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Abstract
Medical documentation is a major part of delivering healthcare worldwide and is gaining more importance
in developing countries as well. The global spread of multilingual communities in medical documentation
poses unique challenges, particularly regarding maintaining accuracy and consistency across diverse
languages. Inspired Spine Smart Universal Resource Identifier (SURI), an adaptive artificial intelligence (AI)
framework, addresses these challenges by transforming multilingual speech into structured medical reports.
Utilizing state-of-the-art automatic speech recognition (ASR) and natural language processing (NLP)
technologies, SURI converts doctor-patient dialogues into detailed clinical documentation. This paper
presents SURI’s development, focusing on its multilingual capabilities, effective report generation, and
continuous improvement through real-time feedback. Our evaluation indicates a 60% reduction in
documentation errors and a 70% decrease in time spent on medical reporting compared to traditional
methods. SURI not only provides a practical solution to a pressing issue in healthcare but also sets a
benchmark for integrating AI into medical communication workflows.
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Introduction
Background
Existing solutions in medical documentation have made strides toward improving efficiency but often fall
short of addressing the core challenges of time consumption, cost, and error rates. Traditional electronic
health record (EHR) systems, though widespread, require manual input, contributing to physician
burnout [1]. Efforts to incorporate dictation tools and scribe services may prove useful but could be limited
for some by cost and consistency issues, especially for providers whose native language is not English or who
use languages other than English or major European languages. Recently, advancements in AI and machine
learning have paved the way for automatic transcription and natural language processing (NLP)-driven
tools. However, these tools are often constrained by limited linguistic capabilities and struggle with
specialized medical terminology and utilization due to a lack of a solid framework that is compliant with the
Health Insurance and Portability Accountability Act (HIPAA) [2].

SURI enters this landscape as a transformative solution. By integrating ASR and NLP with adaptive learning
algorithms, SURI offers a new approach to documentation, one that is both multilingual and adaptive.
SURI's open-source nature allows for fine-tuning based on medical-specific datasets, enabling it to handle
complex dialogues with high accuracy across various languages.

The process of transforming multilingual speech into structured medical records relies on a combination of
advanced technologies, which can be fine-tuned to meet specific requirements due to their open-source
nature.

Automatic speech recognition (ASR) has evolved from early systems like Bell Labs’ Audrey in the 1950s [3] to
modern deep learning-based models that achieve near-human transcription accuracy. Initially limited to
recognizing a small vocabulary, ASR advanced through the introduction of hidden Markov models and
statistical methods in the 1970s and 1980s [4], followed by the deep learning revolution in the 2010s, which
dramatically reduced error rates and improved adaptability [5]. In medical settings, ASR faces challenges due
to specialized terminology, diverse accents, and noisy environments, making accurate transcription
difficult. However, recent advancements in open-source deep learning models have significantly improved
ASR’s ability to handle these complexities [6]. The adaptability of these systems allows fine-tuning of
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medical-specific datasets, ensuring precise multilingual transcription while accommodating variations in
speech and background noise. This flexibility is crucial in capturing spoken interactions between healthcare
providers and patients accurately, aligning ASR output with the stringent requirements of medical
documentation.

Natural language processing (NLP): Once the ASR system transcribes the speech, the next step is to convert
the unstructured text into a structured format suitable for medical records. NLP has evolved from early rule-
based language processing in the 1950s [7] to modern deep learning-driven approaches that power today’s
advanced text understanding systems [8]. Initially focused on syntactic and rule-based parsing, NLP
advanced through the development of statistical models in the 1980s and 1990s, allowing for more flexible
and probabilistic language understanding [9]. In medical settings, NLP plays a crucial role in transforming
unstructured ASR-generated text into structured formats for clinical documentation. This process involves
extracting key medical entities such as diagnoses, treatment plans, and patient history using techniques like
named entity recognition and relation extraction. Many NLP frameworks, such as cTAKES and BioBERT, are
open-source and can be fine-tuned on domain-specific datasets to enhance accuracy and adherence to
clinical documentation standards [10]. Advanced NLP methods, including syntactic parsing and context-
aware text generation, further structure and refine medical transcripts, ensuring they are comprehensive and
aligned with electronic health record requirements.

Adaptive learning algorithms: To ensure continuous improvement and adaptability, adaptive learning
algorithms are integrated into the system. It has evolved from early artificial intelligence research, where
pioneers demonstrated that machines could improve from experience rather than relying solely on
predefined rules [11]. Over time, this concept led to modern continuous learning techniques that allow AI
systems to refine their performance as they encounter new data [12]. In medical AI, adaptive learning plays a
critical role by enabling systems to update their knowledge base dynamically, ensuring that
recommendations and decisions align with evolving clinical standards. These algorithms incorporate
feedback from healthcare professionals and integrate the latest medical research, allowing AI systems to
continuously enhance their accuracy and effectiveness [13]. Additionally, the open-source nature of many
adaptive learning frameworks facilitates collaborative refinements, where developers and clinicians can
fine-tune models to keep pace with advancements in medical terminology and treatment protocols [14]. This
self-learning capability is essential for reducing errors over time, improving overall system performance, and
making AI-driven healthcare tools more responsive to the changing needs of medical professionals.

