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Abstract
Objective
We aimed to find new methods to detect and quantify hemolysis and icterus which may cause
assay biases. These methods need to determine each of these interferents in the presence of
various other interferents. They also need to have less stringent requirements in development
and implementation than those conventional analyzers currently must satisfy.

Design and methods
We developed two spectral analysis methods that obtain absorption signals of interest by
background subtraction or by calculating the spectral curvatures near the peaks of interest. We
optimized and tested the performance of these methods using a plasma sample set with
permutations of the levels of hemolysis, icterus, and lipemia (using 510 samples in total).

Results
The processed signals correlated well with concentrations of hemoglobin and bilirubin,
indicators of hemolysis and icterus, respectively. Through iterations of randomly splitting the
samples for calibration and testing, the two new methods performed as well as those used on
conventional analyzers. We demonstrated that the two methods can lessen the application
requirements of 1) prior knowledge of the absorption spectra of individual interferents, 2)
calibration over a wide concentration range for each interferent, and 3) the need for full-range
spectrophotometers spanning most of the ultraviolet/visible spectrum. We also proposed a
hardware setup to detect and quantify hemolysis or icterus with a camera and two optical
filters.

Conclusions
This work indicates that new methods of spectral analysis can reduce practical constraints in
the development of interference screening systems. These methods could also benefit other
assays that rely on reading spectral signals.

Categories: Quality Improvement, Healthcare Technology

1 1 1 1 2 1

2

 
Open Access Original
Article  DOI: 10.7759/cureus.1965

How to cite this article
Huynh T, Lai M J, Liu Y L, et al. (December 19, 2017) Spectral Analysis Methods Based on Background
Subtraction and Curvature Calculation Used in the Detection or Quantification of Hemolysis and Icterus in
Blood-derived Clinical Samples. Cureus 9(12): e1965. DOI 10.7759/cureus.1965

https://www.cureus.com/users/53144-toan-huynh
https://www.cureus.com/users/53145-michael-j-lai
https://www.cureus.com/users/53142-yang-l-liu
https://www.cureus.com/users/53148-linda-ly
https://www.cureus.com/users/53147-xinwei-gong
https://www.cureus.com/users/53146-kathryn-r-rommel
https://www.cureus.com/users/53108-daniel-l-young


Keywords: point-of-care, sample integrity, chemistry, spectroscopy, interfering substances

Introduction
It is necessary to quantify and detect hemolysis, icterus, and lipemia (common interferents) in
plasma and serum clinical samples [1], as they can introduce assay biases, especially in clinical
chemistry [2]. The detection and quantification of each of these interferents alone are
straightforward but become complicated when multiple interferents are concurrently present.
Traditional methods utilize absorbance values at multiple wavelengths to account for
potentially interfering signals from other interferents. They require calibrations that span
possible concentration ranges of these interferents and instruments that can measure
absorbance values across the ultraviolet/visible wavelength range [1]. This paper describes two
new methods to quantify and detect hemolysis and icterus (two of the three interferents) that
have fewer requirements in development and implementation.

These two new methods involve calculating either the background-subtracted signals or
curvatures from spectral data. The advantages of these new methods are three-fold: 1) the
elimination of the need to know beforehand how other interferents affect the detection and
quantification of the interferent being investigated, 2) fewer samples required for calibration,
and 3) fewer constraints on hardware design (thanks to the narrower ranges of required
wavelengths).

Hemolysis, icterus, and lipemia are indicated by different features in the absorption spectra
that may interfere with one another [1]. Hemolysis is caused by the lysis of blood cells before
the cell/supernatant separation to obtain plasma or serum, and hemolysis is quantified by the
concentration of hemoglobin, which absorbs at 340 mm to 440 nm and 540 nm to 580 nm
(Figure 1A). Icterus is the interference caused by bilirubin, which absorbs light with a broad
peak around 460 nm that strongly interferes with the major hemoglobin peak at 415 nm (Figure
1B). Lipemia is the interference caused by lipid particles, which scatter light and lead to an
apparent absorption across a wide range of the ultraviolet/visible spectrum (400 nm to 800+
nm). Due to their proximity, the hemoglobin and bilirubin peaks partially overlap with each
other, and the apparent absorption by triglycerides affects the whole spectrum (Figures 1-2).
Many commercial clinical analyzers utilize absorbance values at wavelengths from 340 nm to
800 nm and complicated calibration procedures to account for this issue [1, 3].
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FIGURE 1: Complications of the quantification and detection of
hemolysis in the presence of icterus and lipemia (A) and of
icterus in the presence of hemolysis and lipemia (B).
The levels of hemolysis, icterus, and lipemia are quantified by the concentrations of hemoglobin
(hemo), bilirubin (bili), and triglycerides (trig), respectively. A) Spectra of samples with different
hemo (0, 30, 50, 70, 180, 370, 760 and 1190 mg/dL) at low/high permutations of bili (0.18/39.65
mg/dL) and trig (76/984 mg/dL). B) Spectra of samples with different bili (0.18, 2.76, 4.77, 9.62,
14.63, 19.20, and 29.63 mg/dL) at low/high permutations of hemo (0/1190 mg/dL) and trig (76/984
mg/dL).

