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Abstract
The mathematics that were originally developed for the N-localizer apply to three N-localizers
that produce three sets of fiducials in a tomographic image. Some applications of the N-localizer
use four N-localizers that produce four sets of fiducials; however, the mathematics that apply to
three sets of fiducials do not apply to four sets of fiducials. This article presents mathematics
that apply to four or more sets of fiducials that all lie within one planar tomographic image. In
addition, these mathematics are extended to apply to four or more fiducials that do not all lie
within one planar tomographic image, as may be the case with magnetic resonance (MR) imaging
where a volume is imaged instead of a series of planar tomographic images. Whether applied to a
planar image or a volume image, the mathematics of four or more N-localizers provide a
statistical measure of the quality of the image data that may be influenced by factors, such as the
nonlinear distortion of MR images.

Categories: Medical Physics, Radiation Oncology, Neurosurgery
Keywords: stereotactic neurosurgery, stereotactic radiosurgery, image guidance, image-guided,
computed tomography, magnetic resonance imaging, positron emission tomography (pet), n-localizer,
medical imaging, brain imaging

Introduction
The N-localizer is a device that may be attached to a stereotactic frame (Figure 1) in order to
facilitate image-guided neurosurgery and radiosurgery using tomographic images that are
obtained via computed tomography (CT), magnetic resonance (MR) or positron emission
tomography (PET) [1]. The mathematics of the N-localizer have been discussed previously [2].
The remainder of this Introduction will review the mathematics of three N-localizers in
preparation for the presentation of the mathematics of four or more N-localizers in the Materials
and Methods.
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FIGURE 1: Three N-Localizers Attached to a Stereotactic Frame
Three N-localizers are attached to this stereotactic frame and are merged end-to-end such that only
seven rods are present. The vertical rod at the right rear of the frame is larger in diameter than the
other rods. This large rod facilitates unambiguous interpretation of the fiducial circles and ellipses that
the seven rods create in a tomographic image, as explained in the legend to Figure 5.

The N-localizer comprises a diagonal rod that extends from the top of one vertical rod to the
bottom of another vertical rod (Figure 2). Assuming for the sake of simplicity that the two
vertical rods are perpendicular to the tomographic section, the cross section of each vertical rod
creates a fiducial circle and the cross section of the diagonal rod creates a fiducial ellipse in the
tomographic image, as shown in Figure 2b. As the tomographic section moves from the top of
the N-localizer towards the bottom of the N-localizer, i.e. towards its point of attachment to the
stereotactic frame (Figure 1), the ellipse  will move away from circle  and toward circle .
The relative spacing between these three fiducials permits precise localization of the
tomographic section with respect to the N-localizer. The distance  between the centers of
circle  and ellipse  and the distance  between the centers of circles  and  are used
to calculate the ratio . This ratio represents the fraction of diagonal rod 
that extends from the top of vertical rod  to the point of intersection of rod  with the
tomographic section. These linear geometric relationships exist due to the properties of similar
triangles and are valid even if the vertical rods are not perpendicular to the tomographic section
[3].
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FIGURE 2: Intersection of the Tomographic Section with the N-
Localizer

 Side view of the N-localizer. The tomographic section intersects the rods , , and . 
Tomographic image. The intersection of the tomographic section with the rods , , and  creates
fiducial circles  and  and fiducial ellipse  in the tomographic image. The distance 
between the centers of circle  and ellipse  and the distance  between the centers of circles 

 and  are used to calculate the ratio . This ratio represents the fraction of
diagonal rod  that extends from the top of rod  to the point of intersection of rod  with the
tomographic section.

It is convenient to ignore the thickness of the tomographic section and to approximate the
tomographic section as an infinitely thin plane. This "central" plane lies midway between the top
and bottom halves of the tomographic section, analogous to the way that a slice of cheese is
sandwiched between two slices of bread. The central plane approximation is susceptible to error
because of the partial volume effect that derives from the several-millimeter thickness of the
tomographic section [4-5]. The partial volume effect prevails because any structure that passes
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partially into the tomographic section but does not span the full thickness of that section may be
visible in the tomographic image. Hence, the position of that structure is determined to only a
several-millimeter error that is a well-known limitation of tomographic imaging. In the
following discussion, the term "tomographic section" will be used as an abbreviation for the term
"central plane of the tomographic section."

The fraction  is used to calculate the  coordinates of the point of intersection 
between the long axis of rod  and the tomographic section (Figure 3). In this figure, points 
and  represent the beginning and end, respectively, of the vector that extends from the top
of rod  to the bottom of rod . This vector coincides with the long axis of rod . The 

 coordinates of the beginning point  and the  coordinates of
the end point  are known from the physical dimensions of the N-localizer. Hence, linear
interpolation may be used to blend points  and  to obtain the 
coordinates of the point of intersection  between the long axis of rod  and the tomographic
section

The vector form of Equation 1 shows explicitly the  coordinates of points ,  and
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FIGURE 3: Calculation of the Point of Intersection Between the
Rod B and the Tomographic Section
The long axis of rod  is represented by a vector that extends from point  at the top of rod  to
point  at the bottom of rod . The  coordinates of point  and the 

 coordinates of point  are known from the physical dimensions of the N-
localizer. Hence, the ratio  may be used to blend the  and 

 coordinates of points  and  via linear interpolation as indicated by
Equations 1 and 2. This interpolation calculates the  coordinates of the point of
intersection  between the long axis of rod  and the tomographic section.

