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Abstract

In the past decade, disinformation has become an increasingly dangerous enemy of public health, scientific
advancement, and social stability. To address and counter this trend, it is essential to first identify
communities most at risk for disinformation. The Jin-Hafiz Disinformation Index (JHDI) is developed and
validated as a tool to counter disinformation and address deficits of good information on a county level in
the United States. Once vulnerable communities are identified with the JHDI, targeted interventions with
community partnerships can be conducted to address knowledge concerns.
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Introduction

The growth of social media has allowed an increase in viewpoints and voices. However, there is a small but
prominent portion of these voices that are not based on facts or, worse, are intentionally misleading.
Disinformation, or “false information which is intended to mislead” as defined by Oxford dictionaries,
further degrades the trust the public has for institutions that are responsible for producing and verifying
information based on facts, including the media, universities, government, and scientific institutions [1].
Mass media and social networks have been fundamental in the management of public health related
information in recent years. However, disinformation, misinformation, and fake reports have deluged this
avenue of information delivery [2-4]. Disinformation is particularly damaging towards public health and
patient care, especially in the midst of the ongoing coronavirus disease 2019 (COVID-19) pandemic.

The COVID-19 pandemic has thrown this epistemic crisis into sharp relief. COVID-19 has killed more than 2
million people and infected nearly 100 million more worldwide. In the United States alone, COVID-19 has
killed more than 500,000 people and infected nearly 30 million, which is near a third of the total cases in the
world [2]. Yet, despite the staggering mortality and infection rates, nearly 40% of Americans still say they do
not intend to take the vaccine. Most frequently cited reasons include uncertainty of vaccine effectiveness
and possibility of unknown side effects despite increasing evidence that the vaccine is safe and effective [3].
Tedros Adhanom Ghebreyesus, Director-General of the World Health Organization (WHO), recognized the
overabundance of information, misinformation, disinformation, and outdated information causing people
to ignore the empirically backed COVID-19 guidelines as an “infodemic” [4].

For those working to disseminate scientifically verified public health information, a primary challenge is
discerning and measuring how misinformation impacts a given population's behavior. For the purposes of
this paper, we are specifically interested in public health misinformation surrounding COVID-19. We will
outline a process for indexing publicly available data to measure the susceptibility of communities in the
United States to disinformation and to study the efficacy of anti-disinformation campaigns. This index shall
be referred to as “The Jin-Hafiz Disinformation Index” (JHDI) throughout this document.

Materials And Methods

A literature review was conducted to determine demographic factors most associated with disinformation [5-
14]. Out of 15 factors, five were ultimately selected for the index after evaluating for availability of data in
census and publicly available databases with resolution at a county level, including race, gender, poverty
status, education, and unemployment (Table 7). Commonalities in variables were also cross-referenced with
the Centers for Disease Control and Prevention (CDC) Social Vulnerability Index (SVI) [15]. These factors
were used to create three preliminary indices with different weights placed on each variable in which the
sum of each index value is added together to produce the index score (Table 2). Each of the three indices was
then validated against disinformation variables from the Yale Climate Survey data [16-18]. The index version
that most closely predicted both disinformation variables was selected as the final index.
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Variables correlated with disinformation not

Variables selected ) ) Variables correlated with disinformation not selected
) selected for index due to incomplete of county-level - ) . ) .
for index dat because political considerations of partisan divide
ata
Population not
racial/ethnic Social isolation Evangelical population

minority

Speaks English less

Trust of authorities in science and medicine
than well

Household below

Physical or mental disability
poverty

Population without

high school Religious belief
diploma
Unemployment Social influence score

Birthplace of parents
Population without internet access
Property crime rates relative to national mean

Higher conservative-leaning population

TABLE 1: Demographic and Social Variables Identified to Have Significant Correlation With
Disinformation

Index Version Multiplier for RAC Multiplier for LANG Multiplier for POV Multiplier for HSD Multiplier for EMP

Ver. 1 1x 1x 1x 1x 1x
Ver. 2 2x 1x 1x 2x 2x
Ver. 3 3x 1x 1x 3x 2x

TABLE 2: Preliminary Indices

RAC = z-score of % population not racial/ethnic minority
LANG = z-score of % speaking English less than well

POV = z-score of % household below poverty

HSD = z-score of % population without high school diploma

EMP = z-score of % unemployed

To do this, census data was first filtered based on year (only including the most recent data) and then county
codes were converted to Federal Information Processing Standards (FIPS) codes. Columns for population
proportions were then created corresponding to:

@ Race: people categorized as not racial/ethnic minority
@ Speak English less than very well
@ Poverty: people below poverty level in the last year

@ Educational attainment: people aged 25 years and over who do not have any college degree
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@ Unemployment: unemployment rate for people aged 20-64 years
County values were calculated for each of the three preliminary indices.