2017 Huynh et al. Cureus 9(12): e1965. DOI 10.7759/cureus.1965 3 of 27

https://assets.cureus.com/uploads/figure/file/24592/lightbox_642518d0e4f611e799ee4d6cc3e46c7c-2a_BGSub_Raw.png


FIGURE 2: Spectra of samples with none or one interferent.
Samples of hemoglobin (hemo) = 1190 mg/dL, bilirubin (bili) = 39.65 mg/dL, triglycerides (trig) =
984 mg/dL, and no interference are labeled as 700, 070, 007, and 000, respectively (Table 1).

The two new methods described herein (Figure 3A) are intended to eliminate interfering signals
and obtain clean spectral signals that enable the quantification of one interferent (hemolysis or
icterus) in the presence of various amounts of others. While they are both based on the
geometry of the spectra, the details are different.
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FIGURE 3: Explanation of the methods of background
subtraction (A, B) and curvature calculation (C).
A) Plots of possible kernels used for the convolution to calculate the background spectra, which are
probability density functions of uniform distributions and Gaussian distributions. The kernel size of a
certain distribution function is defined as its standard deviation multiplied by , which is the
range of the distribution if it is uniform. An optimization step may be used to choose an appropriate
method specified by the kernel and the wavelength used to obtain the final values. B) Plots showing
example "raw," "background," and "raw-background" spectra of a sample. The background
spectrum was calculated with a uniform kernel of size 14 (14 points * 5 nm/points = 70 nm). C)
Plots illustrating curvature calculation. At a certain wavelength (at or near a peak), a certain number
of points are used for fitting a circle going through them by minimizing a cost function (Eq. 1). The
resulting curvature is the inverse of the radius of such circle. To display the circles with clarity, the
wavelength and the absorbance were normalized in these plots, while the actual calculations were
done with the original values. An optimization step may be done to choose a curvature calculation
method specified by a certain wavelength and number of points used for fitting.

The first method takes inspiration from background subtraction techniques used in image
processing [4] and is more general than those previously employed [5-13]. The processed signal
is called the background-subtracted signal. It is obtained by convoluting the raw signal with a
blurring kernel to calculate the background (Figure 3A), and subsequently, subtracting the
background from the raw signal (Figure 3B).

The second method is derived from the empirical observation that the shapes of the peaks
generally do not depend on the background. In this case, we took the processed signal as the
spectral curvature near or at the peak of interest, which is the inverse of the radius of the circle
fitted through spectral points (Figure 3C). Derivatives, which also provide shape information,
have previously been employed to detect and measure hemolysis and icterus [5, 14-19]. Herein,
the curvature, which can be calculated using the first and second derivatives, provides a direct
description of the shape of the curve near or at a particular peak.

The methods were evaluated with 510 samples containing permutations of levels of hemolysis,
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icterus, and lipemia, as specified by the concentrations of hemoglobin, bilirubin, and
triglycerides, respectively (Table 1). We used this sample set to explain the two new methods
described herein and demonstrate their performance in comparison to traditional methods.

Level Hemolysis: hemoglobin (mg/dL) Icterus: bilirubin (mg/dL) Lipemia: triglycerides (mg/dL)

0 0 0.18 76

1 30 2.76 127

2 50 4.77 175

3 70 9.62 215

4 180 14.63 275

5 370 19.20 462

6 760 29.67 740

7 1190 39.65 984

TABLE 1: Levels of hemolysis (H), icterus (I), and lipemia (L) in samples used for the
demonstration of the new methods described herein.
The digits of each sample label indicate the H, I, and L levels (e.g., sample 517 has H, I, and L levels of 5, 1, and 7, respectively). There
were a total of 510 samples (83 = 512 permutations, minus samples 577 and 673 lost due to processing errors).

Materials And Methods
Analytical instruments
The total bilirubin and triglyceride concentrations were obtained on a Siemens ADVIA® 1800
analyzer (Siemens, Munich, Germany). The abbreviations of the total bilirubin and triglycerides
assays on the instrument were TBIL 2 and TRIG 2, respectively.

Hemoglobin concentrations (0 to 3,000 mg/dL) were obtained on a HemoCue® Plasma/Low Hb
instrument (HemoCue America, Brea, CA, USA) after filtration through 20-µm membranes
(Cole-Parmer, Vernon Hills, IL, USA; catalog # EW-32815-00).  Hemoglobin concentrations
higher than 3,000 mg/dL were measured on a HemoCue® Hb 201+ instrument (HemoCue
America, Brea, CA, USA) without filtration.

Absorption spectra (250 nm to 800 nm, steps of 5 nm) of the samples were acquired on a
SpectraMax® M5 spectrophotometer (Molecular Devices, Sunnyvale, CA, USA) at 37°C. All
samples were diluted 10 times in saline (0.90% weight/volume) (Thermo Fisher Scientific,
Waltham, MA, USA; catalog # 062-125), and dispensed into 384-well plates (Corning, Corning,
NY, USA; catalog # 3655) at 30 µL per well.

