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Abstract
Radiomics extracted from cone beam computed tomography (CBCT) can be assessed at time points during
treatment and may provide an advantage over assessments in a pre-treatment setting using diagnostic
images, like magnetic resonance imaging (MRI) or computed tomography (CT), for prostate cancer (pCa)
patients receiving radiotherapy (RT). The purpose of this study was to analyze correlations between prostate
radiomic features (RFs) derived from T2-weighted (T2w) MRI, CT, and first fraction CBCT for patients
receiving RT for pCa. Forty-seven patients were analyzed. The prostate volumes were manually segmented,
and 42 radiomic features were extracted, of which seven volume-normalized RFs were considered. The
absolute Spearman correlation was calculated among the RFs of the aforementioned imaging modalities
(RM) and prostate volume (RV) since the motivation of this paper was to analyze the strength of the

correlation. The Benjamini-Hochberg adjustment was applied to p-values to account for multiple
comparisons. No high correlations were found between CT/CBCT vs. T2w. The intramodality
RM demonstrated that CT RFs were much higher than the other modalities. For example, intramodality

RM≥0.95 the percentage of RFs was 17% for CT, 9% for CBCT, and 4.5% for T2w. The differences in RFs across

different modalities can be viewed positively: the lack of correlation between RFs across T2w and CT/CBCT
could indicate a fundamental difference in the extractable image information. It could also indicate that
some RFs did not have any extractable information. A future study will include evaluating the predictive
performance of patient outcomes using radiomic features from CT, CBCT, and T2w, which could help in
answering such questions.

Categories: Medical Physics, Radiation Oncology
Keywords: cone beam ct, ct, mri, prostate cancer, radiomics

Introduction
A variety of radiomics studies to date have proposed that radiomic features (RFs) are predictive for the
prognosis and treatment response in prostate cancer (pCa) patients treated with radiotherapy (RT) [1-11],
but little is known about the applicability of the same RFs across different imaging modalities. The clinical
relevance of understanding correlations across imaging modalities may be to leverage knowledge gained
from one modality to another. Alternatively, differences in the RFs may indicate complementary
information from the imaging modalities.

However, it should be acknowledged that MRI, CT, and CBCT contain different image information that is
likely to yield unequal quantities for the RFs. For example, MRI soft tissue contrast in the prostate is much
greater than that of CT. Consequently, image contrast differences between MRI, CT, and CBCT that lead to
low radiomic feature correlations may indicate that information content among these modalities is
complementary.

This exploratory study investigates RFs extracted from pCa patients receiving RT and scanned with T2-
weighted (T2w), CT, and CBCT. Previous publications have warned about potential confounding effects due
to the volume dependence of RFs [12-14]. Therefore, we also investigated the volume dependence of RFs for
each of these modalities.

The primary objective of this study was to evaluate the correlation of radiomic features (RFs) extracted from
T2-weighted MRI, CT, and first-fraction CBCT images of the prostate in patients receiving radiotherapy for
prostate cancer. A secondary objective was to assess the volume dependence of these RFs for each imaging
modality.
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Materials And Methods
Patient population
Forty-seven patients were retrospectively selected from a database of patients that were enrolled in
institutional review board (IRB)-approved protocols for the treatment of pCa. The pCa patient population
included a variety of Gleason Scores, such as 3+3,4+3,4+4,3+4, and 4+5, and staging, such as T1c, T2a, T2b,
T2c, T3a, and T3b. For this study, selection criteria required (1) that patients were treated with volumetric
modulated radiation therapy (VMAT) on a TrueBeam linear accelerator (Varian Medical Systems, Palo Alto,
California), including an iterative reconstruction algorithm to improve CBCT image quality; and (2) that
T2w, CT, and CBCT images were available for analysis. Imaging characteristics and sequences are described
in the following section. RT dose may lead to anatomical differences in the CBCT as treatment progresses.
Meaning that the first fraction of CBCT images before treatment should have the most similarity to the CT
and T2w images. For this reason, the first fraction of the CBCT was included in the analysis. The T2w images
were limited to scans acquired within three months of the planning CT (pCT) (20.7 ± 25.9 days prior) to
reduce the effect of changing anatomy. Image quality was also assessed for inclusion in the study. Patients
with prostheses were very obese, and images with other artifacts limited the quality of images that were
removed from inclusion in the study. These selection criteria reduced the number of analyzable patients to
47. The mean patient age was 71± 8 years.

