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Abstract
Introduction and background
The Early Learning Period (ELP) hypothesis posits that hospital mortality increases during the early
academic months, traditionally attributed to transitional challenges such as trainee inexperience and
changes in care teams. Understanding the validity of this hypothesis is crucial for guiding healthcare
strategies, either toward trainee-focused reforms if validated or systemic interventions if refuted. However,
systemic and seasonal factors, such as winter respiratory illness surges and healthcare resource strain, may
play a more significant role in hospital mortality trends.

Methods
This was a retrospective observational study utilizing the 2021 National Inpatient Sample (NIS), a nationally
representative database covering approximately 20% of U.S. hospitalizations. The study analyzed 5.6 million
adult hospitalizations from 2021, excluding pediatric cases and records with missing mortality data.
Hospital mortality trends were compared quarterly (Q1: January-March, Q2: April-June, Q3: July-September,
Q4: October-December) to evaluate associations with seasonal and systemic factors.

Results
Contrary to the ELP hypothesis, hospital mortality was highest in Q1 (4.0%), consistent with seasonal factors
like winter illnesses, and lowest in Q2 (2.7%). Mortality in Q3 (3.6%), the period associated with new trainee
arrivals, was lower than in Q1.

Conclusion
This study refutes the ELP hypothesis, demonstrating that systemic and seasonal factors, rather than trainee
inexperience, primarily drive hospital mortality trends. Proactive resource allocation targeted at seasonal
drivers, particularly during high-demand periods such as Q1, is crucial to improving patient outcomes.
These findings emphasize the need for systemic interventions, including enhanced resource allocation and
flexible staffing models, rather than trainee-centered reforms. Future research should incorporate monthly
mortality trends and teaching hospital-specific data for a more comprehensive understanding.

Categories: Epidemiology/Public Health, Internal Medicine, Quality Improvement
Keywords: covid-19 impact, early learning period (elp) hypothesis, healthcare system resilience, hospital mortality,
mortality trends, quarterly mortality rates, resource allocation, seasonal factors, seasonal mortality patterns, systemic
factors

Introduction
The Early Learning Period (ELP) hypothesis posits that hospital mortality increases during the early
academic year, commonly attributed to trainee inexperience and organizational inefficiencies in teaching
hospitals. This phenomenon, colloquially known as the "July Effect," suggests that the influx of newly
graduated trainees and the rotation of experienced staff during the start of the academic year leads to lapses
in patient safety and adverse clinical outcomes. While "July" is often referenced as a symbolic marker of
these transitions, the broader hypothesis extends to patterns observable during the initial quarter of the
academic year.

Despite its widespread perception, empirical support for the ELP hypothesis has been inconsistent. Early
studies suggested higher mortality and complication rates in teaching hospitals during the summer months
[1,2]; however, more recent analyses have challenged these findings, attributing seasonal mortality
variations to systemic factors such as influenza prevalence, resource constraints, and patient case mix [3-5].
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While teaching hospitals often experience greater clinical complexity, non-teaching hospitals have
demonstrated comparable seasonal variations in mortality, suggesting that factors beyond trainee turnover,
such as systemic and environmental influences, may play a more substantial role in driving these trends [6].

This study examines nationwide hospital mortality trends by quarter to critically evaluate the validity of the
ELP hypothesis. By leveraging a large, nationally representative dataset, this analysis distinguishes systemic
factors, such as seasonal illnesses and regional resource allocation, from potential trainee-related
influences. These findings aim to inform more targeted interventions that enhance hospital outcomes year-
round while challenging the conventional narrative surrounding the "July Effect."

Materials And Methods
Study design and data source
This retrospective observational study utilized data from the National Inpatient Sample (NIS), a database
developed as part of the Healthcare Cost and Utilization Project (HCUP), Agency for Healthcare Research
and Quality (AHRQ) [7]. The NIS is the largest publicly available all-payer inpatient healthcare database in
the United States, capturing data on approximately 20% of all U.S. hospitalizations annually. This study
specifically analyzed the 2021 NIS dataset, which covers a full calendar year, ensuring a comprehensive
evaluation of quarterly hospital mortality trends. The dataset was weighted to produce national estimates,
facilitating robust comparisons across discharge quarters.

Inclusion criteria
The study population included adult patients aged 18 years and older with complete mortality outcome data.
All hospital types represented within the NIS database were considered.