All measurements were performed in duplicate unless it is otherwise specified.

Sample preparation
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Samples were prepared to contain varying levels of hemolysis, icterus, and lipemia. Eight levels
of each interferent (labeled 0 to 7) were used to make 512 permutations in total. The sample IDs
denote the hemolysis (H), icterus (I), and lipemia (L) levels, respectively (Table 1). Samples 577
and 673 were discarded due to processing errors, so 510 samples were included in the analysis.

The samples were made following the steps described below. All intermediate solutions and
samples were frozen and stored at -80°C after each step. They were thawed and brought to
room temperature immediately before being used in the subsequent step.

Preparation of Clarified Plasma and Super-Stocks

The clarified plasma was prepared from pooled lithium heparin human plasma obtained from
normal healthy individuals (stocked pooled plasma obtained from Access Biologicals, Vista, CA,
USA). The plasma was thawed and clarified by centrifugation (7,000 g, 20 minutes, 4°C), 3x
paper filtration (grade-691 glass fiber; VWR, Radnor, PA; catalog # 28297-289), and final
vacuum filtration with a 0.2-µm membrane (Nalgene, Rochester, NY, USA; catalog # 567-0020).
The concentrations of hemoglobin, bilirubin, and triglycerides were 0, 0.19, and 81 mg/dL,
respectively.

The hemolysis super-stock was derived from 25 unique human lithium heparin whole blood
specimens obtained from normal healthy individuals (specimens obtained from ProMedDx,
Norton, MA, USA; IRB approval from New England Independent Review Board (NEIRB)). The
specimens were received within three days of collection and processed within one day of
receipt. The cells were separated from the plasma by centrifugation at 1,500 g for five minutes,
then lysed by freezing at -80°C. This hemolysate was thawed and then combined with clarified
plasma at a 2:1 ratio, giving a solution with a hemoglobin concentration of 14,450 mg/dL.

The icterus super-stock was made by dissolving 200 mg of conjugated bilirubin (ditaurate,
disodium salt) (CalBioChem, San Diego, CA, USA; catalog # 201102) into 20 mL of the clarified
plasma. The concentration of bilirubin in this solution was estimated to be 589 mg/dL.

The lipemia super-stock was an Intralipid® emulsion (20% emulsion) (Sigma, St. Louis, MO,
USA; catalog # I141-100ML) used without modification. The total concentration of triglycerides
was estimated to be 43,900 mg/dL.

Preparation of Hemolysis, Icterus, and Lipemia Stock Solutions (Eight Levels/Type)

Per each interferent (hemolysis, icterus, or lipemia), eight stock solutions (i.e., “stocks”) were
made by combining the corresponding super-stock with the clarified plasma at different ratios.
The ratios were determined so that the concentrations in the stocks were targeted to be
approximately three times the final concentrations (Table 1).

Preparation of Final Samples with Permutations of Hemolysis, Icterus, and Lipemia Levels

All possible permutations of hemolysis, icterus, and lipemia levels (eight levels/interferent)
were prepared using a Hamilton MicroLab STAR liquid handler (Hamilton, Reno, NV, USA). Each
sample was prepared by mixing equal volumes of three types of stock solutions described
above. Samples 577 and 673 were lost during this process when the pipetting got disrupted

unexpectedly. In the end, there were 83 - 2 = 510 samples in total.

Hemolysis stocks were dispensed into an eight-row reagent reservoir (deep well, divided, V-
bottom) (E&K Scientific, Santa Clara, CA, USA; catalog # EK-2032-S) in increasing
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concentrations of hemolysis in each row. The eight icterus stocks were dispensed into the first
eight columns of a 12-column reagent reservoir (deep well, divided, V-bottom) (E&K Scientific,
Santa Clara, CA, USA; catalog # EK-2034-S), in an increasing concentration of bilirubin. Each of
the eight lipemia stocks was dispensed into its separate 12-column reagent reservoirs. Equal
volumes (600 µL) from each reservoir (H, I, and L) were combined in a 96-deep well plate
(Axygen, Corning, NY, USA; catalog # P-DW-20-C-S). After mixing the samples, the automated
liquid handler transferred the solutions into eight-strip polymerase chain reaction tubes (E&K
Scientific, Santa Clara, CA, USA; catalog # 490048) in 200-µL aliquots. The layout of items on
the liquid handler is provided in Figure 4.

FIGURE 4: Overview of the setup on the instrument deck of the
Hamilton MicroLab STAR liquid-handling platform.
Hemolysis (H), icterus (I), and lipemia (L) labels were used to identify the locations of the stocks.
Equal volumes from each reservoir (H, I, and L) were combined in the 96-deep well plate.

While concentrations of interferents of all samples were measured, the true values are based on
those of samples with one interferent only. For example, using the naming convention stated
above (Table 1), the bilirubin concentration of sample 251 is considered to be the same as that
of sample 050.