Global warming opinions compiled by the Yale Climate Survey were used to validate the preliminary indices.
Four distinct areas from the 63 questions of the survey were selected based on their association with
disinformation given the amount of evidence and testable hypotheses presented against such beliefs:

@ Estimated percentage who do not think that global warming is happening

@ Estimated percentage who think that global warming is caused mostly by natural changes in the
environment

@ Estimated percentage who believe there is a lot of disagreement among scientists about whether or not
global warming is happening

@ Estimated percentage who somewhat/strongly disagree that global warming is affecting the weather in
the United States

Unweighted means were then calculated for the four variables for each county. Values were normalized and
then processed into a heat map of the continental United States (Figure I). Pearson’s tests were used to
compare the correlation of each of the indices with the county values obtained from the Yale Climate
Survey.

Climate Change Data

zscore

3

FIGURE 1: Heat Map for Climate Data

Results

Pearson’s tests were used to compare the correlation of each of the indices with the county values obtained
from the Yale Climate Survey. Values for the indices were normalized and then processed into heat maps of
the continental United States. Analysis showed that index version 1 demonstrated weak correlation (R=0.1),
version 2 demonstrated mild correlation (R=0.2), and version 3 demonstrated moderate correlation (R=0.4)
(Figures 2-4). Version 3 of the JHDI demonstrated the best correlation with the Yale Climate Survey in
predicting community susceptibility to disinformation (Table 53).
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Jin-Hafiz Index ver. 1
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FIGURE 2: Heat Map of JHDI Version 1

correlation: 0.071; determination: 0.005

JHDI, Jin-Hafiz Disinformation Index

Jin-Hafiz Index ver. 2

JinHafindex2

20
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FIGURE 3: Heat Map of JHDI Version 2

correlation: 0.224; determination: 0.050

JHDI, Jin-Hafiz Disinformation Index
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Jin-Hafiz Index ver. 3
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FIGURE 4: Heat Map of JHDI Version 3

JinHafindex3

correlation: 0.361; determination: 0.130

JHDI, Jin-Hafiz Disinformation Index

Version 3

z-score of % racial/ethnic minority (x3)

z-score of % speaking English less than well

z-score of % household below poverty

z-score of % population without high school diploma (x3)
z-score of % unemployed (x2)

Total score:

TABLE 3: Final Index

Score interpretation:

<10: Extremely resistant to disinformation

-10 to -5: Above average resistance to disinformation
-5 to 5: Average susceptibility to disinformation

5 to 10: Above average susceptibility to disinformation

>10: Extremely susceptibility to disinformation

Discussion

Much of the current discussion regarding disinformation focuses on why and how it spreads. The JHDI seeks
to understand the “who” piece of the puzzle: the populations at greatest risk of falling prey to
disinformation. In order to fight disinformation, it is essential to determine which communities are most
vulnerable to information, especially since falsehoods can spread six times as fast as the truth on social
platforms [19]. A recent NPR/Marist poll found that one in four people living in the United States said they
would “refuse a COVID-19 vaccine outright if offered” due to largely unfounded fears regarding the vaccine,
threatening the prospects of herd immunity in America [20]. In these situations, the JHDI can be used to
triage the most vulnerable areas and create targeted campaigns to counter viral disinformation and
encourage vaccination across platforms to fight disinformation.
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To our knowledge, the JHDI is the first of its kind. Other indices such as the Global Disinformation Index
focuses on disinformation produced by national governments [21]. Another similar index was formulated by
CDC’s SVI, which endeavors to identify communities most vulnerable to natural disasters by using the data
from the 2020 U.S. Census of Population and Housing and ranking each U.S. county (N=65,081) by the 15
variables within the U.S. census, such as income per capita, education, and single parenting [15]. The rank
score is totaled for each county, and the county with the lowest total rank when all 15 variables were
combined is deemed most vulnerable. However, there are several limitations to the CDC’s SVI.