Exclusion criteria
The exclusion criteria comprised pediatric admissions (patients under 18 years of age), hospitalizations with
missing or incomplete mortality data, and records with data inconsistencies or errors in discharge coding.

Study variables
The study analyzed quarterly in-hospital mortality trends using patient- and hospital-level characteristics
derived from the 2021 NIS. Discharges were categorized by calendar quarters to align with seasonal patterns.
The independent variables included patient demographics, clinical risk classifications, and hospital-level
attributes. The primary outcome was in-hospital mortality, defined as death during the index
hospitalization. Details of the variables are presented in Table 1 below.

Category            Variables

Discharge Quarters Q1: January–March; Q2: April–June; Q3: July–September; Q4: October–December

Patient-Level Characteristics
(Independent Variables)

Age (continuous); Sex; Race/Ethnicity: White, Black, Hispanic, Other; APRDRG Mortality Risk
Classification: minor, moderate, major, extreme

Hospital-Level Characteristics
(Independent Variables)

Admission Type: Elective vs. Non-elective; Geographic Region: Nine U.S. Census Divisions;
Discharge Quarter

Primary Outcome In-hospital mortality (death during index hospitalization*)

Secondary Outcome None (This study focused solely on primary outcome trends)

TABLE 1: Study variables and discharge quarter categories
*Index Hospitalization: Refers to the hospital admission under investigation during which patient outcomes were measured. This excludes readmissions or
subsequent hospitalizations and focuses on the initial admission for outcome assessment.

APRDRG: All Patient Refined Diagnosis Related Group

Due to the significant portion of missing data (over 90%) for teaching hospital status, this variable was
excluded from the analysis. This limitation restricted the ability to directly compare teaching and non-
teaching hospitals, but the study aimed to provide a broad assessment of systemic mortality trends.

Statistical analysis
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Baseline characteristics of the study population were summarized using descriptive statistics, stratified by
discharge quarter. Differences between quarters were assessed using Chi-square tests for categorical
variables and ANOVA for continuous variables, with statistical significance set at p < 0.05.

Multivariable logistic regression models were constructed to evaluate the association between discharge
quarter and in-hospital mortality, adjusting for patient- and hospital-level covariates. Odds ratios (ORs)
with 95% confidence intervals (CIs) were reported for each variable. Interaction terms assessed the
modifying effects of age and admission type. Model diagnostics, including the Akaike Information Criterion
(AIC) and pseudo-R², were used to evaluate goodness-of-fit and robustness.

All statistical analyses were performed using SPSS version 27 (IBM Corp., Armonk, NY, USA). Statistical
significance was defined as a two-tailed p-value < 0.05.

Ethical considerations
The study utilized de-identified data from a publicly available database and was exempt from institutional
review board (IRB) approval per federal guidelines.

Results
Demographics and clinical characteristics
A total of 5.6 million hospitalizations from 2021 were analyzed, spanning all U.S. hospital types. The
baseline demographic and clinical characteristics varied slightly across quarters. Patients in Q1 (January-
March) were younger on average (64.8 ± 15.3 years) compared to Q3 (66.0 ± 15.0 years). Sex distribution was
balanced across all quarters, with females representing 51.5% of the population. Minimal variation was
observed in racial/ethnic composition and regional distribution of hospitalizations (Table 2).
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Variable Category Overall (%) Q1 (%) Q2 (%) Q3 (%) Q4 (%)

