33-35f/5.5-6w) since 2010. The matching surrogate for IGRT was changed from cervical bone (IGRT-bone) to laryngeal tissue (IGRT-larynx) since 2008. LC by RT-hypo vs RT-acc and IGRT-bone vs IGRT-larynx were compared. Multivariable analysis (MVA) assessed the impact of IGRT surrogate and RT regimen on local failure (LF), separately.

Results

A total of 159 patients were identified. Median follow-up was 5.03 years. Twenty eight local (IGRT-bone: 15/47, IGRT-larynx: 13/92), 6 regional, 2 distant failures were identified. Higher LC was observed for IGRT-larynx (n=92) vs IGRT-bone (n=47) (85% vs 68%, p=0.02), and RT-acc (n=71) vs RT-hypo (n=68) (89% vs 70%, p=0.008). MVA adjusted for GTV and smoking status
confirmed that IGRT-larynx vs IGRT-larynx (HR=0.40, 95% CI 1.2-5.3, p=0.02) and RT-acc vs RT-hypo (HR 0.34, 0.15-0.79, p=0.012) both reduced risk of LF.

Conclusions

This single-institutional cohort study shows a high LC (>85%) for T2N0 glottic cancer following moderately-accelerated partial laryngeal IMRT (66-70 Gy/33-35f/5.5-6w) with daily laryngeal-matching IGRT.