

Comparison of Rapid Cycle Deliberate Practice Simulation to Traditional Simulation in a Resource-Limited Setting

Samantha L. Rosman*, MD, MPH¹, Rosine Nyirasafari, MD², Hippolyte Bwiza, MD², Christian Umuhoza, MD², Elizabeth A. Camp, PhD³, Marideth C. Rus, MD, MEd³

Boston Children's Hospital, Division of Pediatric Emergency Medicine¹, University of Rwanda, Pediatrics Residency², Baylor College of Medicine, Department of Pediatrics, Section of Pediatric Emergency Medicine³

Introduction

- High-fidelity simulation-based education has shown improved resident knowledge and performance in high-resource settings^{1,2,3}
- There is little research on low-fidelity simulation to teach complex scenarios, particularly in resource-limited settings
- In traditional post-simulation debriefing, participants complete a scenario before discussing areas for improvement, leaving no time to return to the scenario to apply this new knowledge
- Rapid Cycle Deliberate Practice (RCDP) utilizes repeated rounds of a scenario with intermittent feedback allowing for immediate practice of newly obtained knowledge and skills⁴
- No studies exist comparing the use of RCDP and traditional post-scenario

Results

- Both groups showed a statistically significant improvement from pre- to postintervention performance on a simulated resuscitation of 21% (p<0.001)
- ICC for video review was 0.95 (95% CI 0.90-0.98; p<0.001)
- No statistically significant difference between groups in overall performance, or on sub-analysis comparing performance on early lifesaving skills or leadership skills

Figure 1. Comparison of Pre and Post STAT Scores Stratified by Study Group (N = 33)

Objectives

- Develop a six-month simulation-based curriculum for pediatric residents on the care of acutely ill children
- Compare the effectiveness of traditional post-simulation debriefing vs debriefing with RCDP both using low-fidelity simulation based on pre- and postintervention performance on a simulation

Methods

- Pediatric residents at the Kigali University Teaching Hospital (KUTH) were randomly assigned to traditional or RCDP group
- Basic demographic data and data regarding prior training were collected
- Residents were tested in a simulated resuscitation pre-intervention
- Residents completed all simulation sessions during the intervention period according to their assigned group (RCDP or traditional)
- Cases focused on management of shock, respiratory failure, and cardiac arrest
- A mid-fidelity mannequin was used for simulations, with feedback regarding physical exam and vital signs given verbally by the instructor
- An iPhone/ iPad app was used to enhance realism of the scenario utilizing an iPad to serve as the patient monitor

Table 2. Comparison of Pre and Post STAT Scores Stratified by Study Group (N = 33)

Groups	Pre- Evaluation Percent Mean (±SD)	Post- Evaluation Percent Mean (±SD)	Post-Pre Evaluation Percent Difference Mean (±SD)	95% Confidence Interval	P-value ^a
Overall	0.45 (0.12)	0.67 (0.12)	0.21	0.17 – 0.25	<0.001
Traditional	0.47 (0.10)	0.68 (0.11)	0.21	0.14 – 0.28	<0.001
RCDP	0.44 (0.13)	0.66 (0.13)	0.21	0.16 – 0.26	<0.001

- Following the study period, residents were retested in a similar simulated resuscitation
- Videos of the resuscitations were scored by 2 investigators, with the blinded investigator's scores used for data analysis, and the non-blinded investigator's scores used to calculate the intraclass correlation coefficient (ICC)
- A modified version of the Simulation Team Assessment Tool (STAT)⁵ was used to score videos
- Sub-analysis was performed to compare RCDP and traditional groups on early basic life-saving interventions and leadership skills

Results

Table 1. Demographic Comparisons of RDCP vs. Traditional Simulation Training (N = 33)

	Traditional	RCDP	
	N = 13 (39.4%)	N = 20 (60.6%)	P-value
	N (%) or Median (IQR)	N (%) or Median (IQR)	
Residency Level			
I	3 (23.1)	6 (30.0)	
II	4 (30.8)	4 (20.0)	0.60
	6 (46.2)	8 (40.0)	
IV	0 (0.0)	2 (10.0)	
Years Practiced	2.0 (2.0, 3.50)	2.0 (1.50, 3.0)	0.23
Medical School			
UR	12 (92.3)	16 (80.0)	0.63
Other	1 (7.7)	4 (20.0)	
Taken BLS			
Νο	2 (15.4)	8 (40.0)	0.25
Yes	11 (84.6)	12 (60.0)	
Taken PALS			
Νο	7 (53.8)	8 (40.0)	0.44
Yes	6 (46.2)	12 (60.0)	
Taken ETAT			
Νο	3 (23.1)	2 (10.0)	0.36
Yes	10 (76.9)	18 (90.0)	0.00
ETAT Instructor			
Νο	11 (84.6)	19 (95.0)	0.55 ^a
Yes	2 (15.4)	1 (5.0)	
PED Months			
0	6 (46.2)	8 (40.0)	0 63
1	5 (38.5)	6 (30.0)	0.00
2	2 (15.4)	6 (30.0)	
Number of Resuscitations			
0-10	6 (46.2)	13 (68.4)	0.21
≥11	7 (53.8)	6 (31.6)	

^a P-value was calculated using the Paired t-Test.

Table 3. Differences in Paired STAT Test Scores and Study Group (N = 33)

Traditional Group Percent Mean (±SD)	RCDP Percent Mean (±SD)	Mean Percent Difference	95% CI	P-value ^a
0.21 (0.11)	0.21 (0.11)	-0.003	-0.08 – 0.08	0.94

^a P-value was calculated using the Independent t-Test.

Limitations

- Small sample size may have limited our ability to detect differences on subanalysis
- No data on how performance on our simulated scenarios translates into performance in actual resuscitations.

Conclusions

- Completion of a six month simulation-based curriculum for pediatric residents in Rwanda led to a statistically significant improvement in performance in a simulated resuscitation
- Residents randomized to receive instruction utilizing RCDP vs traditional debriefing demonstrated similar improvement

 RCDP and traditional simulation-based instruction may both be valuable tools to improve resuscitation skills in pediatric residents

References

- 1. Lee MO BL, Bender J, et al. A medical simulation-based educational intervention for emergency medicine residents in neonatal resuscitation. Academic Emergency Medicine;19:577-85.
- Sudikoff SN, Overly FL, Shapiro MJ. High-fidelity medical simulation as a technique to improve pediatric residents' emergency airway management and teamwork: a pilot study. Pediatric emergency care 2009;25:651-6.
- 3. Ross JC, Trainor JL, Eppich WJ, Adler MD. Impact of simulation training on time to initiation of cardiopulmonary resuscitation for first-year pediatrics residents. Journal of graduate medical education 2013;5:613-9.
- 4. Hunt EA, Duval-Arnould JM, Nelson-McMillan KL, et al. Pediatric resident resuscitation skills improve after "Rapid Cycle Deliberate Practice" training. Resuscitation 2014;85:945-51.
- Reid J, Stone K, Brown J, et al. The Simulation Team Assessment Tool (STAT): development, reliability and validation. Resuscitation 2012;83:879-86.

9th International Pediatric Simulation Symposium and Workshops 2017

1-3 June, Boston, MA, USA