The challenge
Medical documentation remains a cornerstone of patient care, yet it is fraught with inefficiencies that strain
both healthcare providers and institutions. A significant portion of this burden stems from the traditional
methods of documentation, where physicians either personally record patient interactions or rely on clinical
scribes. Both approaches are resource-intensive and contribute to systemic issues of time consumption,
cost, and error rates.

Providers, on average, spend up to 44% of their workday on documentation [15]. This not only limits the
number of patients a provider can see but also contributes to burnout, as clinicians extend their working
hours to complete required documentation. Over time, this creates a ripple effect, reducing the overall
quality of care delivered.

In many institutions, large dictation programs are relied upon to assist providers with documentation. These
programs, such as Dragon� (Nuance, Burlington, Massachusetts, USA): a reference to a mythological
creature that is large, cumbersome, and resource-intensive-demand a steep learning curve and significant
time for review and correction, particularly for non-native English speakers [16]. Furthermore, the financial
burden of implementing such automated dictation systems remains considerable for institutions.

In an attempt to mitigate these pressures, many healthcare institutions have turned to clinical scribes.
While studies suggest that scribes can improve physician efficiency, the solution comes at a significant cost.
The average annual expense for a scribe ranges from $47,000 to $50,000 [17-19], an investment that requires
a physician to see at least 1.3 new patients daily to break even within a year (American Medical Association).
Furthermore, the high turnover rate among scribes often results in a costly cycle of recruitment and
retraining, diminishing the long-term cost-effectiveness of this solution.

Scribe usage also introduces variability in documentation quality. A scribe’s judgment can significantly
affect the accuracy and completeness of medical records. Inconsistent or incomplete documentation can
lead to medical errors, which account for 9.5% of deaths annually in the U.S. [20], illustrating the life-
threatening consequences of imprecise record-keeping. The reliance on scribes, while alleviating some
immediate workload, fails to address the core issues of accuracy and cost, leaving room for a more efficient
and scalable solution.

Materials And Methods
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Sample selection
This study utilized 6,258 audio recordings collected during real-world clinical interactions as part of pilot
studies in standard clinical settings. Each recording was reviewed and verified by both the healthcare
provider and a clinical assistant to ensure accuracy. Recordings were obtained from patients who provided
informed consent for audio documentation during their clinical encounters or from provider summaries
recorded after the patient visit.

The interactions occurred in typical clinical rooms, involving providers, patients, and occasionally, patient
relatives. Patients and their relatives were not instructed to alter their behavior during recordings, ensuring
naturalistic interactions. To improve the documentation process, providers adapted their behavior slightly
by verbalizing physical examination findings and articulating all necessary details for medical records during
the encounter.

The majority of the recordings were conducted in English, while 21 foreign languages were represented,
including Arabic, Chinese, Dutch, English, French, German, Hindi (with seven distinct dialects), Italian,
Japanese, Korean, Persian, Russian, Spanish, Thai, and Vietnamese, showcasing the multilingual capabilities
of the system. This linguistic diversity allowed for an evaluation of SURI's performance across different
languages and accents.

Testing environment
All recordings were obtained in real-world clinical settings, reflecting typical environmental conditions such
as background noise, variable speech clarity, and spontaneous conversational flow. These pilot studies
included both successful and challenging cases, ensuring that recordings with transcription errors were
incorporated. This approach enabled the identification of SURI’s limitations and informed iterative
improvements in the system’s performance.

Audio review and verification
Each recording underwent a thorough dual verification process to ensure transcription accuracy and support
system improvement. Initially, healthcare providers and clinical assistants reviewed the transcription
output generated by SURI, carefully identifying errors and inconsistencies in the documentation. These
corrections were subsequently used to refine SURI’s adaptive learning algorithms, enabling the system to
progressively improve its performance. This verification process not only ensured the accuracy of the
transcriptions but also identified specific cases where SURI’s performance was suboptimal. These insights
proved instrumental in guiding future updates to the model, addressing limitations, and enhancing its
overall effectiveness in real-world clinical settings.

Statistical analysis methodology
A total of 6,321 audio recordings were collected during real-world clinical interactions for this study. We
applied specific inclusion and exclusion criteria to ensure data quality and reliability. Inclusion criteria
required that recordings were created for medical documentation purposes and had undergone review by
both a healthcare provider and a clinical manager with comprehensive medical knowledge. Exclusion
criteria eliminated recordings used in the testing phase and those without sufficient review.

Statistical analysis was conducted using a Python-based comparison script designed to evaluate differences
between AI-generated transcriptions and finalized medical records. The methodology involved identifying
and pairing corresponding 'clean' and 'unclean' medical documents based on filename patterns while
ensuring the removal of non-essential content such as consent forms before proceeding with the
comparison. The content discrepancy analysis utilized the difflib SequenceMatcher algorithm to assess the
level of edits required. Modifications were categorized into three groups: minor additions, substantial edits,
and deletions.