Imaging characteristics
Imaging characteristics considered in this study are listed in Table 1. Characteristics such as image size, pixel
size, slice thickness, and field of view (FOV) can affect RFs, and describing them can aid in repeatability for
future studies. Patients were scanned on a variety of MR models, summarized in Table 1. Patients were
simulated using a variety of CT scanners, summarized in Table 1. Daily setup images of the patients were
acquired on TrueBeam with onboard imagers reconstructed with an iterative reconstruction algorithm [15].
Based on previous work, a sharp convolution algorithm and very low noise suppression were used to improve
image quality and reproducibility with planning CT [16]. For consistency, all images were resampled using a
cubic interpolation to 1 mm isotropic voxel size, which is close to the native resolution.
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Modality T2 T2 CT CT CBCT

Manufacturer Siemens GE Siemens Philips Varian

N 31 16 44 3 47

Width (pixels) 458.3 ± 61.8 320 ± 114.5 512 ± 0 512 ± 0 466 ± 0

Height (pixels) 441.8 ± 70.9 320 ± 114.5 512 ± 0 512 ± 0 466 ± 0

Pixel Spacing (mm) 0.7 ± 0.1 1.1 ± 0.3 1.3 ± 0.2 1 ± 0 1 ± 0

Slice Thickness (mm) 2.8 ± 0.5 2.5 ± 0 2 ± 0 2 ± 0 1 ± 0

Tube Voltage (kVp) N/A N/A 120.9 ± 4.2 120 ± 0 126.6 ± 4.7

Tube Current (mA) N/A N/A 336 ± 156.3 330 ± 14.8 61.6 ± 4.7

Reconstruction N/A N/A FBP FBP iCBCT

Convolution Kernel N/A N/A B30s,B41s,Bf42s,I31f B Sharp

iCBCT Noise Suppression N/A N/A N/A N/A Very Low

Magnetic Field Strength (T) 3 ± 0 3 ± 0 N/A N/A N/A

Sequence Turbo Spin Echo Fast Spin Echo N/A N/A N/A

Echo Time (ms) 110.7 ± 7.8 84.6 ± 2.1 N/A N/A N/A

Repetition Time (ms) 5655.8 ± 1290.1 5964.5 ± 430.9 N/A N/A N/A

Flip Angle (deg) 124.9 ± 12.9 111 ± 0 N/A N/A N/A

Pixel Bandwidth (Hz/pixel) 315.3 ± 46 341.8 ± 87.3 N/A N/A N/A

TABLE 1: Imaging characteristics categorized by imaging modality, manufacturer, and model. The
number of patients (N) is shown per category.
Values for the imaging characteristics are shown using the following notation: mean ± std. FBP is filtered back projection. Manufacturers included Varian
Medical Systems, Palo Alto, CA; Siemens Healthineers AG, Germany; Philips, Netherlands, and GE Medical Systems, Chicago, IL.

iCBCT: iterative cone-beam computed tomography, CBCT: Cone-beam computed tomography, CT: Computed tomography

RF extraction
Forty-two RFs were extracted from prostate contours from the previously mentioned imaging modalities.
Textural parameters were calculated from five RF classes, including gray-level co-occurrence matrices
(GLCM), neighborhood gray-tone difference matrix (NGTDM), gray-level run-length matrices (GLRLM), and
gray-level size zone matrices (GLSZM), and first-order statistical features. The RFs are listed in Table 2. Data
processing and radiomic feature analysis were performed using scientific computation software (MATLAB,
ver. 2020b, MathWorks Inc., Natick, MA). Radiomic features were calculated using the MATLAB ‘Radiomics’
package developed by Vallières et al., which is publicly available, to extract 3D bitmaps of the ROI using the
digital imaging and communications in medicine (DICOM) structure files from the CBCT, CT, and MRI
DICOM files [17]. The extracted images from the previously mentioned imaging modalities were isotropically
resampled to a 1 mm voxel size. These features are described in detail in Delgadillo et al., including the
image biomarker standardization initiative (IBSI) code equivalent [16,18]. While 40 RFs were IBSI compliant,
NGTDM coarseness and strength were not IBSI compliant. However, their definitions can be found in
Amadasun and King [19].

