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Abstract
Background: Curcumin (Cur) is a polyphenol phyto-compound found in turmeric (Curcuma longa) that
inhibits tumorigenesis by introducing apoptosis and restricting cell survival and proliferation. This in vitro
research article focuses on the pharmacodynamic interactions of Cur combined with the commercial drug
doxorubicin (Doxo) to enhance the cytotoxicity of Doxo at lower doses against triple-negative breast cancer
cells (MDA-MB-231) with the chemo-protective effect against normal HEK293 cells. In this study, we
observed the dose-dependent cytotoxicity, increased reactive oxygen species (ROS) generation, and
increased chromatin condensation in combination doses compared to single doses. Moreover, the cell cycle
arrest and overexpression of checkpoint regulatory genes ATM, P53, CHEK2, BRCA-1, and BRCA-2 were
observed to prevent cell proliferation.

Materials and methods: 3-(4,4-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) analysis
is performed to determine cell viability at different doses. ROS generation is observed using DCFH-DA-
stained fluorescence images. Hoechst33342-stained photomicrographs detect DNA condensation. Apoptosis
analysis is performed using Annexin V/FITC and PI flow cytometry. To validate the findings, mRNA
expression of cell-cycle checkpoint markers is quantified using reverse transcription quantitative
polymerase chain reaction analysis.

Results: The calculated combination dose showing maximum growth inhibition is 33.12 µM Cur + 0.33 µM
Doxo against MDA-MB-231 cells with negligible cytotoxicity against normal HEK293 cells. There is a
significant increase in mRNA expressions of P53 (4.43-fold), CHEK2 (2.58-fold), BRCA-1 (2.01-fold), BRCA-2

(1.60-fold), and ATM (0.91-fold) genes (2-ΔΔCt) after treatment with the combination doses, evident with the
major S-phase cell cycle arrest in MDA-MB-231 cells.

Conclusion: Cur synergistically chemo-sensitizes the anticancer activity of Doxo and enhances the
responses toward conventional chemotherapy attenuating breast cancer.

Categories: Integrative/Complementary Medicine, Therapeutics
Keywords: apoptosis, brca 1 gene, breast cancer therapy, cell cycle arrest, curcumin, dna condensation, p53 gene
expression, phytomedicine

Introduction
Breast cancer is the most prevalent cancer among women and the second most common cancer worldwide,
affecting approximately 2.3 million women annually. According to WHO's statistical analysis in 2022,
670,000 women were expected to die from breast cancer [1]. Additionally, the most recent report by the
American Cancer Society indicated that 45% of newly diagnosed breast cancer cases (820,000) in the United
States were projected for the year 2023 [2].

Breast cancer cells can be characterized based on the presence and absence of various receptors like
estrogen receptor (ER), progesterone receptor (PR), epidermal growth receptor (HER2), etc. This study is
based on the highly metastatic triple-negative breast cancer cell lines, MDA-MB-231 (ER-, PR-, and HER2-),
isolated from basal-type carcinoma of the mammary gland [3]. These cells are extremely aggressive,
metastatic, and prone to relapse with a poor response toward hormone and drug therapies (doxorubicin
(Doxo), paclitaxel, docetaxel, tamoxifen, etc.) due to multidrug drug resistance (MRD) [4].

Doxo, extracted from Streptomyces peucetius, is an antibiotic (anthracycline), successfully used as a
chemotherapeutic drug to treat breast cancers, along with lung and ovarian cancers, by targeting
topoisomerase-II [5]. Despite great evolution in medicinal research, conventional methods are still not
effective in breast cancer because of high systemic toxicity, poor pharmacokinetics, and MDR [6]. The
serious drawback of prolonged use is acute toxicity to healthy tissues and high cardiotoxicity over time [7].