Results
Statistical analysis results
After applying the inclusion and exclusion criteria, 2,786 recordings were selected for statistical evaluation.
During the analysis, 117 recordings were excluded due to a 100% discrepancy between the AI-generated
transcription (SURi) and the final medical record, resulting in 2,669 valid data points for the final analysis.

The modifications observed were categorized into three groups, where minor additions accounted for 12.5%
of cases, substantial edits comprised 9.2%, and deletions constituted 8%. The mean modification rate was
calculated at 26.95%, reflecting the proportion of AI-generated content that necessitated revision before
finalization. The standard deviation was determined to be 22.43, indicating variability in the modifications
attributed to differences in language, medical scenarios, and recording quality. Additionally, the variance
was calculated as 503.12, underscoring the wide distribution in AI-generated documentation accuracy. A
95% confidence interval was established at (26.09%, and 27.80%), reinforcing the statistical reliability of
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these findings.

These findings were visualized in Figure 1, which represents the distribution of AI-generated medical
records based on the percentage of modifications required before finalization. The majority of records
required minimal changes, with a peak around the 0-10% range, indicating high initial accuracy. However,
some cases required more substantial modifications, particularly around the 50% mark, which warranted
further investigation regarding potential causes.

FIGURE 1: Distribution of all AI-generated medical records samples by
modification percentage: This histogram categorizes documents based
on the percentage of modifications required, grouped in 10%
increments. It visually represents the number of documents that
required different levels of changes, highlighting the frequency of
minimal, moderate, and extensive modifications.
Image Credits: Jiawen Zhan

By closely examining records with approximately 50% modification rates, it was found that additional
standardized language related to standardized procedural documentation (bracing) and physician
attestations was appended to the records. These additions were calculated as modifications due to errors,
even though they were legitimate inclusions. However, the frequency and nature of these additions varied
from patient to patient, which precluded systematic programmatic exclusion of these elements from the
quantitative analysis. As a result, it is reasonable to infer that the actual modification rate is lower than the
shown average.

Multilingual performance and error sources
The AI system processed medical transcriptions across 21 languages, with English accounting for the
majority of cases, comprising 2,706 records. The next most frequently represented language group consisted
of Hindi dialects with 21 transcriptions, followed by Chinese with 6 and Korean with 4. The remaining
languages, including Arabic, Dutch, French, German, Italian, Japanese, Persian, Russian, Spanish, Thai, and
Vietnamese, were represented by only one transcription each, largely collected during interactions with
international fellows or visiting physicians. The limited number of recordings in these languages restricted
the ability to generalize performance across multilingual settings.

Unlike traditional speech recognition benchmarks such as the Soniox and Whisper Speech Recognition
Benchmarks (March 2023) [21], which evaluate Word Error Rate (WER) using predefined text comparisons,
this study focused on real-world clinical encounters where speech is unscripted and lacks exact reference
transcripts. Given the spontaneous nature of provider-patient interactions, direct WER measurement was
not feasible. Instead, transcription accuracy was initially assessed through manual review, particularly in
cases where the AI-generated record deviated significantly from the final medical documentation. This issue
was first identified in the early stages of the study when physicians self-reported poor transcription
performance in certain cases. Upon further investigation, a manual review of selected recordings confirmed
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that overlapping speech and background noise were the primary factors affecting transcription accuracy. In
scenarios with multiple speakers, the ASR model tended to prioritize the most prominent voice, leading to
the omission or misrepresentation of quieter voices, which contributed to significant errors in the final
transcription.

As a temporary solution in later iterations of the study, physicians adapted their verbal documentation
practices to improve transcription accuracy. When important information was conveyed during the
overlapping speech, doctors intentionally repeated critical details to ensure the system captured them
accurately. While the number of manually reviewed recordings was not systematically tracked, these
observations played a crucial role in identifying speaker separation and noise resilience as key areas for
future improvements in AI-driven transcription models.

Economic impact
The adoption of AI-driven transcription led to a significant reduction in documentation costs, with an
88.17% decrease in annual expenditures. Prior to AI implementation, medical documentation relied on five
human scribes, each earning $20 per hour and working 40 hours per week, which resulted in an annual cost
of approximately $208,000, excluding additional expenses associated with recruitment and training. With
the transition to AI-based transcription, the total annual cost of documentation was reduced to $24,600,
comprising $1,000 per month for server hosting, $1,000 per month for development and maintenance, and
$50 per month for model hosting. This dramatic reduction in costs highlights the financial viability of AI-
assisted medical documentation. As the system continues to improve and requires fewer manual corrections,
it is expected that the costs associated with development and maintenance will decrease further, reinforcing
the long-term economic sustainability of AI-integrated documentation systems in healthcare institutions.
The cost-benefit analysis indicates an 88% reduction in documentation expenses, representing a substantial
return on investment for healthcare institutions implementing similar AI-assisted documentation systems.

Discussion
SURI: a solution
To address the challenges associated with traditional medical documentation methods, we introduce SURI
(Inspired Spine’s Smart Universal Resource Identifier)-an adaptive AI framework specifically designed to
transform multilingual speech into structured medical reports. SURI’s architecture is built on the
integration of cutting-edge ASR and NLP technologies, allowing it to accurately transcribe and structure
medical dialogues across multiple languages.