Previous studies have noted that some radiomic features are highly correlated with volume [12,20-22]. In
order to account for possible volume confounding effects, radiomic features that were found to be volume-
dependent were normalized using equations stated in Fave et al. and Shafiq-ul-Hassan et al. [20,21]. Volume
normalizations (VN) from Fave et al. were used for NGTDM Busyness and NGTDM Coarseness [20]. For
NGTDM Strength, GLSZM GLN, GLRLM GLN, and GLRLM RLN volume normalization from Shafiq-ul-Hassan
et al. was used [21]. GLSZM ZSN was normalized by dividing by the number of pixels using a similar logic as
GLRLM RLN. Formulas used for volume normalization (Table 2) included:
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Class Radiomic Feature
Volume
Normalization

Gray-level Co-occurrence Matrices (GLCM) [LFYI] Contrast [ACUI]  

GLCM[LFYI] Correlation [NI2N]  

GLCM Dissimilarity [8S9J]  

GLCM Energy [8ZQL]  

GLCM Entropy [TU9B]  

GLCM Homogeneity [IB1Z]  

GLCM Sum Average [ZGXS]  

GLCM Variance [UR99]  

Gray-level Run Length Matrices (GLRLM) [TP0I] Gray-level Non-Uniformity (GLN) [R5YN] RFNorm Type 1

GLRLM Gray-level Variance (GLV) [8CE5]  

GLRLM High Gray-level Run Emphasis (HGRE) [G3QZ]  

GLRLM Long Run Emphasis (LRE) [W4KF]  

GLRLM
Long Run High Gray-level Emphasis (LRHGE)
[3KUM]

 

GLRLM Long Run Low Gray-level Emphasis (LRLGE) [IVPO]  

GLRLM Low Gray-level Run Emphasis (LGRE) [V3SW]  

GLRLM Run Length Variance (RLV) [SXLW]  

GLRLM Run Percentage (RP) [9ZK5]  

GLRLM Run-Length Non-Uniformity (RLN) [W92Y] RFNorm Type 1

GLRLM Short Run Emphasis (SRE) [220V]  

GLRLM
Short Run High Gray-level Emphasis (SRHGE)
[GD3A]

 

GLRLM Short Run Low Gray-level Emphasis (SRLGE) [HTZT]  

Intensity-based Statistics (IS) [UHIW] Kurtosis [IPH6]  

IS Skewness [KE2A]  

IS Variance [ECT3]  

Neighborhood Gray-Tone Difference Matrix (NGTDM)
[IPET]

Busyness (BUSY) [NQ30] RFNorm Type 3

NGTDM Coarseness (COAR)* RFNorm Type 4

NGTDM Complexity (CPLX) [HDEZ]  
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NGTDM Contrast (CONT) [65HE]  

NGTDM Strength (STRG)* RFNorm Type 2

Gray-level Zone Size Matrices (GLZSM) [9SAK] Gray-level Non-Uniformity (GLN) [JNSA] RFNorm Type 1

GLZSM Gray-level Variance (GLV) [BYLV]  

GLZSM High Gray-level Zone Emphasis (HGZE) [5GN9]  

GLZSM Large Zone Emphasis (LZE) [48P8]  

GLZSM
Large Zones High Gray-level Emphasis (LZHGE)
[J17V]

 

GLZSM
Large Zones Low Gray-level Emphasis (LZLGE)
[YH51]

 

GLZSM Low Gray-level Zone Emphasis (LGZE) [XMSY]  

GLZSM Short Zone Emphasis (SZE) [5QRC]  

GLZSM
Short Zones High Gray-level Emphasis (SZHGE)
[HW1V]

 

GLZSM
Short Zones Low Gray-level Emphasis (SZLGE)
[5RAI]

 

GLZSM Zone Percentage (ZP) [P30P]  

GLZSM Zone Size Non-Uniformity (ZSN) [4JP3] RFNorm Type 1

GLZSM Zone Size Variance (ZSV) [3NSA]  

TABLE 2: Forty-two radiomic features were considered in this study. IBSI codes listed in brackets.
Volume normalization is shown when applicable.
GLCM: Gray-level co-occurrence matrices, GLRLM: Gray-level run length matrices, IS: Intensity-based statistics, NGTDM: Neighborhood gray-tone
difference matrix, GLZSM: Gray-level zone size matrices, IBSI: Image biomarker standardization initiative 

Terms in volume normalization include the number of voxels of each intensity, i, in the image N(i); Nv is the
total number of voxels; pi is the probability of intensity i in the image; s(i) is the sum of the average
difference value around voxels of intensity i; Gh is the highest gray-level intensity; Ng is the number of gray
levels.