First, CDC’s SVI is primed for identifying primarily communities with social and logistical barriers to
receiving aid, whereas the JHDI identifies susceptibility of communities to disinformation. Additionally,
CDC’s SVI gave equal weight to all 15 factors when ranking vulnerability. However, as we have shown with
our index validation, applying significance factors can have a marked impact on index performance and
provide more accurate data (Figures 2-4). Finally, the CDC’s SVI has not been validated against a national
database for disinformation, whereas the JHDI was tested against the Yale Climate Change data with
moderate correlation (R=0.4).

Limitations and next steps

The sourced data is fairly robust and reliable, and provides sufficient granularity for our purposes. However,
there are several nuances that complicate this analysis, for example, misinformation on public health issues
could be driven by microcultural circumstances that are not relevant to misinformation on other issues such
as climate change. One documented example of this is the anti-vaccination tendencies among Somali
communities; these populations may not have as strong opinions towards other issues such as global
warming but feel strongly against anti-vaccination, which makes finding an association more difficult [5].
However, the rationale for exploring microcultural associations is strong with associations influenced by
confounding factors. These associations can be explored in future studies with pattern analysis of social
media platforms to find overlaps of association.

Furthermore, it would be interesting to understand the impact of local business patterns on public health
misinformation. Misinformation has been used to protest lockdown measures in places where local
economies have been hit the hardest; therefore, it might be interesting to investigate local economies.
Starting with industries most impacted by the pandemic, counties that rely on them most can be selected for
closer review. For example, it has been reported that meatpacking firms are facing investigation due to cases
that have originated at packing locations [6]. It would be interesting to examine the nature of COVID-19
information dissemination in regions that rely on meatpacking for economic stability.

Additionally, variables such as lack of internet access, property crime rates, and population that are
politically conservative are highly correlated with disinformation but were not included in this editions of
the index due to incomplete county-level data [13]. Future studies can include these variables to the index to
potentially augment disinformation susceptibility predictions. Furthermore, other databases such as non-
medical vaccination exemption, mask-wearing belief, and Holocaust denial can also be used for validation of
the index. However, caution should be used as the disinformation variables these databases contain may be
influenced by additional social and political factors and are often less substantiated than the data from the
Yale Climate Survey, resulting in a less accurate measure of disinformation.

Finally, it would be desirable to analyze a more dynamic data set. Currently, our data is relatively static; it
captures snapshots of communities at specific points in accordance with census data. Moving forward, the
model could be made more dynamic by incorporating news and social media sentiment analysis with
advances in artificial intelligence. Doing so will make the JHDI an even more powerful tool in addressing
disinformation.

Conclusions

The JHDI has applications beyond improving public health outcomes around COVID-19. In an
unprecedented era of mass communication, communities are at risk of losing empiricism and factfulness due
to the mechanisms of sharing on social media. It is clear that as society evolves to incorporate new forms of
media, institutions should evolve to adapt to new information ecosystems to promote fact-based
information over mistruth. Using this index, local governments can now get a sense of how pervasive the
problem of disinformation is and work to address disinformation proactively by using policy regulating
social media, “info-interventions” to serve low-information populations with facts, and new civic media
platforms designed with this problem in mind.

However, as with many types of repair work, the first step is figuring out how to measure where reality is
broken.

Additional Information
Disclosures

2021 Jin et al. Cureus 13(5): e15305. DOI 10.7759/cureus.15305 60of 7



Cureus

Human subjects: All authors have confirmed that this study did not involve human participants or tissue.
Animal subjects: All authors have confirmed that this study did not involve animal subjects or tissue.
Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the
following: Payment/services info: All authors have declared that no financial support was received from
any organization for the submitted work. Financial relationships: All authors have declared that they have
no financial relationships at present or within the previous three years with any organizations that might
have an interest in the submitted work. Other relationships: All authors have declared that there are no
other relationships or activities that could appear to have influenced the submitted work.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Americans’ Views of Government: Low Trust, but Some Positive Performance Ratings . (2020). Accessed:
March 2, 2021: https://www.pewresearch.org/politics/2020/09/14/americans-views-of-government-low-
trust-but-some-positive-performance....

COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins
University (JHU). (2021). Accessed: March 17, 2021: https://coronavirus.jhu.edu/map.html.

Intent to Get a COVID-19 Vaccine Rises to 60% as Confidence in Research and Development Process
Increases. (2020). Accessed: January 7, 2021: https://www.pewresearch.org/science/2020/12/03/intent-to-
get-a-covid-19-vaccine-rises-to-60-as-confidence-in-research....

UN tackles ‘infodemic’ of misinformation and cybercrime in COVID-19 crisis . (2020). Accessed: March 2,
2021: https://www.un.org/en/un-coronavirus-communications-team/un-tackling-
%E2%80%98infodemic%E2%80%99-misinformation-and-c....

Cutilli CC, Simko LC, Colbert AM, Bennett IM: Health literacy, health disparities, and sources of health
information in U.S. older adults. Orthop Nurs. 2018, 37:54-65. 10.1097/NOR.0000000000000418

Mackert M, Mabry-Flynn A, Champlin S, Donovan EE, Pounders K: Health literacy and health information
technology adoption: the potential for a new digital divide. ] Med Internet Res. 2016, 18:e264.
10.2196/jmir.6349

Chen X, Hay JL, Waters EA, et al.: Health literacy and use and trust in health information . ] Health
Commun. 2018, 23:724-3. 10.1080/10810730.2018.1511658

Protheroe J, Whittle R, Bartlam B, Estacio EV, Clark L, Kurth J: Health literacy, associated lifestyle and
demographic factors in adult population of an English city: a cross-sectional survey. Health Expect. 2017,
20:112-9.10.1111/hex.12440

Estacio EV, Whittle R, Protheroe J: The digital divide: Examining socio-demographic factors associated with
health literacy, access and use of internet to seek health information. ] Health Psychol. 2019, 24:1668-75.
10.1177/1359105317695429

Clouston SAP, Manganello JA, Richards M: A life course approach to health literacy: the role of gender,
educational attainment and lifetime cognitive capability. Age Ageing. 2017, 46:493-9.
10.1093/ageing/afw229

Christy SM, Gwede CK, Sutton SK, et al.: Health literacy among medically underserved: the role of
demographic factors, social influence, and religious beliefs. ] Health Commun. 2017, 22:923-31.
10.1080/10810730.2017.1377322

Stormacq C, Van den Broucke S, Wosinski J: Does health literacy mediate the relationship between
socioeconomic status and health disparities? Integrative review. Health Promot Int. 2019, 34:el-el7.
10.1093/heapro/day062

Yang TC, Matthews SA, Shoff C: Individual health care system distrust and neighborhood social
environment: how are they jointly associated with self-rated health?. ] Urban Health. 2011, 88:945-58.
10.1007/s11524-011-9561-x

Goreis A, Voracek M: A systematic review and meta-analysis of psychological research on conspiracy beliefs:

field characteristics, measurement instruments, and associations with personality traits. Front Psychol.
2019, 10:205. 10.3389/fpsyg.2019.00205

Flanagan BE, Gregory EW, Hallisey EJ, Heitgerd JL, Lewis B: A social vulnerability index for disaster
management. | Homel Secur Emerg Manag. 2011, 8:1-22.

Yale Climate Opinion Maps 2020. (2020). Accessed: March 2, 2021:
https://climatecommunication.yale.edu/visualizations-data/ycom-us/.

Olive JK, Hotez PJ, Damania A, Nolan MS: The state of the antivaccine movement in the United States: a
focused examination of nonmedical exemptions in states and counties. PLoS Med. 2018, 15:e1002578.
10.1371/journal.pmed.1002578

A Detailed Map of Who Is Wearing Masks in the U.S. . (2020). Accessed: March 2, 2021:
https://www.nytimes.com/interactive/2020/07/17/upshot/coronavirus-face-mask-map.html.

Vosoughi S, Roy D, Aral S: The spread of true and false news online . Science. 2018, 359:1146-51.
10.1126/science.aap9559

NPR/PBS NewsHour/Marist Poll: September 2018. (2018). Accessed: March 2, 2021:
https://ropercenter.cornell.edu/ipoll/study/31115585.