SURI's ASR component is tailored to meet the needs of diverse linguistic environments, ensuring that
medical professionals can communicate with patients in their native languages without compromising the
quality of the documentation. This multilingual capability is essential in global healthcare settings, where
language barriers can lead to miscommunication and errors in patient records.

Once the ASR system transcribes the spoken dialogue, SURI's advanced NLP methods take over to convert
the unstructured text into a coherent and standardized medical report. By leveraging NLP, SURI ensures that
the generated reports are not only accurate but also contextually relevant, capturing the nuances of each
patient interaction. 

A standout feature of SURI is its ability to learn and adapt over time. By incorporating feedback from users
and integrating the latest medical advancements, SURI continuously refines its algorithms, enhancing its
ability to generate high-quality medical documentation. This adaptive learning ensures that SURI remains a
cutting-edge tool, capable of meeting the evolving demands of healthcare professionals and institutions.

By its design, NLP systems are not rigidly tailored to a single language. With appropriate adjustments, these
systems can be adapted for use across different languages and even serve as effective platforms for
translating local languages into English and vice versa. Advancements in cross-lingual learning and neural
machine translation (NMT) have further improved this capability, making cross-language applications
increasingly reliable and nuanced. The process is outlined in Figures 2, 3.

 

2025 Zhan et al. Cureus 17(3): e81243. DOI 10.7759/cureus.81243 5 of 14

javascript:void(0)
javascript:void(0)


FIGURE 2: A sample workflow in text illustrating Inspired Spine Smart
Universal Resource Identifier’s transcription and documentation
process, showcasing the transformation of diverse input sources into a
structured and organized output.
Image Credits: Jiawen Zhan

FIGURE 3: A sample workflow visually illustrating Inspired Spine Smart
Universal Resource Identifier’s transcription and documentation
process, showcasing the transformation of diverse input sources into a
structured and organized output.
Image Credits: Jiawen Zhan

In summary, SURI offers a comprehensive solution to the challenges of medical documentation,
streamlining the process, reducing costs, and improving accuracy. By integrating ASR, NLP, and adaptive
learning, SURI aims to set a new standard for medical reporting, making it an invaluable asset in the
healthcare industry.

Advances in automatic speech recognition for healthcare
ASR technology has advanced significantly, evolving from primitive voice recognition systems to
sophisticated platforms capable of understanding complex medical terminologies across various languages.
Amodei et al. (2016) demonstrated significant improvements in ASR performance using deep neural
networks, achieving lower word error rates even in noisy environments, common in medical settings [22].
Researchers like Jaitly and Hinton have explored neural network acoustic models and transfer learning,
enhancing ASR accuracy across languages-critical for a system like SURI that handles multilingual inputs
[23].

AI in medical report generation
Recent advances in artificial intelligence, particularly in machine learning and NLP, have been pivotal in
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transitioning from manual to automated medical report generation. Studies by Zhang et al. on large
language models (LLMs) like GPT-3 have shown the potential for generating detailed and contextually
relevant medical reports from sparse or complex data [24]. These frameworks, trained on extensive datasets,
can produce human-like text, crucial for accurate medical documentation.

Building upon these advancements, the rapid development of cutting-edge artificial intelligence models,
both open-source and proprietary, has further expanded the potential of LLMs. These sophisticated systems
have unlocked virtually limitless possibilities in information synthesis and report generation. By
continuously improving their contextual understanding and output quality, modern LLMs are setting new
benchmarks for generating precise, coherent, and highly relevant medical reports. This ongoing evolution
ensures that the final reports become increasingly accurate and comprehensive, addressing the nuanced
demands of medical documentation with remarkable efficiency.

Challenges and future directions
Implementing ASR and AI in medical settings presents challenges, particularly in noisy environments with
varied speakers and specialized jargon. Ensuring the privacy and security of sensitive medical information is
paramount. Future improvements should focus on adaptability and performance, leveraging continuous
learning and feedback mechanisms. Researchers like Silver et al. suggest that reinforcement learning could
dynamically enhance AI systems based on user interactions and feedback [25].

SURI's architecture and components
SURI is a next-generation AI platform designed to improve the speed and quality of medical documentation.
It leverages advanced technology to convert doctor-patient conversations into official medical records,
considering the complexities of multilingual medical transcriptions. An example of its workflow is best
illustrated in Figure 4.

FIGURE 4: A sample workflow illustrating Inspired Spine Smart
Universal Resource Identifier’s audio recognition function,
demonstrating how natural language input is processed and
transformed into actionable outputs executed by the system.
Image Credits: Jiawen Zhan

Multilingual speech recognition module
In many regions of the world, healthcare providers and patients communicate in their native languages
during consultations. However, formal medical documentation is often standardized in English, particularly
in international settings. This global dynamic is also observed in countries like the United States, where
healthcare providers and patients frequently speak different languages due to the diverse population.
Providers may be multilingual, and technologies like teleconsultation have expanded the reach of cross-
lingual healthcare services.