1 1 1 1 1 1

 Open Access Original Article

How to cite this article
Sarkar E, Khan A, Ahmad R, et al. (December 03, 2024) Synergistic Anticancer Efficacy of Curcumin and Doxorubicin Combination Treatment
Inducing S-phase Cell Cycle Arrest in Triple-Negative Breast Cancer Cells: An In Vitro Study. Cureus 16(12): e75047. DOI 10.7759/cureus.75047

https://www.cureus.com/users/720924-esha-sarkar
https://www.cureus.com/users/720919-afreen-khan
https://www.cureus.com/users/478275-dr-rumana-ahmad
https://www.cureus.com/users/911654-aparna-misra
https://www.cureus.com/users/636591-syed-tasleem-raza
https://www.cureus.com/users/720933-abbas-a-mahdi
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


To combat MRD, a combination of multiple drug regimens (including anthracyclines, taxanes, methotrexate,
cyclophosphamide, and fluorouracil) is aimed at inducing cell death more efficiently, even at lower
concentrations. Any compound that increases the sensitivity of conventional therapy toward cancer cells
and decreases tumor cell survivability in comparatively lower concentrations is called a chemosensitizer [8].

In the search for chemosensitizers, phyto-compounds became the mainstay of recent research in cancer
therapeutics, which are present in different parts of plants (fruits, roots, stems, bark, and leaves) and have
shown their medicinal properties against various pathological comorbidities, such as allergy, inflammation,
diabetes, obesity, hypertension, cardiovascular disease (CVD), various immune and inflammatory diseases,
neurological disorders, and cancer [9]. Curcumin (Cur), a polyphenol considered the most abundant phyto-
compounds (almost 2-6%) among all 60 different active curcuminoids and non-curcuminoids of Curcuma
longa or turmeric, has drawn the researcher’s interest due to its wide range of anti-oxidant, anti-
inflammatory, and anti-allergic properties [10]. Various studies have reported that Cur acts as an
anticancerous compound against breast cancers to induce cell cycle arrest at various phases by decreasing
CDC25 and CDC2 and increasing the expression of the P21 gene [11].

The present study focuses on Cur chemosensitizing apoptosis in the MDA-MB-231 cell line in combination
with Doxo. The chemoprotective activity against a normal embryonic kidney HEK293 cell line was also
established. However, the underlying mechanisms of programmed cell death were further analyzed with
differentially expressed genes involved in cell cycle propagation. The study specifically intends to establish
Cur as a complementary medicine in combination with Doxo.

Materials And Methods
Chemical and reagents
DMEM/F-12 (Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12 Ham) growth media and
streptomycin antibiotic/antimycotic solution were purchased from Thermo Fisher Scientific, MA, USA. Cur
(C1386), Doxo-HCl (D1515) active compounds, FBS (HiMedia-RM), DCFH-DA (Cat: D6883), and
Hoechst33342 (Cat: B2261) were purchased from Sigma-Aldrich, Sigma-Life, MO, USA; MTT dye from
HiMedia, India; and Annexin V/FITC-PI apoptosis kit (Cat: K101-100) and PI (K101-100-3) from BioVision,
CA, USA. Total mRNA extraction PureLink RNA mini kit (Cat: 12183018A) was obtained from Invitrogen,
MA, USA, and cDNA synthesis kit (Cat: 4368814) from Applied Biosciences, MA, USA. For gene expression
assay, TaqMan Fast Advanced Master Mix (Cat: 4444556) and TaqMan gene expression assays (for
genes ATM, P53, CHEK2, BRCA-1, BRCA-2, and GAPDH) were obtained from Thermo Fisher Scientific, MA,
USA.

Culture and maintenance of cell lines
MDA-MB-231 and HEK293 cells were obtained from the NCCS, Pune, India, and maintained by sub-culturing
and passaging as monolayers in cell culture flasks (Nest; Tarsons, India) at 37°C in a 5% CO2 incubator at
95% humidity (Tissue and Cell Culture Laboratory, Era's Medical College, Era University, Lucknow, India).
The cells were cultured in DMEM/F-12 and added with 10% FBS and 1% streptomycin.