Prior to RF extraction, a variety of preprocessing steps can be carried out, including different quantization
algorithms, quantization bins, and the use of Collewet normalization [16]. For this work, we focused on the
Lloyd quantization algorithm with Collewet normalization since it is highly reproducible [16] between CT
and CBCT with preprocessing settings commonly used in MRI RF studies [23]. The IBSI notation refers to
this type of Collewet normalization as a re-segmentation method RS:3σ 7ACA [18], and it was calculated by
normalizing the gray levels of the ROI from the range of where was the mean and was the standard deviation
of the ROI gray levels. The Lloyd-Max quantization algorithm is an algorithm where bin levels are assigned
in a way that minimizes quantization error [24]. Sixty-four quantization bins were used. Prostate volume was
also included in the RF list to assess its impact on other RFs.

Prostate delineation
The standard clinical workflow for contouring the prostate follows the Prostate Imaging Reporting and Data
System (PIRADS [25]). The entire prostate, including the urethra, was segmented for radiomic analysis. A
team of radiation oncologists with expertise in prostate cancer RT delineated the prostate on the planning
CT (pCT) with the aid of MRI. The prostate volumes were segmented using commercial radiation oncology
imaging software that included MIM, ver. 6.8.1, MIM Software Inc., Cleveland, OH, and Eclipse, ver. 16.1,
Varian Medical Systems, Inc., Palo Alto, CA. The prostate contours were drawn by the radiation oncologist
on either the MRI or pCT, then rigidly transferred to the other. The CBCT prostate contour was rigidly
transferred from the pCT prostate contour. When necessary, the radiation oncologist corrected the prostate
contours to account for prostate deformation or contour artifacts due to registration errors. Gold fiducial
artifacts were removed from prostate contours on CT and CBCT images prior to RF extraction using the
algorithm described in a previous study [16]. The fiducial artifact removal algorithm sets an artifact
threshold defined with range [μAL − 3σAL, μAL + 3σAL] where μAL is the mean and σAL is the standard
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deviation of the voxel intensity levels on layers not containing fiducial artifacts. On layers containing
fiducial artifacts, a mask was generated by defining a circle of 5 mm centered on the fiducial marker,
including pixels that exceeded the artifacts threshold. Typically, metal streaking artifacts in the prostate
radiate outwards from the center of the fiducial. To capture this aspect, masks were generated to overlay
pixel mask lines between the distal artifact pixels to the center of the fiducial [16]. For this study, the
removal of the gold fiducial artifacts reduced the ROI volumes of the CT by 15 ± 13% (average ± standard
deviation) and the CBCT by 10 ± 9%. Gold fiducial artifacts were not removed from the T2w ROI as streaking
from gold fiducial artifacts was not present on T2w as it is in CT. For a subsample of 10 patients, the CT gold
fiducial artifact mask was manually recreated in MIM imaging software and rigidly transferred to the T2
images. Then, the radiomic features of the prostate on the T2 images were calculated both with and without
the artifact mask applied. A paired T-test was performed between the RFs with and without the artifacts
mask applied to the T2w images.

Data analysis
To investigate associations between imaging modalities, the absolute value of the Spearman correlation
coefficient (R) was calculated between the RF from T2w and the same RF from CT/CBCT. The absolute value
of R was considered because both strongly positive and negative correlations indicate an association
between variables. The workflow for this data analysis is shown in Figure 1. Spearman correlation was
utilized to account for non-normal distributions. The threshold for well-correlated RF was R>0.75. Data
processing and analysis were performed using scientific computation software (MATLAB). The Benjamini-
Hochberg correction was used to adjust the p-values to account for multiple comparisons [26]. Precedence
for using the Benjamini-Hochberg for multiple comparisons was found in a lung-based radiomics paper by
Fave et al. 2016 [20]. An alpha of 0.05 was chosen to set the significance threshold for the adjusted p-value.
To further study the role of volume on the RFs, the correlation between prostate volume and RF was
calculated for every RF and imaging modality.
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FIGURE 1: Workflow for estimating the correlation of RFs between T2w,
CT, and CBCT, and RFs vs. prostate volume for each imaging modality.
CT: Computed Tomography, CBCT: Cone Beam Computed Tomography, RF: Radiomic Features

A correlation matrix was calculated between all combinations of RFs and modalities considered in this
study. The diagonal components of the correlation matrix are trivially equal to one and removed from the
analysis. The correlation matrix is symmetric about the diagonal, and counting all entries would lead to
double counts. Only the triangular upper part of the p-values matrix was considered in the Benjamini-
Hochberg correction. RFs with a correlation greater than 0.75 with volume were highly removed from the
analysis to avoid volume confounding effects, which is consistent with our threshold for well-correlated as
stated earlier.