Given these complexities, SURI's multilingual speech recognition module plays a critical role in bridging the
language gap. It not only transcribes conversations in multiple languages but also facilitates the transition
of spoken language into standardized medical records, typically in English, ensuring that the documentation
remains accessible and comprehensible to all healthcare professionals. This feature is vital for a system
designed for universal use, enabling seamless integration across different linguistic and cultural contexts
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while supporting the needs of diverse patient populations.

Transformer-based large language model (LLM)
SURI's language processing capabilities are powered by a fine-tuned version of LLaMA 3.5, chosen for its
adaptability and precision in handling complex clinical language across multilingual settings. This model is
fine-tuned using real historical patient interactions and corresponding medical records, with all patient
identifiers omitted to ensure confidentiality. By training on real-world clinical data, LLaMA 3.5 captures the
subtleties of patient-provider interactions, translating them into clear, structured medical documentation.

In addition to dataset-specific tuning, the model’s weights were carefully adjusted to balance creativity and
tone, ensuring that SURI’s output maintains a professional, clinical standard while accurately reflecting
patient conversations. Prompt engineering was applied to refine response precision, tailoring the model’s
responses to the specific requirements of structured medical documentation.

The fine-tuning process also incorporates advanced techniques, including supervised learning and
reinforcement learning with human feedback (RLHF). These techniques align the model’s outputs with
human preferences for accuracy and clarity, ensuring that the generated documentation adheres to clinical
standards while capturing the intricacies of patient-provider dialogues. This level of refinement ensures that
the documentation is not only useful for immediate clinical care but also suitable for long-term medical
records, supporting continuity and quality in healthcare in a variety of ways, as shown in Figure 5.

FIGURE 5: Overview of Inspired Spine Smart Universal Resource
Identifier's mainframe structure and its interconnected functions. The
diagram illustrates the core components of Inspired Spine Smart
Universal Resource Identifier, including documentation, transcription,
billing, scheduling, data analysis, prior authorization, and coding, along
with their specific tasks such as categorization, summarization, and
assignment. Each function interacts seamlessly with the mainframe to
support efficient and streamlined medical operations.
Image Credits: Jiawen Zhan

SURI’s transformer architecture, enhanced with these advanced methodologies, enables the model to handle
long sequences of text, generating coherent and organized reports that encompass various sections such as
diagnoses, treatment plans, patient histories, and follow-up instructions. With its highly specialized tuning,
SURI consistently produces accurate, contextually relevant documentation, offering healthcare professionals
a reliable, time-efficient tool for capturing essential details from clinical interactions.
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Technology stack for development and deployment
SURI's development centers on a powerful C#-based architecture, utilized as the primary language for both
the front and backend. This choice enables highly structured data processing, seamless integration with
healthcare systems, and reliable performance, supporting the complex requirements of real-time medical
documentation. JavaScript is incorporated only for specific supporting functions, enhancing the user
experience with additional interactive elements.

For data storage and database management, SURI relies on Amazon Web Services (AWS, Seattle, USA), which
provides a secure, scalable, and HIPAA-compliant environment essential for handling sensitive medical data.
AWS offers encryption, access control, and flexible scaling, which allow SURI to efficiently manage the high
volumes of data typical in healthcare documentation. By using AWS, SURI ensures rapid data retrieval and
processing, enabling real-time learning and adaptation to user feedback.

Together, these technologies support SURI's efficient, scalable deployment across various healthcare
settings, making it adaptable to the documentation needs of global, multilingual healthcare environments.

Adaptive learning capabilities
SURI’s adaptive learning capabilities enable it to continually improve its performance over time by fine-
tuning based on real-world feedback. The system not only learns from user input but also tracks changes
made to the final medical reports. Each adjustment and refinement are logged, and these modifications are
compiled into new training datasets. By incorporating these iterative changes, the model automatically fine-
tunes itself, progressively aligning its outputs with clinical expectations.

One of the key aspects of SURI’s learning is its ability to document and analyze the revisions made to its
generated reports. This process allows the model to identify patterns in the adjustments and understand
which areas are most critical. By recognizing these priorities, SURI can intelligently adapt its outputs to the
specific needs of both individual users and healthcare organizations, thereby refining the quality of
documentation with each interaction.

Continuous learning 
It constantly compares the AI-generated version to changes done by the user, and after patterns of
corrections are recognized, these are implemented automatically for the same user. If multiple users across
one institution make the same changes, these learning points are institutionalized, and if across multiple
institutions the same changes are implemented, they become global learning points for the AI system.

It gradually reduces the need for human intervention in the final documentation process. Over time, SURI
becomes more accurate and efficient, consistently delivering medical records that require fewer edits or
corrections. With each iteration, the platform provides more reliable and polished reports, eventually
enabling healthcare providers to trust the output with minimal manual adjustments, thereby saving time
and improving overall documentation workflow.