Demographic Characteristics      

Age (Mean ± SD) 65.4 ± 15.2 64.8 ± 15.3 65.0 ± 15.1 66.0 ± 15.0 65.8 ± 15.3

Male (%) 48.5 48.0 48.2 49.0 48.8

Female (%) 51.5 52.0 51.8 51.0 51.2

Race/Ethnicity      

White (%) 65.0 64.5 64.8 65.5 65.2

Black (%) 20.1 20.2 20.0 20.3 20.1

Hispanic (%) 10.5 10.4 10.6 10.2 10.7

APRDRG Mortality Risk      

Minor Risk (%) 40.7 40.0 40.5 41.2 40.8

Moderate Risk (%) 22.5 23.0 22.8 22.2 22.4

Major Risk (%) 21.5 22.0 21.3 21.6 21.4

Extreme Risk (%) 15.2 15.0 15.4 15.0 15.4

Geographic Region      

New England (%) 4.8 4.7 4.8 4.9 4.8

Middle Atlantic (%) 13.4 13.2 13.3 13.5 13.4

East North Central (%) 15.1 15.0 15.2 15.3 15.1

West North Central (%) 6.7 6.6 6.7 6.8 6.7

South Atlantic (%) 21.5 21.2 21.3 21.7 21.4

East South Central (%) 6.8 6.7 6.9 7.0 6.8

West South Central (%) 12.1 12.0 12.2 12.3 12.1

Mountain (%) 6.3 6.1 6.4 6.5 6.3

Pacific (%) 13.3 13.0 13.4 13.5 13.3

Admission Characteristics      

Weekend Admission (%) 25.0 24.3 25.1 25.5 24.9

Weekday Admission (%) 75.0 75.7 74.9 74.5 75.1

TABLE 2: Baseline Characteristics of Study Population
Q1: January–March; Q2: April–June; Q3: July–September; Q4: October–December; APRDRG: All Patient Refined Diagnosis Related Groups

Mortality outcome and descriptive findings
Mortality rates were highest in Q1 (4.0%) and lowest in Q2 (2.7%), reflecting the impact of systemic strain
and winter illnesses during the early part of the year (Table 3). Q3, which coincides with the start of the
academic year and the arrival of new trainees, showed a mortality rate of 3.6%. Figure 1 visually illustrates
these trends, showing the seasonal fluctuations in mortality rates across quarters.
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Mortality Outcome Q1 Q2 Q3 Q4 Total

Survived 1,324,689 (96.0%) 1,395,820 (97.3%) 1,397,201 (96.4%) 1,360,641 (96.2%) 5,478,351 (96.5%)

Died 55,793 (4.0%) 38,149 (2.7%) 51,619 (3.6%) 53,959 (3.8%) 199,520 (3.5%)

Total Admissions 1,380,482 1,433,969 1,448,820 1,416,600 5,677,871

TABLE 3: Mortality Rates by Quarter
Q1: January–March; Q2: April–June; Q3: July–September; Q4: October–December

FIGURE 1: Mortality Trends by Quarter

Quarterly mortality trends
Multivariable logistic regression identified significant predictors of in-hospital mortality, including
discharge quarter, patient age, and All Patient Refined Diagnosis Related Groups (APRDRG) risk
classification. Mortality was highest in Q1 (January-March) and lowest in Q3 (July-September). Using Q1 as
the reference, the odds ratios for in-hospital mortality across quarters were: Q2: OR = 0.928 (95% CI: 0.912-
0.945, p < 0.001); Q3: OR = 0.909 (95% CI: 0.894-0.926, p < 0.001); Q4: OR = 0.941 (95% CI: 0.924-0.958, p <
0.001).

Increasing age and extreme APRDRG risk were also strong predictors of mortality. Extreme APRDRG risk was
associated with a seven-fold increase in odds (OR = 7.679, p < 0.001), and each additional year of age was
associated with a modest increase in risk (OR = 1.073, p < 0.001) (Table 4).
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Variable B (Coefficient) S.E. (Standard Error) Wald Statistic df p-value (Sig.) Exp(B) (Odds Ratio)

Discharge Quarter       

Q1 (Reference) - - - - - 1.000

Q3 vs. Q1 -0.092 0.013 139.127 1 <0.001 0.909

Age (Years) 0.071 0.002 1,672.846 1 <0.001 1.073

Age × Quarter Interaction Significant - - - <0.001 -

APRDRG Risk Classification       

Minor Risk (Reference) - - - - - 1.000

Extreme Risk vs. Minor Risk 2.039 0.016 15,554.415 1 <0.001 7.679

Census Division       

East South Central (Reference) - - - - - 1.000

South Atlantic 0.086 0.014 38.876 1 <0.001 1.090

Race       

White (Reference) - - - - - 1.000

Black 0.174 0.016 118.733 1 <0.001 1.190

Elective Admission       

Non-Elective (Reference) - - - - - 1.000

Elective -0.054 0.012 20.166 1 <0.001 0.947

Weekend Admission 0.206 0.011 351.273 1 <0.001 1.229

Constant -0.601 0.016 1,453.217 1 <0.001 0.548

TABLE 4: Logistic Regression Results
Odds ratios (Exp(B)) indicate the relative likelihood of mortality for each variable, with statistical significance determined at p < 0.05.