Preparation of drug combination
Powdered Cur (C1386) and Doxo-HCl (D1515) were dissolved in 0.5% DMSO and stored at 4°C. The
combination of Cur and Doxo was made using Chou-Talalay’s combination index (CI) method to quantify
synergism, additive, and antagonist effects. The CI isobologram equation allows quantitative determination
of drug interactions based on the median-effect equation, where CI<1, CI=1, and CI>1 indicate synergism,
additive effect, and antagonism, respectively. CompuSyn (Biosoft, Cambridge, UK), a computerized
programming software based on these techniques, is used to automatically determine the synergism or
antagonism of multiple drugs at any effective dose [12].

Cytotoxicity and cell viability detection using MTT assay
The cytotoxicity and anti-proliferative activities of Cur, Doxo, and their combination doses against MDA-
MB-231 and HEK293 cells were measured using the 3-(4,4-dimethylthiazol-2-yl)-2,5-diphenyl-2H-
tetrazolium bromide (MTT) assay; 1 × 104 cells/mL cells were seeded in 96-well culture plates and incubated
overnight at 70% confluency for drug treatment. Various concentrations of Cur (5-95 μM) and Doxo (0.25-5
μM) were implemented to acquire dose- and time-dependent (24, 48, and 73 hours) cell viability analysis.
Based on the IC50 concentrations, the Cur and Doxo combination dose was prepared using the CompuSyn
software. To calculate cell viability, MTT dye (5 mg MTT/1 ml PBS) was applied, which forms purple
formazan reduced by mitochondrial oxidoreductases. An ELISA reader (800TS microplate reader, BioTek, VT,
USA) was used to obtain the OD at dual filters (OD595/OD630). The %Cell viability of each dose was calculated

compared with the control (formula), and the graph was generated using GraphPad Prism 8 (Insight Venture
Management, LLC, NY, USA).

% Cell-viability: (OD of Test average/OD of Control average) x 100 (formula)
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The cell morphologies were observed using a phase-contrast microscope (Nikon, Shinagawa, Japan), and
micrographs were collected using NIS-Element software (Nikon Instruments, Tokyo, Japan).

Measurement of oxidative stress (ROS generation)
Intracellular reactive oxygen species (ROS) generation was measured using DCFH-DA staining (5-(-6)-
carboxy-2,7-dichlorofluorescein diacetate). After 48 hours of treatment, the control and treated cells were
incubated with DCFH-DA (10 μM in 1X PBS) for 20 minutes at room temperature (RT: 20-25°C).
Fluorescence was captured using a phase-contrast microscope at 485 nm (Zeiss AxioVert, Oberkochen,
Germany).

Analysis of dsDNA condensation
The nuclear dsDNA condensation was measured using the Hoechst33342 (Cat: B2261) stain, which binds at
the AT-rich sequence of the minor groove and is usually utilized to determine cell cycle status and apoptosis
stage. Cells were fixed with methanol and glacial acetic acid (3:1) and incubated with Hoechst (2 μg/ml PBS)
at room temperature for 20 minutes at RT (dark) [13]. The nuclear morphology and stages of condensation
were observed under an inverted fluorescence microscope.

Determination of apoptosis stages
The percentage of viable, apoptosis (early and late), and dead cells at different drug doses was quantified
using a flow cytometer by Annexin V-FITC and PI Apoptosis Kit (Cat: K101-100) following the user’s
guidelines. Forty-eight hours after treatment, the treated cells were stained with Annexin V-FITC (2μl) and
PI (2μl) for 15 minutes at RT (dark). The apoptosis index was analyzed using a flow cytometer (FACSCanto II
Clinical Flow Cytometry System, BD Biosciences, CA, USA) [14].

Analysis of cell cycle stages
Cell cycle arrests at different stages were analyzed by calculating the ratio of cells in the G 0/G1, S, and G2/M

phases of the cycle. After 48 hours of treatment, MDA-MB-231 cells were fixed using 70% cold ethanol (-
20°C for two hours), followed by permeabilization with 0.2% triton (37°C for 30 minutes), and incubation
with RNase-A (Sigma) for 30 minutes. Stained with 10 µl PI (K101-100-3), the cells were analyzed using a
flow cytometer.