In addition to pattern recognition and correction, SURI incorporates a keyword change identification
mechanism to further enhance its self-learning capabilities. This feature smartly tracks and analyzes
changes to key terms in the medical documentation, assessing their criticality based on context and
frequency of edits. For instance, if a particular term is consistently replaced or adjusted by users, SURI flags
it as a potential improvement point and evaluates its relevance within similar contexts. Over time, SURI
builds a comprehensive library of commonly misused or ambiguous keywords, categorizing them by their
criticality. This library is then shared across users, allowing individual providers to benefit from the
collective insights of the larger user base. By leveraging this collaborative intelligence, SURI ensures that its
output aligns more closely with the preferred terminology and standards of medical institutions, fostering a
more accurate and efficient documentation process.

Personalized medical record tailoring
Through this dynamic method of training, SURI ensures that medical records are eventually tailored to
match the unique habits and preferences of each individual user. Rather than applying a single model
uniformly to all users, SURI customizes its outputs based on the specific tendencies of each healthcare
provider, organization, or practice. This individualized approach guarantees that the system evolves to meet
the precise documentation needs of each user, making the medical records as personalized as the care
provided. As SURI continues to learn from the user’s specific style and practices, it not only improves
efficiency but also enhances the overall satisfaction and trust in the documentation process.

Automated coding with SURI
SURI’s automated coding process combines hard-coded algorithms with the advanced capabilities of LLMs
to ensure precise and efficient medical record coding. The hard-coded components handle direct and
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unambiguous matches for standardized codes, such as ICD-10 diagnosis codes and CPT codes for operations
and treatments. Meanwhile, the LLMs are employed to interpret abstract or ambiguous diagnoses,
leveraging their contextual understanding to assign the most accurate codes when straightforward matching
is insufficient.

Much like SURI’s self-improving mechanism for medical records, its coding functionality continuously
learns from user corrections. When users adjust or refine the assigned codes, SURI identifies patterns in
these modifications, improving its coding accuracy over time. This iterative learning ensures that the system
becomes increasingly adept at handling complex and nuanced cases, ultimately reducing the need for
manual intervention. By integrating user feedback and continuously updating its processes, SURI delivers a
robust, evolving solution for automated medical coding that aligns with evolving medical standards and
practices.

Implementation
The implementation of SURI involves a careful integration of advanced technologies to ensure seamless
functionality in medical environments while prioritizing data security, user experience, and future
adaptability. Designed to complement existing healthcare workflows, SURI integrates with various
healthcare information systems such as Electronic Health Records (EHRs), hospital management systems,
and diagnostic tools. This compatibility is essential for accessing and processing audio data from clinical
interactions and embedding the resulting structured reports back into patient records. SURI captures audio
inputs through standardized APIs that connect to various recording devices used across medical facilities.
Once transcriptions are processed, the structured reports are securely delivered back into the EHRs, ensuring
data integrity and confidentiality throughout the process. Special attention is given to making SURI’s
software components compatible with diverse healthcare IT infrastructures, including both modern and
legacy systems, achieved through adaptable middleware capable of interfacing with varied platforms.

Data handling is a critical aspect of SURI’s implementation, given the sensitivity of medical information.
The system acquires audio data directly from clinical interactions while employing automated mechanisms
to remove personally identifiable information before processing, thus safeguarding patient confidentiality.
All data processing, including transcription and report generation, occurs on secure servers utilizing
encrypted storage and transfer protocols to protect against unauthorized access and potential breaches. This
secure handling ensures compliance with healthcare data standards and regulations while maintaining the
integrity of the processed information.

SURI’s user interface (UI) is designed to accommodate the varying technological proficiency levels of
medical staff. The intuitive design prioritizes simplicity, featuring a clean layout with clear labeling and
straightforward navigation to minimize cognitive load. By eliminating unnecessary complexity, SURI enables
healthcare professionals to quickly adapt to the system and focus on patient care rather than operational
challenges. An innovative feature of the interface includes an integrated guidance module where users can
simply ask SURI how to perform specific tasks, and the system provides step-by-step assistance. This
functionality not only improves user experience but also fosters greater adoption across diverse user groups.

To support continuous improvement, the interface incorporates real-time feedback mechanisms, allowing
users to report issues or suggest enhancements directly within the system. These user-driven insights feed
into SURI’s adaptive learning capabilities, enabling it to refine its outputs and improve accuracy and
efficiency over time. The integration of feedback tools fosters a collaborative relationship between users and
the system, ensuring that SURI evolves in line with real-world demands.

Looking to the future, SURI’s development roadmap includes the integration of advanced voice control and
natural language processing capabilities, enabling entirely hands-free interaction. This functionality will
allow users to manage medical records, dictate commands, and query the system in natural language,
significantly reducing the learning curve and enhancing usability. Beyond simplifying documentation, SURI
is envisioned as a multifunctional assistant capable of advanced data analytics and research support. By
searching large datasets, generating insights, and interacting with users in a conversational manner, SURI
will empower healthcare professionals to make data-driven decisions efficiently. The fusion of voice-
controlled interaction and intelligent analytics aims to position SURI as an indispensable tool for improving
clinical workflows, decision-making, and overall healthcare efficiency.