Two types of correlation comparisons were considered for the analysis.

The first type of correlation comparison was intramodality correlations of RFs. These are correlations within
the same modality but across different RFs. It could be that modalities exhibit differences in the self-
correlations within the same modality. Some modalities may tend to have a smaller effective feature space
than others if many of their RFs correlate with each other. Future work could assess the effective feature
argument by exploring a principal component analysis, or similar technique, to assess the dimensionality of
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the feature space in each modality.

The second type of correlation comparison was the intermodality correlations of RFs. These are correlations
between different modalities. These types of correlations are studied to analyze whether RFs are robust
across modalities. There are two types of intermodality correlations of RFs considered in this study. The first
type of intermodality correlations was the same RF comparisons only. It could be that a particular RF from
one modality correlates with the same RF on another modality. For example, CT and CBCT are more similar
to each other than T2w. So, it may be expected that more RFs are robust between CT vs. CBCT than CT vs.
T2w. The second type of intermodality correlation was variable modality-RF comparisons. When looking at
T2w, it is often noticed that some areas that appear high intensity in T2w appear low intensity in CT or vice
versa. So, it may be possible that an RF from T2w may compare to a different RF from CT, for example.
Perhaps a feature counting segments of low intensities correlates to another feature counting segments of
high intensity on a different modality.

Results
The effect of artifact mask on radiomic features
A paired T-test showed that most of the RFs were not statistically different with and without the artifacts
mask applied to the T2w images, shown in Table 3. However, a few were statistically significant (p<0.05) and
were all from the size zone and run length matrices, which makes intuitive sense because the streaking
artifacts introduce breaks in the continuous runs of the same gray levels.

  Spearman Correlation Paired T-test

Feature Class RF r p-value t p-value

GLCM Contrast 0.794 0.010 -1.924 0.087

GLCM Correlation 0.964 0.000 0.754 0.470

GLCM Dissimilarity 0.952 0.000 -2.037 0.072

GLCM Energy 0.927 0.000 1.399 0.195

GLCM Entropy 0.903 0.001 -1.514 0.164

GLCM Homogeneity 0.976 0.000 2.271 0.049

GLCM SumAverage 1.000 0.000 -0.205 0.842

GLCM Variance 0.988 0.000 -0.899 0.392

Global Kurtosis 0.927 0.000 1.728 0.118

Global Skewness 0.988 0.000 0.406 0.694

Global Variance 0.976 0.000 -1.366 0.205

GLRLM GLN-VN 0.939 0.000 1.820 0.102

GLRLM GLV 0.903 0.001 1.303 0.225

GLRLM HGRE 0.988 0.000 0.270 0.793

GLRLM LGRE 0.988 0.000 -0.168 0.870

GLRLM LRE 0.770 0.014 -2.150 0.060

GLRLM LRHGE 0.964 0.000 -2.189 0.056

GLRLM LRLGE 0.988 0.000 -0.456 0.659

GLRLM RLN-VN 0.770 0.014 2.098 0.065

GLRLM RLV 0.588 0.080 1.184 0.267

GLRLM RP 0.770 0.014 2.138 0.061

GLRLM SRE 0.770 0.014 2.178 0.057

GLRLM SRHGE 0.988 0.000 0.575 0.579

GLRLM SRLGE 0.988 0.000 -0.037 0.971
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GLSZM GLN-VN 0.782 0.012 2.006 0.076