Equation 1 or 2 may be used to calculate the  coordinates of the point of
intersection  between the long axis of rod  and the tomographic section. The point ,
which lies on the long axis of rod  in the three-dimensional coordinate system of the N-
localizer, corresponds to the analogous point , which lies at the center of ellipse  in the
two-dimensional coordinate system of the tomographic image (Figure 2b). Hence, there is a one-
to-one linear mapping between a point from the N-localizer and a point from the tomographic
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image.

The attachment of three N-localizers to a stereotactic frame permits calculation of the 
, , and  coordinates for the

three respective points , , and  in the three-dimensional coordinate system of the

stereotactic frame (Figure 4). These three points correspond respectively to the three analogous
points , , and  in the two-dimensional coordinate system of the tomographic
image. In the following discussion, the symbols , , and  will be used as a shorthand
notation for , , and . The symbols , , and  will be used as a shorthand

notation for , , and .

FIGURE 4: Representation of the Tomographic Section in the
Three-Dimensional Coordinate System of the Stereotactic
Frame
The quadrilateral represents the tomographic section. The large oval depicts the circular base of the
stereotactic frame (in perspective). The vertical and diagonal lines that are attached to the large oval
represent the nine rods. The centers of the six fiducial circles and the three fiducial ellipses that are
created in the tomographic image by these nine rods are shown as points that lie in the tomographic
section. The tomographic section intersects the long axes of the three diagonal rods at the points ,

, and  that coincide with the respective centers , , and  of the three ellipses (Figure
6). The , , and  coordinates of the respective points of
intersection , , and  are calculated in the three-dimensional coordinate system of the
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stereotactic frame using Equations 1 and 2. Because these three points determine the spatial
orientation of a plane in three-dimensional space, the spatial orientation of the tomographic section is
determined with respect to the stereotactic frame. The target point  lies in the tomographic
section. The  coordinates of this target point are calculated in the three-dimensional
coordinate system of the stereotactic frame using Equation 5.

The three points , , and  lie on the three respective diagonal rods , , and  and
have respective  coordinates , , and  in the
three-dimensional coordinate system of the stereotactic frame (Figure 4). The analogous
three points , , and  lie at the centers of the three respective ellipses , , and 
 and have  coordinates , , and  in the two-dimensional
coordinate system of the tomographic image (Figures 5-6).

FIGURE 5: CT Image with Three Sets of Fiducials
CT image of a patient to whom a BRW CT localizer frame (Integra Radionics Inc., Burlington, MA),
which comprises three N-localizers, is attached. The cross sections of the three N-localizers create
three sets of fiducials , , and  in the CT
image. The cursor indicates the target point . The large vertical rod  allows it to be
unambiguously distinguished from the other vertical rods and provides a visual cue that this figure is
rotated approximately 90 degrees clockwise relative to Figure 6 [6].
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FIGURE 6: Representation of the Two-Dimensional Coordinate
System of the Tomographic Image
The cross sections of the three N-localizers create three sets of fiducials , 

, and  in the tomographic image. Each set contains two circles
and one ellipse that are collinear. For each set, the short double-ended arrows indicate the distance 

 between the centers of circle  and ellipse  and the long double-ended arrows indicate the
distance  between the centers of circles  and . The centers , , and  of the three
ellipses coincide with the respective points of intersection , , and  of the long axes of the
three diagonal rods with the tomographic section (Figure 4). The , , and 

 coordinates of the centers , , and  correspond respectively to the 
, , and  coordinates of the points of intersection , 

, and . The target point  has  coordinates in the two-dimensional coordinate
system of the tomographic image. The  coordinates of the analogous target point 

 are calculated in the three-dimensional coordinate system of the stereotactic frame using
Equation 5.
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In order to facilitate calculation of the  coordinates of the target point , it is
convenient to project the , , and  coordinates of the three centers 

, , and  of the ellipses onto the  plane in three-dimensional space by appending
a third coordinate  to create , , and  coordinates.
The -coordinate may be set arbitrarily to any non-zero value, e.g ., 1, so long as same value of 

 is used for each of the three -coordinates. The equations that are presented in the
remainder of this article assume that a value of  has been used to project the , 

, and  coordinates. If a value of  were used instead of  to
project these coordinates, the equations that are presented in the remainder of this article would
no longer apply and would require revision so that the calculations that these equations describe
may produce correct results.

Because three points determine the orientation of a plane in three-dimensional space, the
three coordinates , , and , together with the
three coordinates , , and , determine the spatial orientation of the
tomographic section with respect to the stereotactic frame. This spatial orientation or linear
mapping is specified by the matrix elements  through  in the matrix equation

Equation 3 represents concisely a system of nine simultaneous linear equations that determine
the spatial orientation of the tomographic section with respect to the stereotactic frame. This
equation transforms the , , and  coordinates from the two-
dimensional coordinate system of the tomographic image to create , 

, and  coordinates in the three-dimensional coordinate system of
the stereotactic frame.