Expression of regulatory marker genes using RT-qPCR method
The genetic expressions of apoptotic markers were analyzed using the RT-qPCR method. Total cellular RNA
was extracted and purified using the PureLink RNA Mini Kit (Cat: 12183018A). Eluted RNA was re-
suspended in RNase-free water (Ambion, USA) and quantified with a NanoDrop 2000 spectrophotometer
(Thermo Fisher Scientific, MA, USA). First-strand cDNA was synthesized using the High-Capacity cDNA
Reverse Transcription Kit (Cat: 4368814) following the PCR amplification: step 1: 25°C for 10 minutes; step
2: 37°C for 120 minutes; step 3: 85°C for five minutes; and step 4: 4°C for ∞ time [14]. RT-qPCR analysis was
performed using the TaqMan Fast Advanced Master Mix (Cat: 4444556) and TaqMan gene expression assays
(Table 1) in an RT-PCR machine (Applied Biosystems, StepOnePlus system version 2.3, Canada). The
expression analysis follows the steps of denaturation (95°C: 21 seconds) and annealing with the primers of
the TaqMan gene expression assay (60°C: 20 seconds). The relative expression of BRCA-1, BRCA-2, P53,

ATM, and CHEK2 genes was calculated with comparative fold change (2-ΔΔCt) values, where GAPDH was used
as an endogenous control.

Target gene Chromosome Amplicon length Assay ID Cat. No. Dye Annealing temp.

ATM Chr.11q22-23 89 Hs00175892_m1 4453320 FAMTM 60°C

P53 Chr.17p13.1 108 Hs01034249_m1 4453320 FAMTM 60°C

CHEK2 Chr.22q12.1 109 Hs00200485_m1 4453320 FAMTM 60°C

BRCA-1 Chr.17q12.12 59 Hs01556193_m1 4453320 FAMTM 60°C

BRCA-2 Chr.13q12.3 110 Hs00609073_m1 4453320 FAMTM 60°C

GAPDH Chr.12p13.31 157 Hs02786624_g1 4453320 FAMTM 60°C

TABLE 1: TaqMan gene expression assay IDs
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Statistical analysis
Cell viability and mean fluorescence intensity data were expressed as mean ± SD or mean ± SEM from three
independent experiments. Statistical evaluation would be determined by one-way or two-way ANOVA
followed by Dunnett’s multiple comparison test using GraphPad Prism 8 software. A p-value <0.05 would be
considered statistically significant.

Results
Synergism of the Cur and Doxo combination treatment on cell
morphology and viability
The dose-effective growth curves were analyzed after treatment with Cur, Doxo, and their combinations.
The MMT analysis showed a decrease in cell viability in a time-based manner (24, 48, and 72 hours), among
which 48-hour drug treatment was selected for detecting IC50 (50% viability) and further staining analysis.
Cur and Doxo showed IC50 at 50 μM and 2.25 μM concentrations. The morphological changes after the 48-
hour combination treatment were demonstrated in Figure 1A, where untreated cells showed the usual
adherence and surface characteristics. The maximum number of non-adherent and floating spherical MDA-
MB-231 cells were visible after the combination treatment (33.12 μM Cur + 0.33 μM Doxo), indicating
apoptosis. The synergistic effect was predicted by CompuSyn using the dose (μM) and inhibitory effects (%)
of the two drugs (Table 2, Figure 2). Meanwhile, the combination drug-treated HEK293 cells showed no
significant alteration in cell morphology (Figure 1B) and viability, proving Cur's chemo-protectiveness
(Figure 3).