GLSZM GLV 0.709 0.028 -0.475 0.646

GLSZM HGZE 0.988 0.000 -0.210 0.838

GLSZM LGZE 0.939 0.000 -0.533 0.607

GLSZM LZE 0.636 0.054 -1.363 0.206

GLSZM LZHGE 0.515 0.133 -1.138 0.285

GLSZM LZLGE 0.806 0.008 -2.279 0.049

GLSZM SZE 0.564 0.096 1.274 0.235

GLSZM SZHGE 0.927 0.000 0.351 0.734

GLSZM SZLGE 0.636 0.054 -0.206 0.842

GLSZM ZP 0.721 0.024 2.040 0.072

GLSZM ZSV 0.794 0.010 -1.676 0.128

NGTDM Busyness-VN 0.988 0.000 0.215 0.834

NGTDM Coarseness-VN 0.964 0.000 0.875 0.405

NGTDM Complexity 0.733 0.021 -1.676 0.128

NGTDM Contrast 0.964 0.000 -0.585 0.573

NGTDM Strength-VN 0.927 0.000 -1.399 0.195

Geometry Volume 0.709 0.028 -3.002 0.015

TABLE 3: Statistical comparison between radiomics features extracted from T2 images with and
without an artifact mask.
GLCM: Gray-level co-occurrence matrices, RF: Radiomic features, GLN-VN: Gray-level non-uniformity VN, GLRLM: Gray-level run length matrices, GLV:
Gray-level Variance, HGRE: High gray-level run emphasis, LGRE: Low gray-level run emphasis, LRE: Long run emphasis, LRHGE: Long run high gray-
level emphasis, LRLGE: Long run low gray-level emphasis, RLN-VN: Run-length non-uniformity (VN), RLV: Run-length non-uniformity, RP: Run
percentage, SRE: Short run emphasis, SRHGE: Short run high gray-level emphasis, SRLGE: Short run low gray-level emphasis, GLSZM: Gray-level size
zone matrices, HGZE: High gray-level zone emphasis, LGZE: Low Gray-level zone emphasis, LZE: Large zone emphasis, LZHGE: Large zones high
gray-level emphasis, LZLGE: Large zones low gray-level emphasis, SZE: Short zone emphasis, SZHGE: Short zones high gray-level emphasis, SZLGE:
Short zones low gray-level emphasis, ZP: Zone percentage, ZSV: Zone size variance, NGTDM: Neighborhood gray-tone difference matrix

Correlation of RFs
The initial correlation matrix of RFs across different modalities is shown in Figure 2. As described in the
methods, only the upper triangular part of the correlation matrix was considered for this study. The adjusted
p-values are shown in Figure 3. In contrast to Figure 2, where yellow represents a high correlation, the data
in Figure 3 (yellow) corresponds to a high p-value. Some of the differences between the comparisons can be
noticed in Figures 2, 3. For example, the intramodality correlations stand out as having higher correlations
than the intermodality correlations. Notice the number of higher correlations in the squares along the
diagonals in Figure 2. It can also be seen that CT/CBCT vs. T2w correlations often have higher p-values and
indicate that the many RF correlations across CT/CBCT vs. T2w are not statistically significant.
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FIGURE 2: Initial correlation matrix of all the combinations of RFs and
modalities considered in this study. Only the upper triangular part of the
correlation matrix was considered for the statistical analysis to avoid
overcounting and trivial comparisons.
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FIGURE 3: Adjusted p matrix for the correlations considered in this
study.

The intermodality correlation of RFs and the RF correlation with volume is shown in Figure 4. As stated in
the methods, the volume correlations were used to filter out RFs that correlate highly with volume. All the
volume-normalized features have intermodality correlations less than 0.5.
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FIGURE 4: a) Intermodality correlation of RF, RM, vs. RF. Only the same
RF comparisons are shown for brevity. b) RF correlation with volume,
RV,vs. RF. Values sorted based on max |RM| across all the different
modalities in descending order. Redundant RF with pM>0.05 across all
modality comparisons was removed from the figure.

Intramodality correlations
A histogram of the intramodality correlations of RFs for CBCT, CT, and T2w of the prostate is shown in
Figure 5. CT RFs have the greatest portion of RFs with intramodality correlation greater than 0.85. This is
followed by CBCT with the second largest portion of RFs with intramodality correlation greater than 0.85,
and T2w is last. As shown in Figure 5, the RFs of T2w are evenly distributed over the intramodality
correlations.
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FIGURE 5: Histogram of the intramodality correlation of RFs for CBCT,
CT, and T2w of the prostate. Results shown only include the statistically
significant data, i.e., p<0.05. Overall percentages of features that were
statistically significant by modality are shown in text box in upper right
corner.

Intermodality correlations: same RF comparisons only
When considering the same RFs, CT vs. CBCT RFs correlate more than the CT/CBCT vs. T2w RFs. The
intermodality correlation for the same RF comparisons is only shown in Figure 6. As mentioned in the
introduction, this is expected since CT and CBCT are both X-ray-based imaging. This makes sense
intuitively, a T2w image of the prostate looks different than a CT or CBCT. Figure 6 also demonstrates that
more CBCT RFs correlate with T2w than CT RFs with T2 MRI. It can also be noticed that modes of the
CT/CBCT vs. T2w RF intermodality correlations are smaller.