In Equation 3, the matrix elements  through  as well as the matrix elements  through 
are known. The matrix elements  through  are unknown; hence, Equation 3 may be
inverted to solve for these unknown elements of the transformation matrix

where the superscript operator -1 indicates the inverse of the matrix that contains the elements 
 through . The inverse of this matrix is guaranteed to exist so long as the , 

, and  coordinates of the centers of the three ellipses , , and  are
not collinear. This non-collinearity is enforced by careful design of the stereotactic frame [7].

Once the transformation matrix elements  through  are known, the 
coordinates of the target point  may be transformed from the two-dimensional coordinate
system of the tomographic image to the three-dimensional coordinate system of the stereotactic
frame to obtain the  coordinates of the analogous target point 
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Materials And Methods
Equation 5 has been used for the past 37 years to calculate the  coordinates of
the target point  in the three-dimensional coordinate system of the stereotactic frame [2, 8].
This equation applies to only three N-localizers; however, some applications of the N-localizer
have incorporated four N-localizers [9-13] that produce four sets of fiducials in a tomographic
image. 

Four sets of fiducials are visible in the CT image of Figure 7. The transformation or linear
mapping from the two-dimensional coordinate system of this tomographic image into the three-
dimensional coordinate system of the stereotactic frame may be represented as

An important distinction between Equations 3 and 6 is that Equation 3 may be inverted via
Equation 4 to solve for the transformation matrix elements  through  whereas
Equation 6 may not be inverted to obtain these transformation matrix elements because
Equation 6 includes non-square matrices [7].

One solution to this problem is to ignore one of the four sets of fiducials and to use the
remaining three sets of fiducials for Equations 3 and 4. This solution raises a question
concerning which set of fiducials to ignore. One approach to ignoring a set of fiducials is to
attempt to minimize errors by choosing the three fiducial points  that form a triangle that
encloses the target point  [9]. For example, in Figure 7, the target point lies within the
triangle , so fiducial  would be ignored for application of Equation 4. Although this
approach aims to minimize errors, it requires that important data, i.e., one set of fiducials, be
ignored.
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FIGURE 7: CT Image with Four Sets of Fiducials
Four N-localizers create four sets of fiducials , , 

, and . The N-localizers are merged end-to-end such that 
, , , and . The black cross hairs indicate the

centers of the fiducials and the white cross hairs indicate the target point  that lies inside the
triangle  (see text for explanation). Adapted from [9].

It is possible to minimize error via the method of least squares [14] without ignoring any of the
fiducials. The least-squares method applies to three or more sets of fiducials. The equations that
are required for least-squares minimization are obtained by first expanding the matrix
multiplication of Equation 6 and expressing the result for the matrix elements , , and 

where the subscript  designates the matrix row. In the presence of error, Equation 7 may be
rearranged to express the errors in , , and  as , , and , respectively
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In order to minimize these errors via the method of least squares, the values of , , and 
 are squared to obtain the error functions , , and 

The following discussion illustrates minimization of the error function ; minimization of the
error functions  and  is performed in an analogous manner. At the minimum of a function,
all of the derivatives are equal to zero. Evaluating the derivatives , ,
and  and setting the resulting expressions for these derivatives to zero yields

Simplifying and rearranging the above equations for the derivatives yields a system of three
simultaneous linear equations of the three unknowns , , and 

where  is the number of sets of fiducials; in the case of Equation 6, . These
simultaneous linear equations may be solved using Cramer's rule [15] or perferably Gauss
elimination [16] to yield the matrix elements , , and  that minimize the error
function . The error functions  and  are minimized in a similar manner to obtain the
matrix elements , , and  and the matrix elements , , and ,
respectively.

Once the elements of the transformation matrix have been calculated as discussed above, the
transformation matrix may be used as shown in Equation 5 to transform the 
coordinates of the target point  from the two-dimensional coordinate system of the
tomographic image to the three-dimensional coordinate system of the stereotactic frame to
obtain the  coordinates of the analogous target point .

The accuracy of the calculation of the transformation matrix elements, and hence, the accuracy
of the transformation of the  coordinates, is indicated by the correlation coefficient 

 that is a measure of how well the  coordinates fit the plane equation

This correlation coefficient may be obtained by first calculating the three linear correlation
coefficients , , and  in the manner that is shown below for  [17]
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then combining these linear correlation coefficients to obtain a coefficient of multiple
correlation [18]

Results
Figure 7 is a CT image wherein four N-localizers have produced four sets of fiducials. A cursor
was centered over the cross hairs for each of the eight fiducials and for the target point  in
order to read the  coordinates of the fiducials and the target point. These coordinates are
shown in Table 1.

Cross Hair

2.409 2.553

2.397 1.577

2.382 0.374

1.567 0.382

0.380 0.418

0.411 1.336

0.429 2.581

1.354 2.566

1.612 1.171

TABLE 1: The  Coordinates of Fiducials and Target Point  from Figure 7
The  coordinates of the fiducials and the target point  were measured by centering a cursor over the cross hairs in the CT
image of Figure 7. The position of the reference origin of the CT image and the units of measurement of  and  (millimeters, pixels,
etc.) are irrelevant, so long as the same reference origin and units of measurement are used to measure each  and . Also,
independent of whether the -coordinates are measured in the horizontal direction and the -coordinates are measured in the vertical
direction, or vice versa, Equation 5 will calculate the same  coordinates for the analogous target point .