FIGURE 1: Graphical presentation showing the MTT cell viability
assessment of MDA-MB-231 cells with different drug doses (48 hours).
Each column presents the mean ± SEM of triplicates compared with the
control; p<0.05 is statistically significant
MTT: 3-(4,4-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, SEM: standard error of the mean, Cur:
curcumin, Doxo: doxorubicin
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D1: Cur (μM) Cur toxicity m1
Dm1
(µM)

r1 CI DRI (Cur) Conclusion

10.0 0.05

1.31 ±
0.38

42.60 µM 0.65 NIL NIL
Dose-dependent cytotoxicity of
Cur

15.0 0.09

20.0 0.15

25.0 0.21

30.0 0.27

35.0 0.32

40.0 0.35

45.0 0.43

50.0 0.50

55.0 0.54

60.0 0.58

65.0 0.62

70.0 0.65

75.0 0.69

80.0 0.72

85.0 0.76

90.0 0.81

95.0 0.85

D2: Dox (μM) Doxo toxicity m2 Dm2 (µM) r2 CI DRI (Dox) Conclusion

0.25 0.14

1.3 ±
0.21

1.74 µM 0.89 NIL NIL
Dose-dependent cytotoxicity of
Doxo-HCl

0.5 0.18

1.0 0.25

1.25 0.31

1.5 0.35

2.0 0.40

2.25 0.49

2.5 0.53

3.0 0.68

3.25 0.74

3.50 4.0
0.78

0.91

D1 + D2: Cur + Doxo (μM in
100:1)

Simulated
toxicity

m3 Dm3 (µM) r3 CI
DRI (Cur +
Doxo)

Conclusion

25.0 + 0.25 0.37

2.12 ± 33.4478
0.95

1.10 1.13: 4.61

Synergism with favorable dose

30.0 + 0.30 0.49 0.91 1.38: 5.61

33.12 + 0.33 0.50 0.90 1.29: 5.24

35.0 + 0.35 0.54 0.91 1.38: 5.61

40.0 + 0.40 0.58 0.91 1.36: 5.57
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50.0 + 0.50 0.62 0.26 µM 1.00 1.24: 5.06 reduction

55.0 + 0.55 0.71 0.81 1.54: 6.29

60.0 + 0.60 0.75 0.76 1.65: 6.74

65.0 + 0.65 0.81 0.63 1.988: 8.155

70.0 + 0.70 0.89 0.412 3.015: 12.399

TABLE 2: Dose-dependent cytotoxicity assessment of Cur and Doxo and synergistic effects of the
Cur and Doxo combination treatment on MDA-MB-231 cells (analyzed using the CompuSyn
software)
Dm: The ME dose, in this case, is the IC50 value, which indicates “potency.” The value can be obtained from the X-intercept of the ME plot. Dm1: IC50 of
Cur, Dm2: IC50 of Doxo-HCl, Dm3: IC50 of the combined dose.

m: slope (signifies the shape of the curve in the ME plot, m=1, >1, and <1), m1: the slope of Cur, m2: the slope of Doxo-HCl, m3: the slope of the combined
dose.

r: The linear correlation coefficient of the ME plot. It signifies the “conformity” of the data with the mass-action law, an indication of how good are the data,
when r=1, it is perfect. For in vitro experiments, usually r>0.95 is considered good, r1: correlation coefficient of Cu, r2: correlation coefficient of Doxo-HCl,
r3: correlation coefficient of the combined dose.

CI: combination index (CI<1: synergism, CI=1: additive, and CI>1: antagonist)

Cur: curcumin, Doxo: doxorubicin, ME: median effect
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FIGURE 2: Graphical presentation showing the chemo-protective
efficacy of Cur on normal HEK293 cells in the Cur and Doxo
combination treatment (48 hours). Each column presents the mean ±
SEM of triplicates compared with the control; p<0.05 is statistically
significant
MTT: 3-(4,4-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, SEM: standard error of the mean, Cur:
curcumin, Doxo: doxorubicin
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FIGURE 3: A: Micrographs showing the synergistic cytotoxicity of the
Cur and Doxo combination treatment (33.12 µM Cur + 0.33 µM Doxo)
against MDA-MB-231 cells (48 hours). B: Micrographs showing the
chemo-protectiveness of Cur in the Cur and Doxo combination
treatment against HEK293 cells (48 hours). The red arrow shows the
dead or apoptotic cells; scale bar = 200 µm
Cur: curcumin, Doxo: doxorubicin