Global Disinformation Index. Time to defund the coronavirus infodemic . (2021). Accessed: April 9, 2021:
https://disinformationindex.org/.

2021 Jin et al. Cureus 13(5): €15305. DOI 10.7759/cureus.15305

7of7


https://www.pewresearch.org/politics/2020/09/14/americans-views-of-government-low-trust-but-some-positive-performance-ratings/?utm_medium=email&utm_source=transaction
https://www.pewresearch.org/politics/2020/09/14/americans-views-of-government-low-trust-but-some-positive-performance-ratings/?utm_medium=email&utm_source=transaction
https://coronavirus.jhu.edu/map.html?utm_medium=email&utm_source=transaction
https://coronavirus.jhu.edu/map.html?utm_medium=email&utm_source=transaction
https://www.pewresearch.org/science/2020/12/03/intent-to-get-a-covid-19-vaccine-rises-to-60-as-confidence-in-research-and-development-process-increases/?utm_medium=email&utm_source=transaction
https://www.pewresearch.org/science/2020/12/03/intent-to-get-a-covid-19-vaccine-rises-to-60-as-confidence-in-research-and-development-process-increases/?utm_medium=email&utm_source=transaction
https://www.un.org/en/un-coronavirus-communications-team/un-tackling-%E2%80%98infodemic%E2%80%99-misinformation-and-cybercrime-covid-19?utm_medium=email&utm_source=transaction
https://www.un.org/en/un-coronavirus-communications-team/un-tackling-%E2%80%98infodemic%E2%80%99-misinformation-and-cybercrime-covid-19?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1097/NOR.0000000000000418?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1097/NOR.0000000000000418?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.2196/jmir.6349?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.2196/jmir.6349?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1080/10810730.2018.1511658?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1080/10810730.2018.1511658?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1111/hex.12440?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1111/hex.12440?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1177/1359105317695429?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1177/1359105317695429?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1093/ageing/afw229?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1093/ageing/afw229?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1080/10810730.2017.1377322?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1080/10810730.2017.1377322?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1093/heapro/day062?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1093/heapro/day062?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s11524-011-9561-x?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s11524-011-9561-x?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3389/fpsyg.2019.00205?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3389/fpsyg.2019.00205?utm_medium=email&utm_source=transaction
https://www.atsdr.cdc.gov/placeandhealth/svi/img/pdf/Flanagan_2011_SVIforDisasterManagement-508.pdf?utm_medium=email&utm_source=transaction
https://climatecommunication.yale.edu/visualizations-data/ycom-us/?utm_medium=email&utm_source=transaction
https://climatecommunication.yale.edu/visualizations-data/ycom-us/?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1371/journal.pmed.1002578?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1371/journal.pmed.1002578?utm_medium=email&utm_source=transaction
https://www.nytimes.com/interactive/2020/07/17/upshot/coronavirus-face-mask-map.html?utm_medium=email&utm_source=transaction
https://www.nytimes.com/interactive/2020/07/17/upshot/coronavirus-face-mask-map.html?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1126/science.aap9559?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1126/science.aap9559?utm_medium=email&utm_source=transaction
https://ropercenter.cornell.edu/ipoll/study/31115585?utm_medium=email&utm_source=transaction
https://ropercenter.cornell.edu/ipoll/study/31115585?utm_medium=email&utm_source=transaction
https://disinformationindex.org/?utm_medium=email&utm_source=transaction
https://disinformationindex.org/?utm_medium=email&utm_source=transaction

	Novel Validated Index for the Measurement of Disinformation Susceptibility at the County Level
	Abstract
	Introduction
	Materials And Methods
	TABLE 1: Demographic and Social Variables Identified to Have Significant Correlation With Disinformation
	TABLE 2: Preliminary Indices
	FIGURE 1: Heat Map for Climate Data

	Results
	FIGURE 2: Heat Map of JHDI Version 1
	FIGURE 3: Heat Map of JHDI Version 2
	FIGURE 4: Heat Map of JHDI Version 3
	TABLE 3: Final Index

	Discussion
	Limitations and next steps

	Conclusions
	Additional Information
	Disclosures

	References