Data processing and analysis
Signal Calculation

As part of the calculation of background-subtracted signals, the convolution of the original
signals with blurring kernels was performed to obtain the background signals. A specific kernel
is a probability density function (PDF) (mean, µ = 0; standard deviation, σ). The size of the
kernel is defined as σ√12 (e.g., the range, in the case of a uniform distribution). Because the
spectra were sampled at discrete wavelengths, the kernels were represented as discrete points
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along the continuous curves (the PDFs) in the calculation. In particular, for each Gaussian
kernel, only points in the [-3σ, 3σ] (rounded) range were used.

The curvature at a specific region of a spectrum is defined as , where  is the radius of
the circle fitted through the data points in that region. The fitting was done by minimizing the
cost function (see Eq. 1 below), where  is the number of points used for fitting,  is the

coordinate (wavelength, absorbance) of point i, and  is the coordinate of the center.

Linear Regression

We used linear regression models to evaluate different methods of hemolysis and icterus
measurements. In such a model, Y, the quantity of interest (e.g., hemoglobin or bilirubin), is a
linear combination of signals from the samples (see Eq. 2 below).

The model can be trained (calibrated) using a set of samples with known true Ys. In such a
process, the coefficients (ai's) are varied to minimize the sum of the squared differences

between the true Ys and the calculated Ys. The optimized coefficients can then be used to
calculate the Ys of the test samples. The signals may be absorbance values at specific
wavelengths, differences of absorbance values at two specific wavelengths, the background-
subtracted signals, or the curvatures. Models with the newly derived signals were compared with
models used in commercial analyzers as described in the literature [1, 3, 20].

Software Tools

The data were processed on a laptop computer using R 3.4.0 run on RStudio 1.0.143 (RStudio,
Boston, MA, USA) using packages in the default installation. The function “optim” (in the
“stats” package) was used to fit circles through points. The function “filter” (in the “stats”
package) was used to calculate the background signals. The function “t.test” (in the “stats”
package) was used to perform the Welch’s t-tests. Gaussian kernels (mean, µ = 0, standard
deviation, σ) were calculated with the function “dnorm” (in the “stats” package). The function
“lm” (in the “stats” package) was used to perform linear regression.

Results
Example results with background subtraction
We first tested whether background-subtracted spectra can be utilized for the quantification of
hemolysis. The accuracy of this approach was demonstrated by the analysis of samples at
various levels of hemolysis (hemoglobin = 0, 30, 50, 70, 180, 370, 760, and 1,190 mg/dL) while in
the presence of low and high levels of icterus (bilirubin = 0.18 and 39.65 mg/dL) and lipemia
(triglycerides = 76 and 984 mg/dL) (Figure 5). Without the background subtraction step, the raw
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absorption spectra contained unwanted signals from icterus and lipemia, and the peaks at 415
nm were elevated. Background-subtracted spectra with different levels of icterus and lipemia
were similar in the region of interest. For example, with the uniform kernel of size 14 (1 unit = 5
nm), the background-subtracted absorbance values at 420 nm at different hemolysis levels were
similar in all interference conditions tested and were not dependent on the levels of icterus
and/or lipemia.

FIGURE 5: Example background-subtracted spectra used for
the quantification of hemolysis.
The plots show raw, background, and background-subtracted spectra of samples at different
hemolysis levels (hemoglobin [hemo] = 0, 30, 50, 70, 180, 370, 760 and 1190 mg/dL) at
permutations of low and high icterus and lipemia (bilirubin [bili] = 0.18 and 39.65 mg/dL;
triglycerides [trig] = 76 and 984 mg/dL). The raw spectra were acquired at 5-nm intervals. The
background spectra were calculated by convoluting the raw spectra with a uniform kernel of size 14
(or (14-1)*5 = 65 nm; Figure 3A).

Similarly, background-subtracted spectra can be utilized for the quantification of icterus
(Figure 6). The bilirubin concentrations were 0.18, 2.76, 4.77, 9.62, 14.63, 19.20, 29.67, and
39.65 mg/dL; the hemoglobin concentrations were 0 and 1,190 mg/dL; and the triglyceride
concentrations were 76 and 984 mg/dL. While the raw spectra were significantly affected by
hemolysis or lipemia, the background-subtracted spectra were similar in all interference
permutations tested. In particular, with the uniform kernel of size 17 (1 unit = 5 nm), the
background-subtracted absorbance values at 525 nm were not affected by the levels of
hemolysis and/or lipemia.
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FIGURE 6: Example background-subtracted spectra used for
the quantification of icterus.
The plots show raw, background, and background-subtracted (raw-minus-background) spectra of
samples at different icterus levels (bilirubin [bili] = 0.18, 2.76, 4.77, 9.62, 14.63, 19.20, 29.67, and
39.65 mg/dL) at permutations of low and high hemolysis and lipemia (hemoglobin [hemo] = 0 and
1,190 mg/dL; triglycerides [trig] = 76 and 984 mg/dL). The raw spectra were acquired at 5-nm
intervals. The background spectra were calculated by convoluting the raw spectra with a uniform
kernel of size 17 (or (17-1)*5 = 80 nm; Figure 3A).