FIGURE 6: Histogram of the intramodality correlation of RFs for CBCT,
CT, and T2w of the prostate. Results shown only include the statistically
significant data, i.e., p<0.05. Overall percentages of features that were
statistically significant by modality are shown in text box in upper right
corner.
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Intermodality correlations: variable modality-RF comparisons
The intermodality correlation for variable modality-RF combinations is shown in Figure 7. The results show
that the mode of the intermodality correlation with variable modality-RF combinations is less than
0.35. Thus, the situation where one RF on T2w correlates highly with a different RF on CT/CBCT was not
observed.

FIGURE 7: Histogram of the intermodality correlation of RFs for CBCT,
CT, and T2w of the prostate for variable modality-RF combinations.
Results shown only include the statistically significant data, i.e., p<0.05.
Overall percentages of features that were statistically significant by
modality are shown in text box in upper right corner.

Discussion
In the literature, many radiomics studies of pCa have focused on one modality at a time, such as computed
tomography (CT), positron emission tomography (PET), or magnetic resonance imaging (MRI) [5,27]. Also,
there have been many radiomics studies of pCa using multiparametric MRI sequences [1-4,6-11]. Previous
work has explored the reproducibility of RFs across planning CT (pCT) and first fraction CBCT [16]. That
work showed that correlations of RFs from CBCT and pCT RFs depended on the reconstruction algorithm
and preprocessing methods used for feature extraction. However, to our knowledge, no previous work has
documented the correlation of RFs between MRI, CT, and cone beam CT (CBCT).

As expected, the intermodality correlations of RFs were stronger for CT vs. CBCT than they were for CT vs.
T2w or CBCT vs. T2w. The intermodality correlations of RFs had modes less than 0.35 for CT/CBCT vs. T2
MRI, while the mode of the RF correlations between CT and CBCT was around 0.55. The correlation of RFs
between CT and CBCT makes sense since those imaging modalities have more in common than T2w.

Another aspect of this work was the analysis of the intramodality comparisons of RFs. It was found that CT
RFs often correlate more within the same modality than the other modalities considered. Several
interpretations come to mind. First, it could be a result of the known stability of CT. CTs are implemented in
the radiotherapy clinic for their small geometrical distortion and high Hounsfield unit reproducibility which
is vital for dose calculation algorithms. In our study, there is less imaging modality variation in the X-ray-
based machine than in the MRI machines. All planning CT images are located inside our clinic and have
imaging protocols tightly controlled by the radiation oncology team. Moreover, many of the CT images used
in this study are either similar models or from the same vendor. Similarly, the CBCT image protocols were
tightly controlled. However, diagnostic MRIs are often done in another clinic, and hence there is more
machine variability. It is also known that T2w signal intensity is highly variable. The same patient, same
machine, and same day can have variable intensity due to a variety of factors, including radiofrequency coil
placement, pre-scan settings, and receiver gain.

An alternative interpretation is that MRI RF may not correlate with each other because the RFs really are
different from each other. T2w is used in prostate cancer radiotherapy because it provides high anatomical
detail. It plays a vital role in delineating abnormalities within the prostate. High RF intramodality
correlation could indicate a small effective feature space, since it could be argued that if many RFs correlate
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with each other, then they provide no added information. Thus, it may be that the T2w has a larger effective
RF space and is more useful for radiomic studies of prostate cancer.

In pre-study analysis, it was observed that apparent correlations between modalities for several RFs were
lost after volume normalization. It was also found that prostate volume correlates well across different
imaging modalities. Previous work showed that eight RFs correlated significantly between CT and CBCT
using an iterative reconstruction algorithm with a sharp convolution filter and very low noise
suppression [16]. The same reconstruction settings were used in this current work for consistency. The eight
RFs found to correlate between CT and CBCT were GLRLM RLN, GLRLM GLN, GLSZM GLN, NGTDM
Busyness, GLSZM ZSN, NGTDM Coarseness, GLSZM ZSV, and GLSZM GLV [16].

The volume dependence of RFs has been documented previously, and the volume normalization described by
Fave et al. [20] and Shafiq-ul-Hassan et al. was used in this work [20-22]. However, neither Fave et al. nor
Shafiq-ul-Hassan et al. mentions volume normalization for GLSZM ZSN, and none was found in the
literature. A previous radiomics study of breast cancer analyzing T1-weighted and T2w-weighted also
documented the volume dependence of GLSZM ZSN [28]. There has been interest in the repeatability of
radiomics studies, and it was noticed that many RFs not only correlate with volume but also with other RFs.
In a study that analyzed 84 RFs from publicly available datasets of head, neck, and lung cancer, Traverso et
al. [12] found that 80% of RFs correlated with other RFs considered in the library, and 30% of RFs correlated
with volume. That study suggested RF pairwise correlations and volume correlations before constructing
machine learning algorithms based on RFs. An interesting finding in our study was that the volume
dependence of RFs differs between imaging modalities. The volume dependency of these features could be
related to inflammation in the prostate and extracellular fluid space [29]. In future radiomics studies, failure
to account for RF volume dependency could lead to misleading results.