The  coordinates for all four fiducials , , , and  from Table 1 were used to
construct a transformation matrix by solving Equation 11, assuming the stereotactic frame to be
a cube whose sides are 30 cm long (see Appendix 1 for details). Then this transformation matrix
was used to transform the  coordinates of the target point  that are shown in Table
1 into the  coordinates of the analogous target point  that are shown in

Table 2. The correlation coefficient  was calculated to indicate the accuracy
of the transformation.
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In order to assess the effect of ignoring one set of fiducials upon the accuracy of the
transformation, a different transformation matrix was calculated via Equation 4 using the 

 coordinates from Table 1 for each of the four combinations of fiducials , 
, , and . Then these four different transformation matrices were

used to transform the  coordinates of the target point  that are shown in Table 1

into  coordinates for the four different target points  that are shown in

Table 2. Also, the Pythagorean distance , which represesents the transformation error, was
calculated between each of these four target points  and the target point . The

mean transformation error is  mm and the standard deviation is  mm.

Target Point and Fiducials  (cm)  (cm)  (cm)  (mm)

3.246 4.178 2.106  

3.235 4.199 2.105 0.237

3.278 4.120 2.107 0.662

3.206 4.252 2.103 0.842

3.265 4.143 2.107 0.398

TABLE 2: The  Coordinates of the Target Point  Calculated from Figure 7
The  coordinates in centimeters for the target point  were calculated using all four fiducials , , , and 

from Figure 7. Also, the  coordinates in centimeters for the four different target points  were calculated using all four

combinations of three fiducials. The Pythagorean distance  from  to each  is indicated in millimeters.

Figure 8 is a MR image wherein four N-localizers have produced four sets of fiducials. A cursor
was centered over the cross hairs for each of the 12 fiducials and for the target point  in order
to read the  coordinates of the fiducials and the target point. These coordinates are
shown in Table 3.
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FIGURE 8: MR Image with Four Sets of Fiducials
MR image of a patient to whom a first-generation BRW MR localizer frame (Radionics Inc.,
Burlington, MA) is attached. Four N-localizers create four sets of fiducials , 

, , and . The black cross hairs indicate the
centers of the fiducials and the target point . Adapted from [11].
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Cross Hair

3.014 2.604

3.018 2.234

3.030 0.981

2.451 0.338

2.114 0.334

0.950 0.298

0.378 0.894

0.371 1.314

0.328 2.528

0.884 3.134

1.254 3.141

2.444 3.174

1.337 1.499

TABLE 3: The  Coordinates of Fiducials and Target Point  from Figure 8
The  coordinates of the fiducials and the target point  were measured by centering a cursor over the cross hairs in the MR
image of Figure 8.

The  coordinates for all four fiducials , , , and  from Table 3 were used to
construct a transformation matrix by solving Equation 11, assuming the stereotactic frame to be
a cube whose sides are 30 cm long (see Appendix 2 for details). Then this transformation matrix
was used to transform the  coordinates of the target point  that are shown in Table
3 into the  coordinates of the analogous target point  that are shown in

Table 4. The correlation coefficient  was calculated to indicate the accuracy
of the transformation.

In order to assess the effect of ignoring one set of fiducials upon the accuracy of the
transformation, a different transformation matrix was calculated via Equation 4 using the 

 coordinates from Table 3 for each of the four combinations of fiducials , 
, , and . Then these four different transformation matrices were

used to transform the  coordinates of the target point  that are shown in Table 3

into  coordinates for the four different target points  that are shown in

Table 4. Also, the Pythagorean distance , which represents the transformation error, was
calculated between each of these four target points  and the target point . The

mean transformation error is  mm and the standard deviation is  mm.
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Target Point and Fiducials  (cm)  (cm)  (cm)  (mm)

-3.760 2.988 7.791  

-3.858 3.010 7.647 1.756

-3.711 2.977 7.863 0.878

-3.904 3.020 7.578 2.591

-3.575 2.946 8.065 3.333

TABLE 4: The  Coordinates of the Target Point  Calculated from Figure 8
The  coordinates in centimeters for the target point  were calculated using all four fiducials , , , and 

from Figure 8. Also, the  coordinates in centimeters for the four different target points  were calculated using all four

combinations of three fiducials. The Pythagorean distance  from  to each  is indicated in millimeters.

For the CT image of Figure 7, the correlation coefficient  and the mean
transformation error of  mm indicate that only a small amount of error is present in the
CT image. A possible source of this error is the fact that the  coordinates of the centers of
the fiducials were recorded manually using a cursor and hence these coordinates are accurate to
only the nearest pixel. In practice, this source of error is greatly reduced by computer software
that calculates the center of each fiducial at sub-pixel precision instead of relying on a human to
identify the center of the fiducial manually.