Example results with curvature calculation
We observed that the shape of a specific absorption peak (e.g., the 415-nm hemoglobin peak)
did not change if there was interference by a nearby peak (e.g., the 460-nm bilirubin peak) or by
an increase in absorption across a wide range of wavelengths (e.g., in the case of lipemia). This
was demonstrated with samples having different hemolysis levels (hemoglobin = 0, 180, or
1,190 mg/dL) and different permutations of low/high levels of icterus (bilirubin = 0.18 and 39.65
mg/dL) and lipemia (triglycerides = 76 and 984 mg/dL) (Figure 7). At each hemolysis level,
samples with different icterus and lipemia levels were found to have markedly different
absorbance values (Figure 7A). Circles were fitted to points near the peaks (at 415, 420, 425, and
430 nm) using least-squares regression with the cost function defined in Eq. 1 (Figure 7A). The
resulting curvatures (the inverses of the radii), which were used as metrics to quantitatively
describe the shapes of the peaks, were similar for each group of samples at each hemolysis
level, regardless of icterus and lipemia levels (Figure 7B). This result demonstrates the
possibility of using the curvatures to quantify and detect hemolysis.
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FIGURE 7: Example results of using curvature calculation to
quantify hemolysis.
A) Plots showing spectra of samples with three different hemo concentrations (0, 180, 1,190 mg/dL)
in separate sub-panels. Each sub-panel shows spectra of samples at low/high permutations of
icterus (bilirubin [bili] = 0.18 and 39.65 mg/dL) and lipemia (triglycerides [trig] = 76 and 984 mg/dL).
The dashed lines indicate 420 nm. The shaded circular sectors indicate fitted results using four data
points around 420 nm (415, 420, 425, and 430 nm). B) Bar charts showing curvatures calculated
from results shown in A.

This method was also applied to icterus detection and quantification. Similar to the case of
hemolysis (Figure 7), samples at three different levels of icterus (bilirubin = 0.18, 4.77, and
14.63 mg/dL) and different low/high permutations of hemolysis (hemoglobin = 0 and 1,190
mg/dL) and lipemia (triglycerides = 76 and 984 mg/dL) were used to demonstrate feasibility
(Figure 8). At each icterus level, samples with different hemolysis and lipemia levels were found
to have markedly different absorbance values (Figure 8A). Circles were fitted to data points near
the peaks (at 465, 470, 475, and 480 nm) using least-squares regression with the cost function
defined in Eq. 1 (Figure 8A). The resulting curvatures (the inverses of the radii), which we used
as metrics to quantitatively describe the shapes of the peaks, turned out to be similar for each
group of samples at each hemolysis level, regardless of icterus and lipemia levels (Figure 8B).
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FIGURE 8: Example results of using curvature calculation to
quantify icterus.
A) Plots showing spectra of samples with three different bilirubin (bili) concentrations (0.18, 4.77,
14.63 mg/dL) in separate sub-panels. Each sub-panel shows spectra of samples at low/high
permutations of hemolysis (hemoglobin [hemo] = 0 and 1190 mg/dL) and lipemia (triglycerides [trig]
= 76 and 984 mg/dL). The dashed lines indicate 470 nm. The part-circles indicate fitted results using
four data points around 470 nm (465, 470, 475, and 480 nm). B) Bar charts showing curvatures
calculated from results shown in A.

Optimization of parameters
There are multiple options to consider when applying the new methods described herein. The
background calculation step can be done with different kernels of different types and sizes and
requires specification of the wavelength of interest to obtain the processed signal. The
curvature calculation can be done with different choices for the center wavelength and a
different number of points around each chosen center wavelength. In addition, there are
multiple metrics to evaluate different implementations, and we considered two metrics herein.

The first metric is the R2 obtained from fitting the reference concentrations with the calculated
signals. The second is the p-value of the Welch’s t-test performed on two groups of samples of
the lowest and second lowest levels, which is motivated by the possible need for very sensitive
detection in some applications [21]. For practicality, -log10(p) values were used instead of p-

values. Note that the Welch’s t-test was chosen over the student’s t-test because the variances
at different levels are not expected to be the same.

We performed an optimization step to determine the optimal parameters for each method
(background subtraction or curvature calculation) for each interferent (hemolysis or icterus). In
particular, the center wavelength was varied from 350 nm to 650 nm (with steps of 5 nm). For
background calculation, the kernel types were 1) Gaussian and 2) uniform, while the size was
varied from 2 to 20 units (1 unit = 5 nm). For the curvature calculation, the number of points
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was varied from three to 16. At a certain center wavelength, if the number of points was even,

more points were chosen on the side of larger wavelengths. Metrics of R2 and -log10(p) for all

cases were calculated. Only points with good overall performance (R ≥ 0.95 and p ≤ 0.05 ⇔ -
log10(p) ≥ 1.3) were plotted (Figure 9). The metric -log10(p) was chosen because of its

usefulness; if a method has a high -log10(p), it also has a high R2, while the converse is not true.