Q1: January–March; Q3: July–September; APRDRG: All Patient Refined Diagnosis Related Groups

These findings underscore the importance of proactively identifying high-risk patients, particularly those
with extreme APRDRG risk, to mitigate mortality during peak demand periods.

Figure 2 provides a visual summary of these logistic regression results, highlighting the predictors of in-
hospital mortality, including discharge quarter and APRDRG risk.
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FIGURE 2: Logistic regression results
Q1: January–March; Q3: July–September

Age-related interactions
Older adults (≥65 years) experienced disproportionately higher mortality during Q1 compared to younger
groups (interaction p < 0.001). These findings underscore the need for targeted interventions to address the
unique risks faced by older adults during high-mortality periods, particularly in Q1.

Sensitivity analyses
Sensitivity analyses excluding hospitals with incomplete data on key variables confirmed the robustness of
the findings. AIC and pseudo-R² values demonstrated good model fit and predictive accuracy, further
validating the logistic regression model.

Discussion
Interpretation of findings
The observed increase in mortality during Q1 aligns with the well-documented seasonal upticks in hospital
admissions due to respiratory illnesses such as influenza [3-5]. These conditions strain healthcare systems,
exacerbating existing resource shortages [8]. Further complicating this issue are regional disparities in
healthcare infrastructure, which intensify the challenges during high-demand periods, as evidenced by
variations in hospital capacity and outcomes across different geographic regions [9]. This increase in
resource demand during winter months notably heightens the risk of adverse events, underscoring the
urgent need for enhanced systemic preparedness [10]. Conversely, the absence of increased mortality in Q3
suggests that trainee transitions have minimal impact on patient outcomes. This undermines the
assumption that inexperienced trainees during the academic year's start are a primary cause of increased
mortality [5].

Seasonal versus trainee factors
The findings suggest that winter illnesses, resource strain, and systemic challenges are primary drivers of
hospital mortality, particularly in Q1. This calls into question the assumption that the presence of
inexperienced trainees during Q3 has a significant negative impact on mortality. The absence of a notable
increase in mortality during Q3, a period traditionally associated with the influx of new trainees, undermines
the commonly held belief that these trainees significantly compromise patient outcomes. Instead, it appears
that systemic and seasonal factors play a more pivotal role in fluctuating mortality rates, highlighting the
need for targeted systemic interventions during peak demand periods.

COVID-19 as a confounder
The COVID-19 pandemic heavily influenced healthcare delivery in 2021, adding significant complexity to
mortality trends. The diversion of hospital resources toward managing COVID-19 cases likely impacted the
availability and quality of care for other conditions, potentially inflating mortality rates across various non-
COVID conditions [11].

Additionally, the pandemic's effect on staffing, particularly through burnout and sickness among healthcare
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workers, could have indirectly influenced mortality rates. High stress and reduced staffing levels are known
to affect patient care quality, which in turn could contribute to higher mortality rates [12]. These factors may
have exacerbated systemic challenges such as resource shortages, obscuring traditional seasonal variations
[13].

Hospitals experienced variations in COVID-19 caseloads, which may have led to inconsistent impacts across
different regions and types of hospitals, complicating the task of distinguishing pandemic-specific effects
from other seasonal and systemic factors influencing hospital mortality [14].

Analyzing these pandemic-specific variables is crucial for a comprehensive understanding of the 2021
mortality data. Disentangling these effects from broader patterns requires a nuanced approach that
considers both the direct impacts of the virus on patients and its systemic effects on healthcare delivery.
Further analyses should aim to isolate these pandemic-related variables, possibly through comparative
studies with previous years where such pandemic effects were not present, to accurately assess the true
impact of systemic healthcare factors and the direct effects of COVID-19 on hospital mortality [15].

Evolving medical training landscape
The traditional boundaries defining teaching hospitals are becoming increasingly fluid. More hospitals that
are not officially designated as teaching institutions are hosting residents, driven by expanding training
needs, partnerships with medical schools, and broader healthcare system integrations. These shifts reflect a
global trend towards more integrated and flexible healthcare training environments [16].

Additionally, the distinctions between university-based and community-based residency programs, and
their impact on the quality of medical training, have been examined, adding depth to our understanding of
these complexities [17]. As Cox and Desai point out, the growing need for diverse training settings is
addressing a broad crisis in clinical education, highlighting challenges and opportunities within the current
systems of medical training [18].