The attempt to minimize the transformation error by ignoring one set of fiducials [9] does
diminish the error, as can be seen from Figure 7 and Table 2. Assuming that , which was

calculated using all four sets of fiducials, is the most accurate target point, it is evident that the
Pythagorean distance  from  to  varies with the position of  relative to the

triangle that is formed by the three  that are used for application of Equation 4. Specifically,
the distance  increases as the position of  progresses from well inside triangle  to
marginally inside triangle  to marginally outside triangle  to well outside
triangle . Figure 8 and Table 4 show a similar trend of increasing Pythagorean distance

 from  to  as the position of  progresses from well inside triangle  to

marginally inside triangle  to marginally outside triangle  to well outside
triangle . Because the Pythagorean distance  represents the transformation error,
these trends demonstrate that the transformation error may be minimized to some extent by
choosing the three fiducials  that form a triangle that encloses the target point . However,
choosing three of the four fiducials  ignores one set of fiducials and, hence, requires that
important data be discarded, whereas least-squares minimization uses all four sets of fiducials
and thus discards no data.

For the MR image of Figure 8, the correlation coefficient  and the mean
transformation error of  mm indicate that substantially more error is present in the MR
image of Figure 8 than in the CT image of Figure 7. A likely source of this error is nonlinear
distortion of the MR image that may be caused by metallic elements of the stereotactic frame,
inhomogeneity and temporal fluctuation of the magnetic field, and metallic equipment near the
MR scanner [11, 19-22].
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In view of the N-localizer's requirement for linearity, the susceptibility of MR to nonlinear
distortion can potentially degrade the accuracy of MR-guided stereotactic surgery [7]. In the
absence of nonlinear distortion, the centers of the two circles  and  and the ellipse  are
expected to be collinear, as shown in Figure 2b and Figure 6. Hence, it has been suggested that
the linearity of an MR image may be checked by calculating a correlation coefficient  for
each of the four sets of fiducials  via Equation 13 using the  coordinates
of the centers of the three fiducials , , and  [20]. However, this test for linearity is
sensitive to nonlinear distortion only if the distortion causes the center of fiducial  to move
perpendicularly to the line that connects the centers of fiducials  and . This test for
linearity is insensitive to the case where the distortion causes the center of fiducial  to move
along the line that connects the centers of fiducials  and  because in this case the value of
the correlation coefficient  does not change.

On the other hand, the correlation coefficient  that is calculated via Equation 14 is sensitive
to any displacement of the centers of fiducials  relative to the centers of fiducials  and .
Moreover, the correlation coefficient  is sensitive to the displacement of the center of any
fiducial relative to the center of any other fiducial. Such a displacement alters the calculation of
the  coordinates of one or more of the four  via Equations 1 and 2, and these
altered coordinates affect the correlation coefficient . The robustness and usefulness of the
correlation coefficient  underscore the superiority of least-squares minimization compared
to ignoring one of the four sets of fiducials [9].

Table 5 shows that the four correlation coefficients  are insensitive to the nonlinear
distortion that is present in the MR image of Figure 8. The correlation coefficients  that
are calculated for each of the four sets of fiducials  are substantially larger than
the correlation coefficient  that is calculated using the four fiducials , , , and .
This disparity between  and the four  suggests that the distortion in the MR image of
Figure 8 either causes the centers of the four fiducials  to move along the lines that connect
the centers of fiducials  and , or causes the four sets of fiducials  to move
relative to one another in a manner that does not affect the collinear relationship within each set
of fiducials .

Correlation Coefficient Value

0.99973

0.99223

0.99276

0.99793

0.88977

TABLE 5: Correlation Coefficients Calculated from the Fiducials of Figure 8
The correlation coefficients that are calculated from the  coordinates of the fiducials in the MR image of Figure 8 indicate that the
correlation coefficients  are insensitive to nonlinear distortion of this MR image, whereas the correlation coefficient  is
sensitive to that distortion.

Four or more N-localizers require the solution of Equation 11 instead of using Equation 4 to
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calculate the transformation matrix. For three N-localizers, either approach may be used to
calculate the transformation matrix but for three N-localizers there is no advantage to solving
Equation 11. The correlation coefficient  that is calculated via Equation 14 is a valid
statistical measure of the accuracy of the transformation for only four or more N-localizers. For
three N-localizers, this correlation coefficient equals  because three points determine the
orientation of a plane in three-dimensional space.

Discussion
Magnetic resonance (MR) imaging differs from computed tomography (CT) imaging in the
manner by which the images are obtained. CT obtains a volume of individual tomographic images
of the patient by changing the position of the scanner bed between successive tomographic scans
and, hence, is susceptible to errors in scanner bed positioning. MR obtains a volume image of the
patient by applying magnetic field gradients [23] and, therefore, does not require changing the
position of the scanner bed. Indeed, MR may obtain a volume image of the patient directly
without obtaining a series of planar, tomographic scans. Because MR is not susceptible to errors
in scanner bed positioning, the spatial accuracy of a MR volume image ought to be greater than
the spatial accuracy of a volume of successive CT images, provided that the patient does not
move during the imaging procedure.