Cur and Doxo induce ROS generation in combination treatment
Figure 4 depicts that the cellular oxidative stress increased significantly in treated cells compared to
untreated cells. The elevated ROS fluorescence intensity was quantified using ImageJ software (National
Institutes of Health, MD, USA). Due to synergy, the combination drug-treated cells resulted in the highest
ROS generation than the IC50 concentrations of the drugs when taken separately (Figure 5). This result
suggests that a probable mechanism for the onset of early apoptosis might be elevated oxidative stress.

FIGURE 4: Cur- and Doxo-induced elevation of intracellular ROS level in
MDA-MB-231 cells. Fluorescent images show highly elevated
intracellular ROS in Cur and Doxo combination dose-treated MDA-MB-
231 cells (48 hours) than other doses
Cur: curcumin, Doxo: doxorubicin, ROS: reactive oxygen species
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FIGURE 5: Graphical analysis of mean DCFH-DA fluorescence in
different dose-treated MDA-MB-231 cells. Column values were analyzed
as mean ± SD of triplicates; p<0.05 is statistically significant
ROS: reactive oxygen species, SD: standard deviation

Induced chromatin condensation after Cur and Doxo combination
treatment
The fluorescence microscopic observation (Figure 6) evidences the highly condensed chromatin fiber and
apoptotic body formed in the combination dose-treated MDA-MB-231 cells compared to untreated cells.
Also, comparatively less chromatin condensation was visible in the single doses and IC50 dose-treated
MDA-MB-231 cells (Figure 7). This indicates enhanced nucleosome cleavage and dsDNA break, driven by
ATP depletion and elevated ROS generation [15].
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FIGURE 6: Hoechst33342 dye-stained fluorescent images indicating the
drug-induced chromatin condensation and DNA break, where Cur and
Doxo combination dose-treated MDA-MB-231 cells showed the highest
number of condensed nuclei compared to IC50 and single doses of
drugs (treated alone); scale bar = 100 µm
DNA: deoxyribonucleic acid, Cur: curcumin, Doxo: doxorubicin
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FIGURE 7: Graphical analysis of mean Hoechst33342 fluorescence in
different dose-treated MDA-MB-231 cells. Column values were analyzed
as mean ± SD of triplicates; p<0.05 is statistically significant
SD: standard deviation, Cur: curcumin, Doxo: doxorubicin

Quantification of apoptosis stages in MDA-MB-231 cells
The apoptotic effect of the Cur and Doxo combination treatment on MDA-MB-231 cells was further
quantified by flow cytometry analysis and stained with Annexin V-FITC and the PI double staining method.
The results (Figure 8) showed that the untreated sample exhibited 97.77% healthy and viable cells. The IC50
Cur dose-treated MDA-MB-231 cells had 54.09% viability, and the IC50 Doxo treatment exhibited 52.60%
healthy cells. A remarkable increase in cellular apoptosis was observed in the combination treatment, where
only 26.13% of cells were found live, 5.86% were in early apoptosis, 20.07% were in late apoptosis, and the
remaining 47.94% were dead cells. In the single doses of Cur and Doxo, very minimal apoptosis was visible
(Figure 9).
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FIGURE 8: Flow cytometry analysis of apoptosis stages in various dose-
treated MDA-MB-231 cells for 48 hours
LL: viable cells, LR: early apoptotic cells, UR: late apoptotic cells, UL: dead cell, Cur: curcumin, Doxo: doxorubicin
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FIGURE 9: Graphical presentation showing the percentage of viable,
apoptotic, and dead cells in different drug doses (48 hours) analyzed
using flow cytometry. Bar values were calculated in mean ± SD of
duplicates; p<0.05 is significant
SD: standard deviation, Cur: curcumin, Doxo: doxorubicin