FIGURE 9: Comparison of metrics used for parameter
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optimization.
The plots show metrics calculated from using the background subtraction (A) and curvature
calculation (B) methods to quantify and detect hemolysis and icterus over a large parameter space.
For a certain method with a certain parameter set, the R2 value was calculated from fitting the
calculated signal (background-subtracted signal or curvature) with the concentration (hemoglobin
or bilirubin), and the -log10(p) value was calculated from the p-value of the Welch's t-test performed
on two groups of samples, one with the lowest level and one with the second highest level of the
specific interferent (Table 1). The better the method, the higher the R2 value or the higher the -
log10(p) value. While all points from the parameter search were calculated, for clarity, the plots were

zoomed in with R2 ≥ 0.95 and -log10(p) ≥ 1.3 (i.e., p ≤ 0.05).

Optimization results, as expressed in heat maps (Figure 10), showed that optimal wavelengths
are near the peaks of the spectra of the substances of interest (415, 540, and 575 nm for
hemoglobin, and 460 nm for bilirubin) (Figure 1). This was expected since the peaks are
normally used as the signatures of the corresponding spectra. The optimal parameter sets
indeed included wavelengths near the expected peaks (Table 2). There were also wide ranges of
values of parameters (wavelength, kernel type/size, and the number of points for fitting) that
gave good results (p-value ≤ 0.05). However, it was apparent that methods involving
background subtraction with uniform kernels are generally better than those using Gaussian
kernels and those with curvature calculation, for both hemolysis and icterus cases.

FIGURE 10: Optimization results for the quantification and
detection of hemolysis and icterus, using either background
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subtraction (with Gaussian kernels or uniform kernels) or
curvature calculation.
The heat maps show results over wide ranges of parameters, which were the center wavelength
selected to generate the processed signal, the kernel size (in the case of background subtraction),
and the number of points used for curve fitting (in the case of curvature calculation). The metric
used for the optimization was -log10(p) calculated from the p-value of the Welch's t-test performed
on two groups of samples, one with the lowest level and one with the second highest level of each
interferent (Table 1). Only points with good performance (p ≤ 0.05 ⇔ -log10(p) ≥ 1.3) are plotted.

 Hemolysis Icterus

Raw signal 415 nm (raw absorbance values) 460 nm (raw absorbance values)

Background-subtracted signal 410 nm, size-14 uniform kernel 525 nm, size-17 uniform kernel

Curvature 4 points about 420 nm 4 points about 470 nm

TABLE 2: Parameter search (Figure 10) results for hemolysis and icterus detection
using background subtraction and curvature calculation, in comparison to the raw
signals (raw absorbance values).
The selected parameters are those that provided the highest –log10(p).

Performance of the new methods
A qualitative comparison of the different types of signals (Table 2) was done using plots of
normalized signals versus concentrations for all samples (Figure 11). For the purpose of
comparison, the signals of each plot were linearly normalized so that the lowest signal was 0
and the highest was 1. In both hemolysis and icterus cases, the raw signals at each
concentration were spread out over a large range (0.3 to 0.4 in the normalized scale), indicating
that quantification and detection using the raw signal would be almost impossible. On the
other hand, points in the plots of the background-subtracted signals and the curvatures
collapsed into much smaller ranges (resembling lines), improving the correlations.
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FIGURE 11: Qualitative comparison of the background-
subtracted signals and the curvatures with the raw signals.
A) Plots showing hemolysis signals versus the hemoglobin (hemo) concentration. The raw signal is
the absorbance at 415 nm. The background-subtracted signals were obtained with parameters of
410 nm and a size-14 uniform kernel, and the curvatures were calculated at 420 nm using four
points (Figure 10). B) Plots showing bilirubin (bili) signals versus the bili concentrations. The raw
signal is the absorbance at 460 nm. The background-subtracted signals were obtained with
parameters of 525 nm and a size-17 uniform kernel, and the curvatures were calculated at 470 nm
using four points (Figure 10). In each plot, the signals were normalized for the purpose of visual
comparison.

We compared the performance of each of the optimized methods (Table 2) to those of
traditional methods currently used in conventional chemical analyzers [1, 3, 20] using linear
regression models. Each model (Table 3, Eq. 2) was evaluated by 10 iterations at each training
fraction. In each iteration, the sample set (Table 1) was randomly split into training and testing
sets, with the training fraction specifying the ratio of the number of samples in the training set
versus the total number of samples. The metric calculated from each iteration was the same as
the metric used to optimize the new methods (Figure 9), which is the -log 10(p) value obtained

from the Welch’s t-test performed on two groups of samples of the lowest and second lowest
interferent levels. The -log10(p) values were averaged over the iterations. The results for both

hemolysis (Figure 12A) and icterus (Figure 12B) showed that the background-subtracted signals
and the curvatures performed better than most other models that involve multiple absorbance
values (Table 3). In particular, models that use either background-subtracted signals or
curvatures were in the top three for both hemolysis and icterus detection.
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FIGURE 12: Comparison of the performance of models used to
quantify and detect hemolysis (A) and icterus (B).
The models are linear regression models described above (Eq. 2, Table 3). The fraction to train
indicates the ratio of the number of samples randomly chosen to train versus the total number of
samples (Table 1). At each point on the heat maps, the color corresponds to the -log10(p) value
obtained from the Welch's t-test performed on the Ys (Eq. 2) of two groups of samples of the lowest
and second lowest interference levels, averaged over 10 different iterations.
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Model name Interferent Signals (absorbance values or other types)