A volume image comprises individual volume elements, or voxels, that are identified via their 
 coordinates in the same manner that the individual picture elements, or pixels, from

a planar, tomographic image are identified via their  coordinates. A planar section of
these voxels is a subset of the voxels wherein one of the  coordinates is held
constant. An axial plane has constant  and varying  coordinates. A sagittal plane has
constant  and varying  coordinates. A coronal plane has constant  and varying 

 coordinates. In this context, the term "planar section" or "plane" designates an axial,
sagittal or coronal plane, i.e., a subset of the voxels that one volume image comprises. Such a
plane is to be distinguished from a tomographic image that comprises a set of pixels that are
obtained via one planar, tomographic scan.

A MR localizer frame differs from a CT localizer frame in that the MR localizer frame is designed
to create fiducials in sagittal and coronal planes in addition to axial planes [24]. A MR localizer
frame comprises five N-localizers that subtend the anterior, posterior, left, right, and superior
faces of a cube that encloses the patient's head (Figure 9).
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FIGURE 9: MR Localizer Frame and Axial, Sagittal and Coronal
Planes
A MR localizer frame comprises five N-localizers that subtend the anterior, posterior, left, right and
superior faces of a cube. An axial plane (red) intersects the MR localizer frame at four N-localizers:
anterior, posterior, left and right. A sagittal plane (green) intersects the MR localizer frame at three N-
localizers: anterior, posterior and superior. A coronal plane (blue) intersects the MR localizer frame at
three N-localizers: left, right and superior.

In a manner analogous to Equation 3, the spatial orientation of MR voxel data may be
determined with respect to the stereotactic frame. The equation that applies to these voxel data
requires four  coordinates , , , and 

 from the three-dimensional coordinate system of the stereotactic frame. This
equation also requires four  coordinates , , 

, and  from the three-dimensional coordinate system of the voxel
data. The  coordinates are the centers of ellipses  that are visualized in axial,
sagittal or coronal planes of the voxel data, similar to the approach that is discussed for an axial
tomographic section in Figure 6. The  coordinates are calculated from the 
coordinates of the centers of circles  and  and ellipses  via Equation 1 or Equation 2.

The spatial orientation or linear mapping of the voxel data with respect to the stereotactic frame
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is specified using the matrix equation [25] 

Equation 15 represents concisely a system of 12 simultaneous linear equations that determine
the spatial orientation of the voxel data with respect to the stereotactic frame. This equation
transforms the , , , and  coordinates
from the three-dimensional coordinate system of the voxel data to create , 

, , and  coordinates in the three-dimensional
coordinate system of the stereotactic frame.

One important restriction applies to Equation 15. The four  coordinates 
, , , and  must not be coplanar;

hence, these four  coordinates must not be obtained from a single plane, such as an
axial plane that comprises four fiducials. Thus, for example, an acceptable set of 
coordinates would comprise three  coordinates from three N-localizers that intersect
an axial plane and one  coordinate from the superior N-localizer that intersects a
coronal plane. This restriction is similar to the restriction that applies to Equation 3, i.e., three
non-collinear  coordinates must be used in Equation 3 [7].

In Equation 15, the matrix elements  through  as well as the matrix elements  through 
 are known. The matrix elements  through  are unknown; hence, it is possible (and

tempting) to invert Equation 15 in order to solve for these unknown elements of the
transformation matrix in a manner similar to Equation 4. However, a more useful solution may
be obtained by applying the method of least squares [14] to more than four sets of fiducials
because of the robustness of that method and the usefulness of the correlation coefficients that
it provides.

For voxel data, a useful set of fiducials would comprise ten fiducials: four fiducials from an axial
plane, three fiducials from a sagittal plane and three fiducials from a coronal plane, where the
target point  is visualized in all three planes. The following equation transforms ten 

 coordinates from the three-dimensional coordinate system of the voxel data to
create ten  coordinates in the three-dimensional coordinate system of the stereotactic
frame

In Equation 16, the subscript  selects one of the ten fiducials. The equations that are required for
least-squares minimization are obtained by first expanding the matrix multiplication of Equation
16 and expressing the result for the matrix elements , , and 
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In the presence of error, Equation 17 may be rearranged to express the errors in , , and  as 
, , and , respectively

In order to minimize these errors via the method of least squares, the equations for ,  and
 are squared to obtain the error functions , , and 

The following discussion illustrates minimization of the error function ; minimization of the
error functions  and  is performed in an analogous manner. At the minimum of a function,
all of the derivatives are equal to zero. Evaluating the derivatives , , 

, and  and setting the resulting expressions for these derivatives to
zero yields

Simplifying and rearranging the above equations for the derivatives yields a system of four
simultaneous linear equations of the four unknowns , , , and 

where  is the number of sets of fiducials; in this case, . These simultaneous linear
equations may be solved using Cramer's rule [15] or preferably Gauss elimination [16] to yield the
matrix elements , , , and  that minimize the error function . The error
functions  and  are minimized in a similar manner to obtain the matrix elements , 

, , and  and the matrix elements , , , and , respectively.