Evaluation
The evaluation of SURI is conducted through a multidimensional framework that rigorously examines both
its technical performance and its acceptance within clinical environments. This comprehensive approach
ensures that the system not only meets technical benchmarks but also aligns with the practical needs and
expectations of its users.

SURI’s capabilities are assessed using well-defined performance metrics. The accuracy of speech recognition,
a cornerstone of the system, is measured by the Word Error Rate (WER), where lower values indicate superior
transcription accuracy. The quality of medical reports generated by SURI is evaluated through precision,
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recall, and F1-score, metrics that determine the relevance and comprehensiveness of the captured medical
information. Additionally, the system’s capacity for adaptation and learning is tracked by observing
reductions in error rates over time and its ability to integrate new terminologies or respond effectively to
user feedback. From an economic perspective, SURI’s cost-saving potential is highlighted by comparing
traditional scribe service expenditures with the operational costs of deploying the AI system, demonstrating
its financial efficiency.

To ensure robust evaluation, SURI undergoes a systematic testing methodology. Initially, the system is
subjected to controlled environment testing, where predefined audio samples and medical scenarios are
used to fine-tune its performance in a predictable setting. This phase minimizes variables and allows for
precise calibration. Once optimized, SURI progresses to pilot clinical trials, where it is deployed in real-
world medical scenarios. This critical phase assesses the system’s interaction with existing healthcare IT
systems, its adaptability to dynamic clinical workflows, and its usability by medical staff. Finally, a
longitudinal study tracks SURI’s performance over an extended period, measuring its ability to learn from
feedback, integrate new medical knowledge, and maintain consistent reliability.

User feedback plays a central role in evaluating SURI’s effectiveness, offering insights into its practical
impact on clinical workflows. Regular surveys and interviews with medical staff provide qualitative data on
user satisfaction, ease of use, and the perceived utility of the system. These insights are complemented by
usability testing sessions, where users interact with SURI under observation, allowing evaluators to identify
pain points and gather actionable suggestions for improvement. This user-centric approach ensures that the
system evolves in response to real-world needs and expectations.

The evaluation process also incorporates rigorous data analysis and reporting to provide a comprehensive
overview of SURI’s effectiveness. Quantitative data analysis involves the application of statistical methods
to evaluate performance metrics and user activity logs, offering a clear picture of SURI’s efficiency,
accuracy, and reliability. Meanwhile, qualitative assessments focus on extracting valuable themes and
insights from user feedback, interview transcripts, and open-ended survey responses, providing context and
depth to the evaluation.

By combining technical metrics, structured testing, and user-driven insights, the evaluation of SURI ensures
a holistic understanding of its performance, reliability, and impact. This approach not only validates SURI’s
current capabilities but also informs future enhancements, ensuring the system continues to meet the
evolving demands of the healthcare environment.

Discussion
The implementation of SURI has demonstrated significant improvements in both the accuracy and efficiency
of medical documentation, as shown by Figure 1, where the majority of records required minimal changes
around less than 10%. By leveraging cutting-edge AI technologies, SURI’s multilingual ASR and NLP
framework has successfully automated the process of converting diverse speech inputs into structured
medical reports. Its ability to handle multilingual data, particularly in complex and noisy medical
environments, positions it as a powerful tool for improving documentation quality and reducing errors.

In our randomized field study using a combined ASR and LLM system for medical documentation, we found
that the auto-generated clinical notes still required a significant percentage of modifications by clinicians to
ensure accuracy and completeness. This percentage-of-modification metric provides a practical measure of
real-world usability, capturing the editing effort needed to address disfluencies and extraneous patient
speech - factors often overlooked by traditional metrics like WER. Unlike prior ASR studies that primarily
reported WER in controlled or simulated environments [26], our research accounts for the unpredictable
nature of live patient-clinician conversations, which introduce random, tangential content that complicates
direct transcription. To mitigate these issues, we integrated an LLM to filter out irrelevant details and
correct transcription errors [27]. This approach builds on decades of ASR advancements that are grounded in
foundational work by Baker (1975) on trainable speech recognition grammars [3].

In a comparable study, Artificial Intelligence Scribe and Large Language Model Technology in Healthcare
Documentation: Advantages, Limitations, and Recommendations by Mess et al. (2024) [28], the authors
explore similar objectives of integrating ASR and LLMs into healthcare documentation, focusing on the
improvements to efficiency and patient-centered care. 

A standout benefit of SURI is its adaptive learning capability, which allows the system to refine its outputs
continuously by incorporating user feedback and adapting to evolving medical terminologies. This self-
learning feature ensures that SURI stays aligned with clinical best practices while catering to individual user
preferences. Over time, this adaptability minimizes the need for manual corrections, further improving
efficiency. However, a key challenge lies in balancing adaptability with strict data privacy protocols.
Ensuring that the system's learning mechanisms do not compromise patient confidentiality will remain a
critical focus as the system evolves.
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Despite its strengths, user feedback has pointed to areas for improvement, particularly in the user interface
(UI). While the system excels at streamlining documentation workflows, enhancements are needed to
improve the ease of making corrections and navigating through the interface. Addressing these usability
challenges will be key to increasing user adoption and maximizing the system’s potential benefits. Future
iterations of SURI should prioritize refining the UI to ensure an intuitive and seamless user experience.