CLSI 1 [1] Hemolysis 405/700

CLSI 1 [1] Icterus 452/700

CLSI 2 [1] Hemolysis 571/596

CLSI 2 [1] Icterus 478/505

CLSI 3 [1] Hemolysis 572/604; 628/660

CLSI 3 [1] Icterus 500/524; 572/604; 628/660

CLSI 4 [1] Hemolysis 522/750

CLSI 4 [1] Icterus 507/776

CLSI 5 [1] Hemolysis 410/480; 600/800

CLSI 5 [1] Icterus 480/570; 600/800

CLSI 6 [1] Hemolysis 340; 410; 470; 600; 670

CLSI 6 [1] Icterus 340; 410; 470; 600; 670

CLSI 7 [1] Hemolysis 570/600

CLSI 7 [1] Icterus 480/505

Farrell2016_5 [20] Hemolysis 583/629

Farrell2016_5 [20] Icterus 480/512

Bg-sub signal (Table 2) Hemolysis 410 nm, size-14 uniform kernel

Bg-sub signal (Table 2) Icterus 525 nm, size-17 uniform kernel

Curvature (Table 2) Hemolysis 4 points about 420 nm

Curvature (Table 2) Icterus 4 points about 470 nm

Raw Hemolysis 415

Raw Icterus 460

TABLE 3: Descriptions of linear regression models used for hemolysis and icterus
quantification.
The wavelengths were rounded to multiples of 5 nm in the implementation. Each '/' indicates the signal is the difference between
absorbance values at the two specified wavelengths. Each ';' character is used to separate multiple signals used in the same model.

Advantages of the new methods
The two methods described herein have three major practical advantages versus interference
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correction methods that are based on absorbance values at multiple wavelengths across the
ultraviolet/visible range, such as those used for hemolysis and icterus detection on many
commercial analyzers. First, the methods described herein are less susceptible to the presence
of unknown interferents. The choice of wavelengths in traditional methods depends on
absorption wavelengths of known interferents [1], while both curvature calculation and
background subtraction are mostly agnostic of the interferents and only depend on the
absorption of the substance of interest. Even though the optimized hemolysis and icterus
signals slightly deviated from the peaks (415 nm for hemolysis and 460 nm for icterus) (Table 2),
the signals at the peaks would still provide good performance, with p-values distinguishing the
two lowest interference levels (of hemolysis or icterus) much lower than 0.05 (i.e., -log10(p)

values much larger than 1.3) (Figure 10).

Second, traditional methods require calibration using samples with wide ranges of interference
levels [1], while the methods using background-subtracted signals or curvatures do not. We
performed an example analysis to demonstrate this notion. Using only samples with a
maximum interference level of 1 (Table 1) to calibrate regression models (Table 3), we
calculated the corresponding hemoglobin and bilirubin values for all 510 samples. In the eight
samples used for these calibration steps, the highest hemoglobin (30 mg/dL), bilirubin (2.76
mg/dL), and triglyceride (127 mg/dL) levels were practically low. Traditional methods gave large
biases and poor correlations, while those using background-subtracted signals and curvatures
gave good agreement (Figures 13-15). As expected, with -log10(p) as the metric, the maximum

level of interference used for calibration had to be increased for the performance of traditional
methods to improve. In contrast, the methods using background-subtracted signals or
curvatures performed very well, even when a maximum level of 1 is used for calibration (Figure
16). The independence of the methods involving background-subtracted signals and curvatures
allows the calibration to be done even with samples of limited interference levels (e.g., those
naturally collected instead of those made via a comprehensive procedure like the samples used
for this work).
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FIGURE 13: Dependence of the performance of hemolysis
regression models on the interference levels used in
calibration (training).
Plots comparing hemoglobin (hemo) from regression models versus true samples are shown. For
calibration, the models used only samples with interference levels of 0 or 1 (total of eight samples).
The models are described in Table 3. A subset of these plots are shown in Figure 15A. The dashed
white lines indicate where calculated values are equal to true values.
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FIGURE 14: Dependence of the performance of icterus
regression models on the interference levels used in
calibration (training).
Plots comparing bilirubin (bili) calculated from regression models versus true samples are shown.
For calibration, the models used only samples with interference levels of 0 or 1 (total of eight
samples). The models are described in Table 3. A subset of these plots are shown in Figure 15B.
The dashed white lines indicate where calculated values are equal to true values.
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FIGURE 15: Performance dependence of example regression
models on the interference levels used in calibration.
Plots comparing concentrations calculated from regression models with true values for hemolysis
(A) and icterus (B) are shown. The concentrations were calculated for all 510 samples (Table 1)
using calibration information from only eight level-0 and level-1 samples. Results of some example
models are shown, while those of all models (Table 3) are provided in Figures 13-14. The dashed
white lines indicate where calculated values are equal to true values.