Once the elements of the transformation matrix have been calculated as discussed above, the
transformation matrix may be used as follows to transform the  coordinates of
the target point  from the three-dimensional coordinate system of the voxel data into the
three-dimensional coordinate system of the stereotactic frame to obtain the 
coordinates of the analogous target point 

The accuracy of the calculation of the transformation matrix elements, and hence the accuracy
of the transformation of the  coordinates, is indicated by three correlation
coefficients , , and  that express how well the right-hand sides of Equation 17 estimate
the left-hand sides of that equation [26]. Taking the first of Equations 17 as an example, the
correlation coefficient  that measures the correlation between the right-hand side
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and the left-hand side  is calculated as [17]

The correlation coefficients  and  are calculated in an analogous manner. The three
correlation coefficients , , and  may be used to calculate the correlation coefficient ,
as shown in Equation 14.

The solution to Equation 21 provides a method for transforming  coordinates from
the three-dimensional coordinate system of voxel data, which are obtained via volume imaging,
to the three-dimensional coordinate system of the stereotactic frame to produce 
coordinates. These equations require the use of four or more pairs of non-coplanar 
and  coordinates. A useful set of  and  coordinates may be
obtained from axial, sagittal, and coronal planes, in which the target point  is visualized, by
selecting the  coordinates then calculating the  coordinates via Equation 1
or Equation 2. Note that although axial, sagittal and coronal planes in which the target point is
visualized would appear to be the most useful of the image planes, there is no requirement to
include these particular planes in the calculation of the transformation matrix via solution of
Equation 21. Because the transformation matrix transforms  coordinates from the
three-dimensional coordinate system of the voxel data to produce  coordinates in the
three-dimensional coordinate system of the stereotactic frame, all of the  coordinates
from the voxel data are transformed into  coordinates, independent of the planes from
which the  coordinates are selected for application of Equations 1, 2, and 21.

An additional application of the solution to Equation 21 is the calculation of the correlation
coefficients , , , and  that provide a measure of the accuracy of the transformation.
The accuracy of the transformation is degraded by nonlinear distortion to which MR data are
susceptible.

In view of the susceptibility of MR to nonlinear distortion, an assessment of the nonlinear
distortion may be improved using additional  and  coordinates that may be
obtained from axial, sagittal and coronal planes that do not include the target point . These
additional planes could be chosen from throughout the volume image; their  and 

 coordinates would contribute to the calculation of the correlation coefficients , ,
, and  and thereby provide a measure of the presence of nonlinear distortion within the

volume image.

MR scanners are equipped with small "shimming" electromagnets that are used to improve the
homogeneity of the magnetic field and, hence, improve the linearity of MR images. Because the
optimum shim settings differ between patients, the optimum shim settings should be
determined for each patient individually. A MR localizer frame could assist in the determination
of the optimum shim settings as follows. A volume image that comprises voxel data would be
obtained for a patient wearing a MR localizer frame, then  coordinates would be
chosen from throughout the volume image. The corresponding  coordinates would be
calculated from the  coordinates via Equation 2. The  and 
coordinates would be used to construct Equation 21. The solution to Equation 21 would yield the
matrix elements  through . These matrix elements and the  and 
coordinates would be used to calculate the correlation coefficients , , , and  via
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Equations 23-24. These correlation coefficients would provide an analysis of the linearity of the
voxel data and thus provide an indication of whether the quality of the shimming procedure was
sufficient to permit MR-guided stereotactic surgery.

Conclusions
This article presents the mathematics that permit the transformation of  coordinates
from the two-dimensional coordinate system of a tomographic image to the three-dimensional
coordinate system of the stereotactic frame to produce  coordinates. In addition, this
article describes the mathematics that permit the transformation of  coordinates
from the three-dimensional coordinate system of volume image data, which are obtained via MR
imaging, to the three-dimensional coordinate system of the stereotactic frame to produce 

 coordinates.

When applied to four or more N-localizers, these mathematics permit the calculation of the
correlation coefficients , , , and  that provide a statistical measure of the presence
of nonlinear distortion in the image data. Because image data that are obtained via MR imaging
are susceptible to nonlinear distortion, these correlation coefficients may be used to indicate
whether a particular MR image is sufficiently free of nonlinear distortion to qualify for MR-
guided stereotactic surgery.

Appendices
Appendix 1: Mathematical Model of the Stereotactic Frame in [9]
In order to calculate a transformation matrix from the data in Table 1, the  coordinates
of the points at both ends of each of the four diagonal rods , , , and  must be known
in the three-dimensional coordinate system of the stereotactic frame that is visible in Figure 7
[9]. These  coordinates are required to calculate the point of intersection between the
long axis of each diagonal rod  and the tomographic section via Equation 2. The author does
not have access to that stereotactic frame, so the  coordinates of the points at both
ends of the four diagonal rods are not known.

However, it is possible to assign the  coordinates of these eight points as follows. The
stereotactic frame is designed such that the four N-localizers lie on the faces of a cube and the
four diagonal rods , , , and  completely subtend the faces of that cube [9]. The
vertical edges of the cube are vertical rods whose cross sections create the fiducials , , ,
and  in Figure 7. Hence, the length of an edge of the cube corresponds to the distance
between two adjacent fiducials , for example, between  and . Thus, a sufficient
mathematical model of the stereotactic frame is a cube whose edges are arbitrarily chosen to be
30 cm long and whose vertical rods , ,  and 
bracket the diagonal rods , , , and , respectively, as shown in Figure 2a.
Consequently, the  coordinates of the points at the ends of each diagonal rod  may
be assigned from the points at the ends of the bracketing vertical rods  and . For example,
the beginning point of diagonal rod  is assigned from the point at the top of vertical rod ,
and the end point of diagonal rod  is assigned from the point at the bottom of vertical rod 
. The beginning and end points of the diagonal rods , , and  are assigned in a similar
manner.