This study has several limitations, including variable timing between the imaging scans, variability in
imaging parameters, the presence of imaging artifacts due to gold fiducials, the limited library of radiomic
features, and the limited sample size. To improve our understanding, the limitations of this study are further
elaborated in the following paragraphs.

The timing between T2w and CT/CBCT was variable. Ideally, they should be acquired on the same day with
similar rectum filling, bowel filling, and patient setup. Also, tighter control of image acquisition parameters
and the machines used for the MRI and CT would be desirable but can be difficult to control in clinical
studies [30,31]. In contrast, CBCT imaging parameters were tightly controlled in this study by virtue of all
patients receiving RT on the same linear accelerator with iterative CBCT imaging.

Another limitation was the presence of artifacts from gold fiducials in the prostate, which was mitigated by
using an algorithm to remove fiducial artifacts from the prostate contours. However, the fiducials have
utility for accurate patient setup and are frequently encountered in patients receiving external beam
radiotherapy for prostate cancer. Tighter patient selection criteria, such as limiting the MR and CT scanners
allowed or reducing the time interval between the scans of the different modalities, would reduce cohort size
below a threshold reasonable for analysis. There are many more RFs that could be considered from other
radiomics software libraries. However, the exhaustive inclusion of all RFs was beyond the scope of this
exploratory study for several reasons, including the small sample size and the recognition that many
radiomic features cross-correlate with one another and thus do not necessarily provide new information
[12].

The sample size limitations for this study are more apparent for the lower correlated RFs. For example, let us
consider a correlation power analysis using the point biserial model, two tails, and adjusting our alpha of
0.05 to 4.0e-4 using the Bonferroni correction for multiple comparisons. For our sample size of 47 patients,
for a large effect of 0.75, the statistical power is 1.00, and for a small effect of 0.3, the statistical power is
0.28. In this study, the correlation values for the highly correlated RFs were around 0.75, and the lower
correlated RFs were around 0.3, which is consistent with our observations. The Bonferroni correction is
known to minimize false positives in multiple comparisons but is overly harsh and probably produces a false
negative [32,33]. However, in this study, we used the Benjamini-Hochberg adjustment, which is less harsh
than the Bonferroni correction [20,26]. Our effective alpha is likely slightly higher, but in this statistical
power calculation, we present a more conservative approach to be safe. With the limitations of sample size
in this study, some of the smaller correlations may be rejected, though they are real. A larger sample size
would be needed to study these. Using the same conventions previously discussed, a power analysis indicates
that 93 patients are needed to achieve a power of 0.75 for an effect size of 0.3. For the current sample size,
alpha level, and desired statistical power of 0.75, the minimum detectable effect size is 0.41. Consequently,
a larger sample size would be needed to detect smaller correlations. It should be noted that if we were to
extend the sample size of the study, there is still a possibility of detecting weak correlations. The objective of
this study was to identify large RF correlations. Thus, the sample size should be sufficient for the purpose of
this study.

Conclusions
T2w, CT, and CBCT imaging modalities are quite different in terms of image quality and contrast. For
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example, the fatty soft tissue in the prostate is easier to observe on T2w than CT. Moreover, the transition
and peripheral zones are difficult to delineate on CT alone, but on MRI they are very noticeable. Given all
these differences, one would expect quantitative textural information to also be different. For future studies,
these differences can be viewed as complementary: the lack of correlation between RFs across T2w and
CT/CBCT could indicate a fundamental difference in the extractable image information. The specific RFs
investigated in this study did not demonstrate strong correlations across modalities. However, there is an
open possibility that other RFs or analysis methods may reveal meaningful relationships. A future study
could be to evaluate the predictive performance of patient outcomes using radiomic features from CT, CBCT,
and T2w to further ascertain whether the imaging modalities are complementary. If the information is non-
complimentary, one might as well just rely on one modality since that is a more efficient process. However,
if the multimodal features are complementary information may enhance predictive radiomic models of
prostate cancer by combining the best features from each modality.
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