This evolving diversity in training settings is reshaping where and how medical training occurs, potentially
affecting the data on hospital teaching status and complicating direct comparisons between traditionally
defined teaching and non-teaching hospitals.

Limitations and impact of missing teaching hospital data
While this study benefits from the comprehensive, nationally representative 2021 NIS dataset, it is not
without limitations that must be acknowledged. A notable limitation is the extensive missing data for
teaching hospital status, which affects over 90% of our dataset. This substantial gap precludes a direct
comparison between teaching and non-teaching hospitals, a factor potentially critical for dissecting the
nuances of the ELP hypothesis. Consequently, our findings must be interpreted with caution, recognizing
that they may not fully capture the variations in hospital practices and cultures that could influence
mortality rates.

Furthermore, while sensitivity analyses or multiple imputation are commonly employed to assess and
mitigate the impact of missing data [19], these methods presuppose that the missing data are not substantial
enough to bias the imputed values significantly. In cases where missing data constitutes a small to moderate
proportion of the dataset, these techniques can be very effective. However, the variable for teaching hospital
status in this study had over 90% missing data, making methods such as multiple imputation impractical - a
limitation further explained in the following discussion.

At such high levels of missingness, the assumptions underpinning multiple imputation, particularly the
assumption of missing at random (MAR), may not hold. This limitation is highlighted by research indicating
that high levels of missing data can significantly affect the performance of multiple imputation, leading to
biased and unreliable outcomes [20]. In situations like ours, where the proportion of missing data is
exceptionally high, the reliability of statistical estimates obtained through imputation significantly
decreases, potentially introducing more bias into the results rather than mitigating it. Therefore, we opted
not to use these methods but acknowledge that this decision limits our ability to explore how differences
between teaching and non-teaching hospitals might affect mortality rates.

Additionally, a significant limitation of this study is its focus solely on in-hospital mortality, excluding post-
discharge deaths. This approach may underestimate overall mortality trends, as patients discharged early or
transferred to other facilities could experience mortality outcomes outside the hospital setting.
Consequently, our findings may not fully represent patient outcomes beyond the hospital stay, particularly
for high-risk populations. Future research incorporating longitudinal follow-up data or linkage with post-
discharge outcomes could provide a more comprehensive assessment of mortality patterns.

Implications for practice and future directions
The data underscore the necessity for systemic interventions rather than focusing solely on trainee-related

 

2025 Bakinde et al. Cureus 17(2): e79125. DOI 10.7759/cureus.79125 8 of 10

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


reforms. Proactive measures to manage peak demands during winter months, such as optimizing staffing
flexibility, enhancing resource allocation, and boosting overall hospital preparedness, could markedly
improve patient outcomes. Additionally, promoting continuous team integration and robust supervision
throughout the year could alleviate systemic inefficiencies and elevate care quality [21].

Future studies should aim to secure datasets enriched with detailed teaching hospital data and account for
monthly trends to more accurately discern patterns in hospital mortality. Incorporating controls for
pandemic-related variables will also be crucial for a clearer understanding of the dynamics influencing
hospital mortality. Expanding data collection efforts to capture these critical factors will allow researchers to
formulate more precise and context-specific healthcare recommendations, highlighting the ongoing need
for improvements in data collection methods and healthcare information systems.

Conclusions
This study refutes the ELP hypothesis, demonstrating that systemic and seasonal factors, such as winter
illnesses and resource strain, rather than trainee inexperience, primarily drive hospital mortality trends. The
findings emphasize that mortality peaks in Q1 (January-March), coinciding with well-documented seasonal
pressures, while Q3 (July-September), traditionally linked to new trainee arrivals, does not show increased
mortality.

Although the study was limited by the absence of comprehensive teaching hospital data, which precluded
direct comparisons between teaching and non-teaching hospitals, the results strongly suggest that systemic
factors, not academic transitions, are the predominant contributors to mortality trends.

These findings underscore the need for healthcare systems to prioritize systemic interventions, including
improved resource allocation and flexible staffing during peak demand periods. Future research should
incorporate monthly mortality patterns, detailed teaching hospital data, and pandemic-specific adjustments
to further refine our understanding of hospital mortality drivers.
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