Appendix 2: Mathematical Model of the Stereotactic Frame in
[11]
In order to calculate a transformation matrix from the data in Table 3, the  coordinates
of the points at both ends of each of the four diagonal rods , , , and  must be known

2015 Brown et al. Cureus 7(10): e349. DOI 10.7759/cureus.349 24 of 29



in the three-dimensional coordinate system of the stereotactic frame that is visible in Figure 8
[11]. These  coordinates are required to calculate the point of intersection between the
long axis of each diagonal rod  and the tomographic section via Equation 2. The author does
not have access to that stereotactic frame, so the  coordinates of the points at both
ends of the four diagonal rods are not known.

Moreover, the geometry of the stereotactic frame presents some challenges to assigning the 
 coordinates of these eight points. The stereotactic frame is designed such that the

four N-localizers lie on the faces of a cube. However, although the four diagonal rods , , 
, and  completely subtend the faces of that cube in the direction perpendicular to the

central plane of the tomographic section, the diagonal rods only partially subtend the faces of
the cube in the direction within the central plane of the tomographic section [11]. Also, the
vertical edges of the cube do not coincide with vertical rods and hence do not create fiducials in
Figure 8. Thus, the length of an edge of the cube does not correspond to the distance between
two such fiducials.

In an attempt to develop a sufficient mathematical model of the stereotactic frame, the positions
of the vertical edges of the cube are estimated from Figure 10, which depicts the same MR image
as Figure 8. In Figure 10, each of the four sets of fiducials , , 

, and  comprises three collinear fiducials. Each set of three
collinear fiducials lies on a different edge of a square. From each set of collinear fiducials, the
points at the centers of the three fiducials define a line that describes a different edge of the
square. These four lines intersect at the positions designated by the open circles in Figure 10 that
indicate where the cross sections of vertical rods would create fiducials if vertical rods existed at
the vertical edges of a cube.

2015 Brown et al. Cureus 7(10): e349. DOI 10.7759/cureus.349 25 of 29



FIGURE 10: MR Image with Four Sets of Fiducials
MR image of a patient to whom a first-generation BRW MR localizer frame (Radionics Inc.,
Burlington, MA) is attached. Four N-localizers create four sets of three collinear fiducials 

, , , and . The black
cross hairs indicate the centers of the fiducials. For each set of three collinear fiducials, the centers of
the fiducials define a line. The four lines intersect at the positions designated by open circles that
indicate where the cross sections of vertical rods would create fiducials if vertical rods existed at the
vertical edges of the cube. Adapted from [11].

From the positions of the open circles in Figure 10, it is possible to assign the 
coordinates of the points at the ends of each diagonal rod . In this figure, the cross sections of
the faces of the cube correspond to the line segments between the open circles. These line
segments are arbitrarily chosen to be 30 cm long. From this length, the separation between each
rod  and the corresponding rod  is estimated to be 23 cm.

Because each pair of vertical rods  and  bracket a diagonal rod , as shown in Figure 2a,
the  coordinates of the points at the ends of each diagonal rod  may be assigned
from the points at the ends of the bracketing vertical rods  and . For example, the
beginning point of diagonal rod  is assigned from the point at the top of vertical rod , and
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the end point of diagonal rod  is assigned from the point at the bottom of vertical rod .
The beginning and end points of the diagonal rods , , and  are assigned in a similar
manner.

It is possible that estimation of the positions of the vertical rods  and , as discussed above,
could influence the accuracy of transformation of the  coordinates of the target point 

 into the  coordinates of the analogous target point . The correlation
coefficient , which measures this accuracy, is calculated from the points at the ends of the
diagonal rods  via Equations 2, 13, and 14. The points at the ends of each diagonal rod  are
assigned from the points at the ends of the bracketing vertical rods  and . Hence, the
correlation coefficient  may be a function of the separation between rods  and .
Moreover, the robustness of  may be influenced by the fact that the separation between rods

 and  is estimated from Figure 10. To elucidate these potential dependencies, a plot of 
versus the separation between rods  and  is shown in Figure 11. This plot reveals a
maximum in  near a separation of 25 cm. In addition, this plot demonstrates that  is
only weakly dependent on the separation between rods  and , as indicated by the limited
range of  from 0.88966 to 0.88977. Hence, the robustness of  is not influenced by the
separation between rods  and .

An iterative search for the optimum separation, which corresponds to the maximum in ,
found an optimum separation of 24.67 cm. This optimum separation was used to calculate the 

 coordinates for the target points that are shown in Table 4.

-vs.-the-Separation-(cm)-Between-Rods- -and- "
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FIGURE 11: Plot of  vs. the Separation (cm) Between Rods 
and 
The plot of  vs. the separation between rods  and  reveals a maximum in  near a
separation of 25 cm. The range of  is limited to ; hence, 

 is only weakly dependent on the separation between rods  and .
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