The economic benefits of SURI are undeniable. Its ability to replace traditional scribe services has resulted in
a significant reduction in operational costs, demonstrating the financial advantages of integrating AI-driven
automation into healthcare workflows. As the system continues to scale, these savings are expected to grow,
solidifying SURI's position as a financially sound investment for healthcare institutions. Furthermore, its low
operational costs, combined with its scalability, make it a sustainable and cost-effective solution for modern
healthcare environments.

In summary, SURI represents a transformative approach to medical documentation, balancing technical
precision, economic efficiency, and adaptability to meet the evolving needs of healthcare providers. By
addressing its current limitations and building on its strengths, SURI has the potential to set a new standard
for AI-driven documentation systems in the healthcare industry.

Limitations
While SURI demonstrates remarkable potential as a multilingual, adaptive AI framework for medical
documentation, several limitations must be addressed to ensure broader adoption and optimal performance.
One of the primary challenges lies in maintaining accuracy in noisy environments. Despite leveraging
advanced automatic speech recognition (ASR) technology, SURI’s performance can decline significantly in
settings with high background noise, overlapping conversations, or unclear speech. Such scenarios are
common in busy clinical environments or during telehealth consultations, potentially impacting the
system's usability.

Language and accent variability present another challenge. While SURI supports multiple languages, its
effectiveness can vary depending on the rarity of the language or the prominence of regional accents. This
variability could reduce inclusivity, particularly in linguistically diverse or underserved communities.
Additionally, SURI relies heavily on the quality of input data and feedback for its adaptive learning
capabilities. Inconsistent or incomplete feedback from users can slow the system’s learning curve, limiting
its ability to adapt to new medical terminologies or best practices.

A potential concern with SURI’s automation capabilities is the risk of over-reliance by users. The
convenience of automated documentation may inadvertently reduce users’ diligence in cross-checking for
errors or omissions, which could compromise the quality of medical records in critical scenarios.

Future work
To address these limitations and enhance its capabilities, the future development of SURI focuses on
improving performance, adaptability, and integration with evolving healthcare technologies. One priority is
fine-tuning the system to better handle diverse accents and reduce noise-related errors. This involves
collecting a broader range of voice samples and refining the system's algorithms to enhance recognition
accuracy in challenging environments. Noise reduction improvements, particularly at the start of recordings,
aim to prevent misinterpretation or hallucinations, where the model may default to the wrong language or
make inaccurate assumptions due to initial noise interference.

SURI’s future scope also includes integration with advanced medical sensors and cameras. Moving beyond
wearables like smartwatches, these tools could capture patient movements, physical observations, and other
non-verbal cues during consultations. By incorporating image recognition and video reasoning technologies,
SURI could enrich patient records with automated visual data interpretation, reducing the need for providers
to manually describe their observations. This integration could significantly alleviate the documentation
burden while providing a more holistic representation of patient interactions.

Further advancements in adaptive learning and predictive modeling will allow SURI to keep pace with
medical innovations, evolving terminologies, and emerging healthcare challenges. By anticipating changes
in medical language and adapting to real-time trends, SURI can remain a forward-thinking tool capable of
addressing new clinical demands and diseases.

A key limitation identified in our observation is the tendency for transcription errors when multiple
speakers overlap or when one speaker’s volume overshadows others. While this issue has thus far been
noted qualitatively, future iterations of SURI will include systematic tracking of these overlap-related
discrepancies to gather quantitative insights. By capturing precise metrics on how often such errors occur,
we can better measure improvements over time and refine SURI’s speaker separation algorithms for more
accurate transcriptions in multi-speaker environments.
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The rapidly evolving AI industry also provides opportunities to enhance SURI’s capabilities. By incorporating
cutting-edge developments in natural language processing, image recognition, and predictive analytics,
SURI’s technical precision and user experience can be continually refined. Maintaining an open approach to
adopting these advancements ensures SURI remains at the forefront of AI innovation in healthcare.

Finally, with the growing prominence of telehealth, SURI aims to seamlessly integrate into virtual
healthcare platforms. By providing real-time transcription and report generation during remote
consultations, SURI can uphold high documentation standards while allowing providers to focus more on
patient care. This telehealth integration will enhance the quality of remote healthcare services, making SURI
a vital tool for both in-person and virtual medical practices.

Conclusions
SURI represents a major advancement in medical documentation, leveraging AI to streamline record-
keeping for healthcare providers. By utilizing advanced ASR and NLP technologies, it accurately converts
multilingual medical conversations into structured records, reducing the time and effort required for
documentation. This automation not only lowers costs and enhances accuracy but also allows professionals
to focus more on patient care. With adaptive learning capabilities, SURI continuously improves by
integrating new medical terminologies and real-world feedback. Its potential extends beyond
documentation, positioning it as a future research assistant and analytics tool for deeper insights into
patient care. As it evolves, SURI will continue to enhance medical workflows, reduce administrative burdens,
and improve healthcare efficiency.
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