FIGURE 16: Dependence of regression models on the
maximum levels of interference in the samples used for
calibration (training).
Heat maps of the performance of models to detect hemolysis (A) and icterus (B) at special
maximum interference levels in samples used for calibration are shown. The levels of interferents
are described in Table 1; the models are described in Table 3. The colors in the heat maps
correspond to -log10(p) values calculated using the Welch's t-test performed on two groups of
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samples of the lowest and second lowest levels (Figure 9).

Third, only a small range of wavelengths around the major wavelength of interest is required
for both new methods (Figure 17). In particular, optimized curvatures require only a 15-nm
wavelength range, the shortest for both hemolysis and icterus cases.

FIGURE 17: Wavelength ranges required by different linear
regression models used for hemolysis (A) or icterus (B)
quantification (Table 2).
The models are sorted by the sizes of the wavelength ranges.

Background-subtracted signals require ranges spanning 65 nm for hemolysis and 80 nm for
icterus, which are ranked in the middle in both cases. This advantage enables possible
simplifications and improvements of the detection instrument, such as a smaller wavelength
range of the light source, a smaller required width of the array detector (in a prism/grating-
based spectrophotometer), and a higher wavelength resolution (due to a smaller wavelength
range for the same detector size). While typical commercial analyzers have full-scale
spectrophotometers, point-of-care devices may benefit from this advantage.

Discussion
The key approach of the two new methods described herein (those involving background-
subtracted signals and curvatures) is to obtain clean spectral signals even with interference.
Therefore, their application can be extended to other spectral measurements. For example,
many clinical assays with optical readouts based on absorption spectra employ multiple-
wavelength readings to subtract out interfering signals and require the knowledge of possible
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interferents [13]. The two new methods described can be readily applied to those assays, with
the practical advantages described above.

It is worth noting that the background-subtracted signals may be negative at certain points in
the parameter space (as specified by the wavelength, kernel type, and kernel size) (Figures 5-6).
A negative signal may occur at a wavelength next to a peak or at a peak near another one that is
much higher. At first glance, it may not seem intuitive to use such negative signals, but they do
contain information about the peaks of interest. Indeed, the optimal background-subtracted
signal for icterus measurements (Table 3) was negative (Figure 6) but still performed well
(Figures 11B, 12B, 15B).

In some settings, such as when hemolysis detection is required at the collection site, the use of
an inexpensive and simple device to collect spectral data is desirable. The background
subtraction method described herein can potentially enable such data acquisition to be done
with a simple camera. The novelty is that the background subtraction method only requires two
optical filters, one with a narrow band to obtain the major signal, and the other one with a
wider band to obtain the background signal (Figure 18). If the two optical filters are placed in
the region of interest side-by-side in the same field of view, only one image is needed to obtain
the background-subtracted signal for each sample. Such a design would be compatible with
resource-limited settings. For example, to detect hemolysis at the collection site without a
spectrophotometer, one could photograph the plasma fractions of centrifuged collection
devices using a simple point-and-shoot camera (or a cell phone camera) with the light path that
includes a hybrid filter, which is composed of a narrow-band pass region and a wide-band pass
region (e.g., 5-nm and 65-nm wide filters for hemolysis measurements). There have been efforts
to develop technologies to detect hemolysis at the collection site such as one involving the use
of color intensities of images taken with a camera [22]. The method proposed herein (Figure 18)
would require a much smaller and simpler sample set for calibration and provide performance
similar to that of a spectrophotometer, thus avoiding the need to deal with the complex, non-
trivial conversion of the absorption/scattering spectra to recorded colors.

FIGURE 18: Proposed method of using photography to acquire
background-subtracted signals with a narrow band pass
optical filter and a wide band optical filter.
If the two filters can be placed in the regions of interest concurrently, only one exposure is needed to
obtain the major signal and the background signal. The background-subtracted signal can then be
readily calculated. The bands are centered near or at the absorption peak of interest.

Conclusions
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The new methods described in this paper, which are based on background-subtraction and
curvature calculation, provide the ability to quantify and detect hemolysis and icterus with
several practical advantages: 1) better robustness in terms of eliminating signals from
unwanted substances, some of which may not be known beforehand, 2) smaller sets of samples
used for calibration with few levels of interference, and 3) simpler instruments
(spectrophotometers with smaller detectors/short wavelength ranges or cameras equipped with
pairs of filters). These new methods do not have advantages over traditional methods with
respect to the number of discrete wavelengths required. A camera-based implementation would
require further hardware engineering, and the implementation of these new methods, in
general, may involve other methods of performing background-subtraction (e.g., those with
other blurring methods) or curvature calculation (e.g., those using methods other than circle
fitting). Such implementation could benefit cases of sample collection in resource-limited
settings. For example, in remote sites where samples are collected and sent to centralized
laboratories, the ability to detect interference at the point of collection would allow for
immediate re-drawing. Furthermore, if the hardware is adapted to work with small-volume
samples (e.g., those collected by fingersticks), it would be possible to integrate the methods
described herein with point-of-care diagnostic instruments and contribute to the effort of
bringing diagnostics to developing countries or other under-served settings. Overall, these new
data analysis methods can enable new practical possibilities in the development of interference
screening methods.
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