Cur and Doxo combination treatment induces S-phase cell-cycle arrest
Figure 10 shows that the IC50 Cur dose increased the cell percentage in the G 2-M phase (26.1%), while the

IC50 Doxo treatment increased the cell count (34.25%) in the S-phase by reducing the cell number in the G0-
G1 phase. This indicates the G2-M phase restriction with Cur and S-phase restriction with Doxo drug

treatment. On the other hand, maximum cells were analyzed in the sub G0/apoptotic phase (47.99%) with a

restriction at the S-phase (21.50%). These results (Figure 11) emphasize the G1/S checkpoint activation and

S-phase cell-cycle arrest after the Cur and Doxo combination treatment against MDA-MB-231 cells.
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FIGURE 10: Flow cytometry analysis representing the percentage of
cells in different phases of the cell cycle after Cur and Doxo
combination treatment on MDA-MB-231 cells (48 hours) indicates the
cell cycle arrest
Cur: curcumin, Doxo: doxorubicin
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FIGURE 11: Graphical presentation showing flow cytometry data of cell
distribution in different phases of the cell cycle. Bar values were
calculated in mean ± SD of duplicates; p<0.05 is significant
SD: standard deviation

Quantitative expression of cell-cycle regulatory genes in treated MDA-
MB-231 cells
The quantitative expression of cell cycle regulatory genes (BRCA-1, BRCA-2, P53, ATM , and CHEK2) was
performed with the cDNA of different dose-treated MDA-MB-231 cells. The Cur and Doxo combination
dose-treated cells revealed significant upregulation of the P53 gene (4.43-fold increase) with a moderate
elevation of CHEK2 (2.58-fold), BRCA-1 (2.01-fold), and BRCA-2 (1.60-fold) gene expressions. In the IC50
Cur dose-treated cells, upregulation of the P53 gene (2.58-fold) was observed, whereas the IC50 Doxo caused
an increase in both P53 (2.90-fold) and CHEK2 (2.09-fold) gene expressions. However, some minor
upregulation of gene expressions was visible in the single doses of Cur and Doxo (Figure 12, Figure 13). The
results indicate that P53 is the gene responsible for restricting the S-phase of the cell cycle in combination
with drug treatment.

 

2024 Sarkar et al. Cureus 16(12): e75047. DOI 10.7759/cureus.75047 15 of 20

https://assets.cureus.com/uploads/figure/file/1291576/lightbox_b9f2a9009c1c11efb36cf332918aacf1-Figure-5-cell-cycle-stages.png
javascript:void(0)
javascript:void(0)


FIGURE 12: Bar diagram showing relative quantitative expression of cell
cycle regulatory genes, ATM, P53, CHEK2, BRCA-1, and BRCA-2
compared between the treated and non-treated MDA-MB-231 cells by
RT-qPCR (fold change: 2-∆∆Ct) method. Bar values were calculated in
mean ± SD of duplicates; p<0.05 is statistically significant
RT-qPCR: reverse transcription quantitative polymerase chain reaction, SD: standard deviation, Cur:
curcumin, Doxo: doxorubicin
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FIGURE 13: Heat map showing fold change (2-∆∆Ct) of all genes in
different dose-treated MDA-MB-231 cells (48 hours)
Fold change intensity is presented by color coding, from the lowest fold change +0.15 (green) to the highest fold
change +4.43 (red).

Cur: curcumin, Doxo: doxorubicin

Discussion
Among all the breast cancer cells, MDA-MB-231 cells are considered highly relapsing and drug-resistant due
to their non-responsiveness toward hormone therapy. Moreover, it also causes numerous adverse effects like
skin blisters, hair loss, kidney failure, cardiac toxicity, and multi-organ failure. To deal with these
complexities, phyto-extracts or active compounds are widely used with standard therapeutics to minimize or
reverse the side effects. Based on the numerous previously reported successful preclinical and clinical trials
[16-18], we intended to investigate the cascade mechanism of Cur’s anticancer efficacy. Here, we
emphasized increasing the anticancer activities of Doxo combined with Cur at a non-toxic concentration.
The MTT assay (Figure 1, Figure 2) observed dose-dependent cytotoxicity with Cur and Doxo
treatments when applied alone. However, a synergistic apoptosis rate was evident when applied in
combination (33.12 μM Cur + 0.33 μM Doxo) [14]. Further results of elevated oxidative stress (Figure 4,
Figure 5) speculated that ROS generation could be a reason behind altered intracellular homeostasis [19],
leading to nuclear condensation in apoptotic cells (Figure 6, Figure 7) [20]. The flow cytometry data provided
statistical information about the staging of apoptosis (Figure 8) and the cell cycle arrest. The Cur and Doxo
combination treatment increased cell number in the S-phase, indicating an S-phase arrest in treated MDA-
MB-231 cells (Figure 10).

Moreover, the gene expression results revealed the significant elevation of the tumor suppressor P53 gene
expression by 4.43-fold (role in restricting S-phase) along with the upregulation of G1-S checkpoint

regulator CHEK2 (2.58-fold), BRCA-1 (2.01-fold), and BRCA-2 (1.60-fold) gene expressions in the Cur and
Doxo combination treatment (Figure 12, Figure 13), compared to the untreated MDA-MB-231 cells. These
outcomes conclude the P53-mediated S-phase arrest triggered the apoptosis [21,22] mechanism in the
combination dose-treated MDA-MB-231 cells. The overall apoptosis mechanism [23] is schematically
presented in Figure 14 (previously reported in the preprint [24]).
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FIGURE 14: Schematic presentation explaining the underlying
mechanism of chemo-sensitizing apoptosis in MDA-MB-231 cells by Cur
combined with Doxo. The Cur and Doxor combination treatment
enhances the oxidative stress downstream of chromatin condensation
and fragmentation. The S-phase cell cycle arrest takes place by
significant upregulation of ATM, P53, CHEK2, BRCA-1, and BRCA-2
gene expression
Image Credit: Author (generated using www.BioRender.com)

Cur: curcumin, Doxo: doxorubicin

Study limitations
Overall, this preclinical study aims to provide a promising direction for developing a novel strategy to inhibit
tumor cell growth and establish Cur as a potential adjunct to frontline breast cancer therapeutics,
specifically Adriamycin (Doxo). However, using embryonic kidney cells as the control could be a limitation of
the study. Therefore, further in vitro investigations may be required to validate the findings, and additional
clinical trials are essential for its validation as a commercial therapy.

Conclusions
The present in vitro study showed the potential growth-inhibitory activities of Cur against human breast
cancer cells (MDA-MB-231). Its synergy at broad ranges was found to be consistent with the combination
treatment with Doxo at an optimal specific dose (33.12 μM Cur + 0.33 μM Doxo) as a chemo-sensitizing
agent for cancer therapy. The cytotoxicity of the combination dose was cross-verified on normal kidney
epithelial cells (HEK293), where the minimal toxicity proved the chemo-protectiveness of Cur against Doxo.
The underlying mechanisms causing the anticancer activities of Cur with its pleiotropic effects were also
revealed in the combination treatment. The elevated oxidative stress (ROS) was found to enhance the
apoptosis of cancer cells enormously after being treated with the Cur and Doxo combination treatment.
Meanwhile, the chromatin condensation and double-stranded DNA break further activated the P53-
mediated S-phase cell cycle arrest in the MDA-MB-231 cell lines. Also, the upregulated expression of the
ATM gene in the combination dose-treated MDA-MB-231 cells emphasized the CHEK2-mediated signal
transduction, which caused the G1/S checkpoint activation by cyclin-A/E. The slightly elevated BRCA-1

expressions induced the further activity of BRCA-2 at the S/G2 and G2/M checkpoints to prevent further cell

division in MDA-MB-231 cells.

Additional Information
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